首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Geochemical analyses of dikes, sills, and volcanic rocks of the Mesozoic Appalachian Tholeiite (MAT) Province of the easternmost United States provide evidence that continental tholeiites are derived from continental lithospheric mantle sources that are genetically and geochronologically related to the overlying continental crust. Nineteen olivine tholeiites and sixteen quartz tholeiites from the length of this province, associated in space and time with the last opening of the Atlantic, display significant isotopic heterogeneity: initial εNd = +3.8 to −5.7; initial 87Sr/86Sr= 0.7044−0.7072; 206Pb/204Pb= 17.49−19.14; 207Pb/204Pb= 15.55−15.65; 208Pb/204Pb= 37.24−39.11. In PbPb space, the MAT define a linear array displaced above the field for MORB and thus resemble oceanic basalts with DUPAL Pb isotopic traits. A regression of this array yields a secondary PbPb isochron age of ≈ 1000 Ma (μ1 = 8.26), similar to Sm/Nd isochrons from the southern half of the province and to the radiometric age of the Grenville crust underlying easternmost North America. The MAT exhibit significant trace element ratio heterogeneity (e.g., Sm/Nd= 0.226−0.327) and have trace element traits similar to convergent margin magmas [e.g., depletions of Nb and Ti relative to the rare earth elements on normalized trace element incompatibility diagrams, Ba/Nb ratios (19–75) that are significantly greater than those of MORB, and low TiO2 (0.39–0.69%)].Geochemical and geological considerations very strongly suggest that the MAT were not significantly contaminated during ascent through the continental crust. Further, isotope and trace element variations are not consistent with the involvement of contemporaneous MORB or OIB components. Rather, the materials that control the MAT incompatible element chemistry were derived from subcontinental lithospheric mantle. Thus: (1) the MAT/arc magma trace element similarities; (2) the PbPb and Sm/Nd isochron ages; and (3) the need for a method of introducing an ancient (> 2−3 Ga) Pb component into subcontinental mantle that cannot be much older than 1 Ga leads to a model whereby the MAT were generated by the melting of sediment-contaminated arc mantle that was incorporated into the continental lithosphere during arc activity preceding the Grenville Orogeny (≈ 1000 Ma).  相似文献   

2.
Samples dredged from 2 localities near the crest of the Valu Fa ridge, an active back-arc basin spreading centre in the Lau Basin, consist of highly vesicular lava fragments of andesitic composition. The samples are characterized by rare, euhedral An85 plagioclase phenocrysts in a hypocrystalline groundmass of An60 plagioclase laths, brown glass and rare subhedral clinopyroxene. Samples from within and, to a lesser extent, between the dredge hauls show remarkable isotopic and chemical homogeneity, with: 87Sr/86Sr − 0.70330 ± 2; 143Nd/144Nd − 0.51303 ± 2; 206Pb/204Pb − 18.65 ± 2; 207Pb/204Pb − 15.55 ± 1; 208Pb/204Pb − 38.34 ± 4; Sr − 165 ppm; Rb − 7 ppm; Cs − 0.17 ppm; K − 3300 to 4200 ppm; Ba − 96 ppm; and REE — LREE depleted with 12–18 × chondritic abundances. On Sr-Nd, Pb-Pb and Sr-Pb plots the volcanics lie just within or on the edge of the MORB fields, overlapping with island-arc volcanics from the Marianas and Tonga. Compared with MORB and ocean-island basalts, the samples show alkali-element enrichment relative to REE and higher Cs relative to Rb. The isotopic and geochemical characteristics of the Valu Fa Ridge volcanics clearly indicate a minor, but significant, slab-derived component in the back-arc basin mantle source.  相似文献   

3.
Trace elements and isotopic compositions of whole rocks and mineral separates are reported for 15 spinel-bearing harzburgite and lherzolite xenoliths from southeastern Australia. These samples have an exceedingly large range in isotopic compositions, with87Sr/86Sr ranging from 0.70248 to 0.70834 and εNd values ranging from +12.7 to −6.3. This range in isotopic compositions can be found in xenoliths from a single locality. The isotopic compositions of clinopyroxene separates and their whole rocks were found to be different in some xenoliths. Samples containing small glass pockets, which replace pre-existing hydrous minerals, generally show only small differences in isotopic composition between clinopyroxene and whole rock. In a modally metasomatized peridotite, significant differences in the Sr and Nd isotopic compositions of a coexisting phlogopite-clinopyroxene pair are present. Coexisting clinopyroxenes and orthopyroxenes from an anhydrous lherzolite have Sr isotopic compositions that are significantly different (0.70248 versus 0.70314), and yield an apparent age of 625 Ma, similar to that found previously by Dasch and Green [1]. However, the Nd isotopic compositions of the clinopyroxene and orthopyroxene are identical indicating recent (within 40 Ma) re-equilibration of Nd.Sr and Nd concentrations in the whole rocks and clinopyroxenes show an excellent positive correlation, and have an average Sr/Nd ratio of 15. This ratio is similar to the primitive mantle value, as well as that found in primitive MORBs and OIBs, but is much lower than that measured in island arc basalts and what might be predicted for a subduction zone-derived fluid. This indicates that a significant proportion of the Sr and Nd in these peridotites is introduced as a basaltic melt with intraplate chemical characteristics.The isotopic compositions of the peridotites reflect long-term, small-scale heterogeneities in the continental lithospheric mantle, and are in marked contrast to the near uniform isotopic compositions of the host alkali basalts (87Sr/86Sr= 0.7038–0.7041andεNd = +3.6 to +2.9). A minimum of three evolutionary stages are identified in the growth of the continental lithospheric mantle: an early basalt depletion event, recording the initial development and stabilization of the lithospheric mantle, followed by at least two enrichment episodes. These observations are consistent with continental lithospheric mantle growth involving the underplating of refractory peridotite diapirs.  相似文献   

