首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The South American palaeomagnetic poles published after the Upper Mantle Conference on Solid Earth Problems held at Buenos Aires in 1970, are summarized.The Late Palaeozoic-Cretaceous section of the South American polar wandering curve is now defined on the basis of twenty palaeomagnetic poles; these poles define five “age groups” at Late Carboniferous, Permo-Carboniferous, Middle Permian, Triassic and Cretaceous times.The comparison of the Late Palaeozoic-Mesozoic sections of the polar wandering curves of South America, Australia and Africa suggests that the former fragmentation of the Gondwana occurred in Late Carboniferous or Permo-Carboniferous times and that the origin of the South Atlantic Ocean took place after the Middle Jurassic (160 m.y.) but before the Early Cretaceous (120 m.y.).  相似文献   

2.
Rb-Sr mineral ages and palaeomagnetic data are presented for nine dolerite dykes and sills in central and southern Sweden. The intrusions are representative of widespread dolerites, mainly dykes, which cut pre-Sveconorwegian (Svecofennian) crust and trend parallel to the Sveconorwegian Front Zone (or Schistosity Zone) over a band up to 150 km wide along most of its 700-km length. The Rb-Sr ages suggest emplacement through the approximate interval 1000?900 m.y. Cooling ages on country rocks show little evidence of significant Sveconorwegian (e.g. 1000 m.y.) heating effects, and the new isotopic and palaeomagnetic results are taken to represent the time of dolerite intrusion.The dolerites were emplaced in response to net tensional stresses in the Svecofennian crust: it is proposed that these were caused by marginal upwarping related to post-orogenic uplift of the adjacent Sveconorwegian region.The palaeomagnetic poles for the dolerites are similar to poles from the Sveconorwegian Province and the Front Zone, indicating that these also have a ca. 1000?900-m.y. age. The similar cooling histories of the Sveconorwegian Province and the Grenville Province of Canada allow this age to be assigned also to the Grenville poles. If so, it is not necessary to postulate plate motions during Grenville-Sveconorwegian magnetisation, and the agreement between dolerite poles and Sveconorwegian poles suggests that the orogenic belt cooled essentially in place against its bounding cratons. A possible continental fit shows Scandinavia and North America contiguous in late Grenville time, though relative motions before 1000 m.y. are not ruled out.  相似文献   

3.
The major Proterozoic igneous intrusions in the Swedish sector of the Baltic Shield are the Ragunda complex (1293 m.y., palaeomagnetic pole 165°E, 54°N) and the Nordingrågabbro-granite-anorthosite complex (1385 ± 30 m.y.). The latter body has been partially remagnetised by later post-Jotnian dolerites (1254 m.y.), and sites influenced by the dolerites have a stable magnetisation with a mean direction D = 45°, I = ?39°, (α95 = 4.3°). Elsewhere, the gabbro-anorthosite facies have a magnetisation of dual polarity predating the dolerite and recoverable at various stages of thermal and/or a.f. cleaning with a mean of D = 48°, I = 37° (α95 = 5.3°); medium and high coercivity remanence resides in large magnetite grains and fine, predominantly hematite, rods in feldspar megacrysts. The Nordingrårapakivi granite yields a mean, also including dual polarities, of D = 221°, I = ?25° (α95 = 13°), and the Gävle granite yields a mean of D = 26°, I = 17° (α95 = 13°).New data define the a.p.w. path for the Baltic Shield after final uplift and cooling of the ca. 1800 m.y. Svecofennian mobile belt and prior to intrusion of the post-Jotnian dolerites at 1250 m.y.; this (ca. 1500–1200 m.y.) path defines a double loop similar in size and shape to the contemporaneous path for the Laurentian Shield and the paths can be superimposed to define relative positions of the shields. They were in juxtaposition prior to 1200 m.y. with the optimum reconstruction obtained by rotation of approximately 64° about a Euler pole at 1°E, 36°N. Pre-1500 m.y. palaeomagnetic data are also shown to fit this same unique reconstruction. The main geological correlations are an alignment of the Lower/Middle Proterozoic major strike-slip zones, the structural trends within the pre-1700 m.y. mobile belts, and the Grenville and Sveconorwegian (ca. 1100 m.y.) mobile belts. The anorogenic magmatism characteristic of Proterozoic times became gradually more restricted to one active margin of the continental reconstruction as temperature gradients decreased and the crust consolidated. All of these Proterozoic tectonic/magmatic trends are parallel to the long axis of the continental reconstruction.  相似文献   

4.
The Svecofennian mobile zone occupies the bulk of the Fennoscandian shield and represents terrain subjected to profound tectonic activity and granite intrusion at ~1800 My. This study covers the palaeomagnetism of basic rocks within this belt in Sweden between 65.5 and 67.5°N (gabbros and diorites of Kallax, Niemisel, Sangis, Stora Lulevatten and the Gällivare, Jokkmokk and Voullerim regions) magnetised during uplift and cooling of this belt at ~1750-1550 My. AF and thermal demagnetisation define a consistent sequence of high to low blocking-temperature components identifying a migration of the geomagnetic field during part of this interval. Together with the Rådmansö gabbro-diorite of central-east Sweden (palaeomagnetic pole 201°E, 36°N) these components yield a comparable sequence of palaeopoles to those derived from uplift magnetisations of the contemporaneous Svecokarelian terrain of Finland. The post-tectonic, Uppsala metabasite suite possesses a magnetite-held (“A”) remanence comparable to Svecofennian uplift magnetisations from elsewhere; within the aureole of the Almunge alkaline complex this has been largely displaced by a low blocking temperature (“B”) remanence, possibly related to a late stage in the Svecofennian uplift cycle. The Hälleforsnäs giant dyke possesses a magnetite-held remanence attributed to initial cooling at 1518 My (palaeomagnetic pole 167°E, 27°N) and at least two high blocking-temperature components. One of these is correlated with the ~1000-800 My Sveconorwegian mobile activity of southwest Sweden; this latter component is represented as the univectorial remanence in dolerite dykes of this age, and sporadically as a secondary component in the adjacent Svecofennian terrain.The results are compiled with other palaeomagnetic poles from the Fennoscandian shield to derive a generalised apparent polar wandering path for the interval ~1750-1550 My. They define segments of a large loop which agrees closely with uplift magnetisations from the contemporaneous Hudsonian mobile terrain of the Laurentian shield on a single reconstruction derived from Upper Proterozoic (1450-1200 My) palaeomagnetic data. The two shields thus appear to have formed an integral continental unit during the interval 1750-1200 My. A geological reconstruction of the Siberian and Laurentian shields is also tested and found to yield general agreement with the palaeomagnetic evidence. The major geological implications of the collective reconstruction are an alignment of major tectonic trends and a gradual restriction of anorthosite-Rapakivi magmatism between the termination of the ~1800 and ~1100 My mobile episodes.  相似文献   

5.
Zircons separated from the Cambrian Potsdam sandstone of New York yield four distinct populations which can be defined by a number of analytical techniques. U-Pb isotopic analyses of small samples and monozircons of each population reveal a fine chronology not apparent in milligram-sized sample analysis, and define source area ages of 1180, 1320, 2100 and 2700 m.y. for the Cambrian detrital suite. These ages correspond to well-defined sources in the Superior and Grenville Provinces of the Canadian Shield (2700 and 2100 m.y.) and the well established Grenville age rocks of the Adirondack Mountains (1180 m.y.). The 1320-m.y. age appears to be derived from the Adirondacks, and suggests the existence of pre-Grenville basement in that massif. Our techniques allow the interpretation of the Precambrian history of a large portion of eastern North America from a single sample, and thus should be valuable in the definition of source areas in paleogeographic reconstruction, and in studies of continental crustal evolution.  相似文献   

6.
Proterozoic supracrustal rocks of southwest Greenland and amphibolite dykes intruding the basement possess a thermal remanent magnetisation acquired during slow regional uplift and cooling between 1800 and 1600 m.y. following the Ketilidian mobile episode. Most samples from amphibolite dykes (mean palaeomagnetic pole 214°E, 31°N) possess a stable remanence associated with development of hematite during regional thermal metamorphism. Metavolcanics from the eastern part (eight sites, palaeomagnetic pole 230°E, 60°N, A95 = 15°) and western part (twelve sites, 279°E, 59°N, A95 = 17°) of Ars?k Island have magnetisations postdating folding and are related to KAr ages dating regional cooling (1700-1600 m.y.); magnetic properties are highly variable and partially stable remanence resides predominantly in pyrrhotite.These results agree in part with other palaeomagnetic results from the northern margin of the same craton, and currently available palaeomagnetic results assigned to the interval 1850-1600 m.y. are evaluated to define apparent polar wander movements. Two large polar movements are recognised during this interval with the possibility of a third at ca. 1800 m.y. It is concluded that apparent polar wander movements in Proterozoic times are most accurately described in terms of closed loops.  相似文献   

7.
There is a linear relationship between the spacing of Pliocene-Pleistocene volcanoes and the thickness of the lithosphere and attenuated crust in the East African rift valley. Assuming that the physical-chemical properties of the Archaean and Cenozoic lithosphere and crust were broadly similar, we use the spacing of volcanic centres in the Abitibi greenstone belt of southern Canada to determine lithospheric and crustal thickness in the Archaean. The abitibi volcanoes have been deformed and so have elliptical cross-sections. In order to arrive at their original form we have removed the effects of tectonic strain by two alternative mechanisms of pure and simple shear which give comparable results. A mean original volcano spacing of 84–88 km suggests that the lithsophere was 80–90 km thick and that the crust was probably 35–45 km thick in this greenstone belt about 2700 m.y. ago. The crustal values are comparable with those determined by geochemical parameters and are consistent with the suggestion that greenstone belts formed in extensional marginal basins between crustal-thickened continental masses, deep sections of which are now seen in Archaean high-grade regions.  相似文献   

8.
Some 36 paleomagnetic poles are available from Precambrian rock units from Europe, west of the Urals. They allow us to amplify Neuvonen's suggestions, and speculate on the pole path for the interval 1200–2000 my. In order to link younger Precambrian poles with Phanerozoic data, one interpretation is that a closed loop is required during the interval 500–1400 my. By comparison of pole paths for North America, Western Europe, and East and Southern Africa, the paleomagnetic evidence presently available tentatively suggests that these shield areas drifted independently during the later part of the Precambrian.  相似文献   

9.
Rapid polar shifts relative to Gondwanaland are identified in the Late Ordovician and Carboniferous. These shifts form part of the “Common polar wander path” interpretation of the palaeomagnetic poles for the Gondwana continents during the Palaeozoic. For western Europe a transition occurs between the Ordovician and Silurian poles, but is of smaller magnitude than the Late Ordovician Gondwana shift. Similarly Carboniferous shifts with respect to Europe and North America are smaller than the Gondwana shifts. A third shift in Europe is dated as mid-Devonian, but could be as old as Late Silurian, and has no counterpart in Gondwanaland. The differences in timing and magnitudes of these shifts provide evidence of the predominant role of continental drift rather than polar wandering. Attempts to explain the data exclusively in terms of polar wandering lead to geologically and geometrically untenable conclusions. Whilst there were one or perhaps two supercontinents in most of the upper Palaeozoic, it seems Laurasia was itself a set of separate fragments.  相似文献   

10.
In the western part of the Gardar Igneous Province of southern Greenland, lamprophyre dykes intruded at ca. 1276-1254 m.y. RbSr biotite ages yield a palaeomagnetic pole at 206.5°E,3°N (nine sites, dψ = 5.1°, dχ = 10.1°) Slightly younger dolerite dykes with RbSr biotite ages in the range 1278-1263 m.y. give a pole at 201.5°E,8.5°N (24 sites, dψ = 4.7°, dχ = 9.4°), and the syeno-gabbro ring dyke of the Kûngnât complex (RbSr isochron age 1245 ± 17 m.y.) cutting both of these dykes swarms, gives a pole at 198.5°E, 3.5°N (four sites, dψ = 2.3°,dχ = 4.4°). All these rock units have the same polarity and the poles are identical to those from Mackenzie and related igneous rocks of North America (1280-1220 m.y.) after closure of the Davis Strait; they confirm that this part of the Gardar Province is a lateral extension of the Mackenzie igneous episode within the Laurentian craton.In the Tugtutôq region of the eastern part of the Gardar Province 47 NNE-trending dykes of various petrologic types, and intruded between 1175 ± 9 and 1168 ± 37 m.y. (RbSr isochron ages) yield a palaeomagnetic pole at 223.9° E, 36.4°N (dψ = 4.1°, dχ = 6.1°). Fifteen other dykes in this swarm were intruded during a transitional phase of the magnetic field which, however, does not appear to have achieved a complete reversal over a period of several millions of years. The majority of dykes studied are highly stable to AF and thermal demagnetisation and contain single high blocking temperature components with single Curie points in the range 380–560°C.Palaeomagnetic poles from the Gardar Province between ca. 1330 and 1160 m.y. in age define the earlier part of the Great Logan apparent polar-wander loop; they correlate closely with contemporaneous North American results and confirm the coherence of the Laurentian craton in Upper Proterozoic times.  相似文献   

11.
In order to test two different proposals for the poorly defined African Paleozoic apparent polar wander path (APWP), a paleomagnetic study was carried out on Ordovician through Carboniferous clastic sediments from the Cape Fold belt, west of the 22nd meridian. One proposal involves a relatively simple APWP connecting the Ordovician Gondwana poles in North Africa with the Late Paleozoic poles to the east of South Africa in a more or less straight line crossing the present equator in the Devonian. The other proposal adds a loop to this path, connecting Ordovician poles in North Africa with poles to the southwest of South Africa and then returning to central Africa. This loop would occur mainly in Silurian time. New results reported herein yield paleopoles in northern and central Africa for Ordovician to lowermost Silurian and Lower to Middle Devonian formations. The best determined paleopole of our study is for the Early Ordovician Graafwater Formation and falls at 28°N, 14°E (k = 25, α95 = 8.8°, N = 28 samples). The other paleopoles are not based on sufficient numbers of samples, but can help to constrain the apparent polar wander path for Gondwana. Our results give only paleopoles well to the north of South Africa and we observe no directions within the proposed loop. Hence, if the loop is real, it must have been of relatively short duration (60–70 Ma) and be essentially of Silurian/Early Devonian age, implying very high drift velocities for Gondwana (with respect to the pole) during that interval.  相似文献   

12.
The proposition that movements between multiple continental fragments driven by plate tectonics have taken place during the earlier eons of geological time can be simply tested. A random distribution will be derived when the collective palaeomagnetic poles are rotated into any quasi-rigid reconstruction. This elementary test surmounts the most serious limitation of Precambrian palaeomagnetic data, namely that the ages of magnetisation are mostly poorly known. In the event, the late Archaean and Proterozoic poles (2850–590 Ma) produce a non-random distribution with a single peak which is only compatible with a quasi-rigid continental configuration occupying a preferential position on the globe. This solution is not favoured because uncertainties in definition of the poles contribute to their scatter and bias the solution towards the random one. Hence confirmation of the quasi-rigid premise is derived in a debased form, but is not suppressed, by the deficiencies of the database.This palaeomagnetic constraint explains the distinctive isotopic, geochemical and lithofacies signatures of the Proterozoic eon and is independently supported by the trend and long temporal continuity of crustal lineaments. It does not preclude the opening of ocean basins between the shields, but it does predict that development of these basins was limited by the influence of controlling mantle systems. This constrained the continental crust into a form which was essentially rigid on the gross scale resolvable by palaeomagnetism.  相似文献   

13.
Palaeomagnetic results from the Lower Palaeozoic inliers of northern England cover the upper part of the (Middle Ordovician) Borrowdale Volcanic Series (palaeomagnetic pole 208°E, 18°S, A95 = 9.4°), minor extrusive units relating to the Caradoc and Ashgill stages of Ordovician times, intrusive episodes of Middle Ordovician and Middle Silurian to Late Devonian age, and the Shap Granite of Devonian (393 m.y.) age (palaeomagnetic pole 313°E, 33°S, A95 = 5.6°).A complete assessment of Ordovician to Devonian palaeomagnetic data for the British region shows that the pole was nearly static relative to this region for long intervals which were separated by shifts occupying no more than a few millions of years. The mean palaeomagnetic poles are: Ordovician (6°E, 16°S), Lower Silurian (58°E, 16°N), Middle Silurian/Lower Devonian (318°E, 6°N) and Middle/Upper Devonian (338°E, 26°S); the first two shifts separating these mean poles can be explained predominantly in terms of rotational movements of the crustal plate but the last involved appreciable movement in palaeolatitude.Comparison of Lower Palaeozoic palaeomagnetic data from the British region with contemporaneous data from continental Europe/North America on the Pangaean reconstruction reveals a systematic discrepancy in palaeolatitude between the two regions prior to Middle Devonian times. This discrepancy was eliminated during a few millions of years of Lower/Middle Devonian times (ca. 395 m.y.) and can be explained in terms of ca. 3500 km of sinistral strike-slip movement close to the line of the orthotectonic Caledonides. This motion is linked both in time and place to the impingement of the Gondwanaland and Laurentian supercontinents during the Acadian orogeny; this appears to have displaced the British sub-plate until it became effectively locked between the Baltic and Laurentian regions. Although movement of the dipole field relative to the British region in Lower Palaeozoic times is now well defined, nearly one fifth of the total data show that the geomagnetic field was more complex than dipolar during this interval. Until the significance of these anomalies is fully resolved, the tectonic model derived from the palaeomagnetic data cannot be regarded as unambiguous.  相似文献   

14.
Subsidence of the Bahama Escarpment, determined from deep-diving submersible and dredge samples, is used to constrain the nature of crust underlying the Bahamas. Horizontal disposition of the Hauterivian/Barremian (125 Ma) age boundary along the Bahama Escarpment is inconsistent with an underlying oceanic crust (either normal or thickened) here, and suggests that thinned continental crust underlies the Bahamas. Subsidence curves are then fit based on a stretched lithosphere model to a stratigraphic section (2000–4000 m) off Cat Island. This analysis indicates crustal thinning by a factor (β) of 2.0–2.5, resulting in present crustal thicknesses of 10–12 km. We propose that rifting beneath the Bahamas occurred from middle (175–180 Ma) to late (160 Ma) Jurassic time. The pre-extension Bahamas fit between North and South America and Africa in Early Jurassic time, eliminating overlap of the present Bahamas onto Africa in reconstructions of the North Atlantic.  相似文献   

15.
Of 16 sites collected in the Taru grits (Permian) and Maji ya Chumvi beds (Permo-Triassic) of East Africa only 6 sites from the Maji ya Chumvi sediments gave meaningful palaeomagnetic results. After thermal cleaning the 6 sites (32 samples) give an Early Triassic pole at 67°N, 269°E with A95 = 17° in excellent agreement with other African Mesozoic poles. There are now 26 Mesozoic palaeomagnetic poles for Africa from widely diverse localities ranging in present latitude from 35°N to 30°S. The poles subdivide into Triassic (17 poles) and Cretaceous (9 poles) groups whose means are not significantly different. The palaeomagnetic pole for Africa thus remained in much the same position for 170 m.y. from Early Triassic to Late Cretaceous. The data form an especially good set for estimating the palaeoradius using Ward's method. Values of 1.08 ± 0.15 and 1.03 ± 0.19 times the present radius are deduced for the Triassic and Cretaceous respectively with a mean value of 1.08 ± 0.13 for all the Mesozoic data combined. The analysis demonstrates that hypotheses of earth expansion are very unattractive.  相似文献   

16.
Results are reported from palaeomagnetic samples collected in two traverses across the coast-parallel dyke swarm of southern Greenland. This swarm probably resulted as the consequence of initial rifting between Greenland and Labrador, and a reversal of magnetisation has been found which is correlated on the basis of KAr age determinations (~168 m.y.) with the Mateke event of the Middle Jurassic (Bajocian). All of fifteen sites show significant grouping of directions after a.f. cleaning; three have anomalous directions of magnetisation while the remainder (nine normal, three reversed) give a combined mean direction of D = 336°, I = 66° (α95 = 4.6°) with a palaeomagnetic pole at 191°E, 72°N. The dykes exhibit the same corelation between polarity and deuteric oxidation state as that found in Tertiary volcanics. There is a systematic change in magnetisation across the dyke swarm in south Greenland from normal to anomalous to reversed directions; this is interpreted as due to lateral migration of the response to the regional stress field with time. The pole position lies in the vicinity of Jurassic poles from North America after closing the Labrador Sea according to the reconstruction of Bullard, Everett and Smith, but the scatter of these latter poles precludes a confirmation of this reconstruction for Middle Jurassic and earlier times.  相似文献   

17.
华北蓟县中、上元古界古地磁研究   总被引:12,自引:0,他引:12  
本文论述了华北蓟县中、上元古界地层标准剖面古地磁采样及实验室技术,采样地层的磁性特征,多磁成分的分析和测试结果.主要讨论了蓟县中、上元古界地层所代表的古地磁极性、极移路径和古纬度,并与北美大陆及华南(扬子)地块该时期的极移路径进行对比.  相似文献   

18.
Nd isotopic data from the Zimbabwe and Kaapvaal cratons and the Limpopo, Kalahari, Namaqualand and Damara mobile belts imply that over 50% of present-day continental crust in this region had separated from the mantle by the end of the Archaean and that< 10% of continental crust of southern Africa has formed in the last 1.0 Ga. Such a growth rate implies that average erosion rates through geological time were high and that evolution of continental crust has been dominated by crustal growth prior to 1.4 Ga, and crustal reworking since that time. The evolution of average crust is not represented directly by clastic sediment samples but may be determined from sediment analyses if both the time of orogeneses and the average erosion rate are known. Both trace element data from southern Africa granitoids and the high erosion rates implied by the isotopic study suggest that growth of continental crust in the Archaean was by underplating rather than lateral accretion, but arc accretion was the dominant mechanism after 2.0 Ga.  相似文献   

19.
扬子板块东北缘中元古代的大地构造划分   总被引:1,自引:0,他引:1  
扬子板块东北缘存在四条主要的中元古代变质带,自南向北依次为江南变质带、沿江变质带、云台一张八岭变质带和连云港一泗阳变质带。它们分别为中元古代的古弧后盆地、火山岛弧、裂谷及弧前盆地,扬子板块东北缘中元古代为活动大陆边缘构造体系。苏(北)胶(南)变质造山带应解体,其中一部分属扬子大陆边缘体系。  相似文献   

20.
The Precambrian basement of the British region south of the Caledonian orogenic belt is only observed in a few small inliers; this paper reports a detailed paleomagnetic study of four of these inliers. The Stanner-Hanter amphibolitised gabbro-dolerite complex of uncertain age yields a mean direction of magnetisation D = 282°, I = 51° (15 sites,α95 = 11.4°) after AF and thermal cleaning. Uriconian lavas and tuffs (~700-600 m.y.) of the Pontesford and Wrekin inliers require both thermal and AF cleaning for complete analysis of NRM. The former region (Western Uriconian) yields a mean of D = 136°, I = ?25° (6 sites,α95 = 15.3°) and the latter region (Eastern Uriconian) a mean of D = 78°, I = 17° (9 sites, α95 = 12.8°); the Eastern Uriconian shows a marked improvement in precision after a two-stage fold test, and the palaeomagnetic data suggest that some apparent polar movement took place between eruption of the two sequences. The Uriconian rocks in both areas were intruded by dolerites which yield a mean direction of magnetisation D = 72°, I = 54° (11 sites,α95 = 13.2°).The collective data give palaeomagnetic poles related to Upper Proterozoic metamorphic episodes (Stanner-Hanter Complex and Rushton Schist) which are in close agreement with earlier studies of the Malvernian metamorphic rocks, and to the late Precambrian Uriconian volcanic/hypabyssal igneous episode. All of these magnetisations are probably confined to the interval 700-600 m.y., and are indicative of appreciable polar movement during this interval. The palaeomagnetic poles define an apparent polar wander path for this crustal block between Late Precambrian and Lower Cambrian times and show that cratonic Britain south of the Caledonian suture is unrelated to the Baltic Shield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号