4.
Igneous rocks from the Philippine tectonic plate recovered on Deep Sea Drilling Project Legs 31, 58 and 59 have been analyzed for Sr, Nd and Pb isotope ratios. Samples include rocks from the West Philippine Basin, Daito Basin and Benham Rise (40–60 m.y.), the Palau-Kyushu Ridge (29–44 m.y.) and the Parece Vela and Shikoku basins (17–30 m.y.). Samples from the West Philippine, Parece Vela and Shikoku basins are MORB (mid-ocean ridge basalt)-like with 87Sr/86Sr= 0.7026−0.7032, 143Nd/144Nd= 0.51300−0.51315, and 206Pb/204Pb= 17.8−18.1. Samples from the Daito Basin and Benham Rise are OIB (oceanic island basalt)-like with 87Sr/86Sr= 0.7038−0.7040, 143Nd/144Nd= 0.51285−0.51291 and 206Pb/204Pb= 18.8−19.2. All of these rocks have elevated 207Pb/204Pb and 208Pb/204Pb compared to the Northern Hemisphere Regression Line (NHRL) and have δ207Pb values of 0 to +6 and δ208Pb values of +32 to +65. Lavas from the Palau-Kyushu Ridge, a remnant island arc, have 87Sr/86Sr= 7032−0.7035, 143Nd/144Nd= 0.51308−0.51310 and 206Pb/204Pb= 18.4−18.5. Unlike the basin magmas erupted before and after them, these lavas plot along the NHRL and have Pb-isotope ratios similar to modern Pacific plate MORB's. This characteristic is shared by other Palau-Kyushu Arc volcanic rocks that have been sampled from submerged and subaerial portions of the Mariana fore-arc.At least four geochemically distinct magma sources are required for these Philippine plate magmas. The basin magmas tap Source 1, a MORB-mantle source that was contaminated by EMI (enriched mantle component 1 [31]) and Source 2, an OIB-like mantle source with some characteristics of EMII (enriched mantle component 2 [31]). The arc lavas are derived from Source 3, a MORB-source or residue mantle including Sr and Pb from the subducted oceanic crust, and Source 4, MORB-source or residue mantle including a component with characteristics of HIMU (mantle component with high U/Pb [31]). These same sources can account for many of the isotopic characteristics of recent Philippine plate arc and basin lavas. The enriched components in these sources which are associated with the DUPAL anomaly were probably introduced into the asthenosphere from the deep mantle when the Philippine plate was located in the Southern Hemisphere 60 m.y.b.p.  相似文献   

5.
Analyses for major and trace elements, including REE, and Sr, Nd and Pb isotopes are reported from a suite of Siluro-Devonian lavas from Fife, Scotland. The rocks form part of a major calc-alkaline igneous province developed on the Scottish continental margin above a WNW-dipping subduction zone. Within the small area (ca. 15 km2) considered, rock types range from primitive basalts and andesites (high Mg, Ni and Cr) to lavas more typical of modern calc-alkaline suites with less than 30 ppm Ni and Cr. There is a marked silica gap between these rocks (< 62%) and the rare rhyolites (> 74%), yet the latter can be generated by fractional crystallization from the more mafic lavas. In contrast, variation in incompatible element concentrations and ratios in the mafic lavas can not be generated by fractional crystallization processes. Increasing SiO2 is accompanied by increasing Rb, K, Pb, U and Ba relative to Sr and high field strength elements, increasing LREE enrichment and increasing Sr calculated at 410 Ma, and by decreasing HREE, Eu/Eu*, Sm/Nd and Nd (410). Nd and Sr are roughly anticorrelated and have more radiogenic compositions than the mantle array, in common with data reported elsewhere from this part of the arc. The correlation extrapolates up to cross the mantle array within the composition field of the contemporary MORB source, and extrapolates down towards the probable compositional range of Lower Palaeozoic greywackes, which may form the uppermost 8 km of the crust, or may be supplied to the source by subduction. One sample, however, lies within the mantle array, and closely resembles lavas from northwestern parts of the arc, where a mantle source with mild time-integrated Rb/Sr and LREE enrichment has been inferred. The lavas have relatively high initial 207Pb/204Pb for their 206Pb/204Pb, a feature which has been interpreted elsewhere as the result of incorporation of a sediment component into arc magmas. The systematic changes with increasing SiO2 in isotopic and chemical parameters can be explained by mixing of a greywacke-derived component with depleted mantle. The various possible mixing mechanisms are discussed, and it is considered most likely that mixing occurred in the mantle source through greywacke subduction. The bulk of the Rb, K, Ba and Pb in the lavas is probably recycled from the crust, whereas less than some 40% of the Sr and Nd is recycled. The calc-alkaline chemical trends are solely a function of mixing with the sediment component.  相似文献   

6.
Ar–Ar dating, major and trace element analyses, and Sr–Nd–Pb isotope results of two groups of Lower Cretaceous (erupted at 126 and 119 Ma, respectively) intermediate–felsic lava from the northeastern North China Block (NCB) suggest their derivation from melting of mixtures between the heterogeneous lower crust and underplated basalts. Both groups exhibit high‐K calc‐alkaline to shoshonitic affinities, characterized by light rare earth element (LREE) and large ion lithophile element (LILE) enrichment and variable high field strength element (HFSE, e.g. Nb, Ta and Ti) depletion, and moderately radiogenic Sr and unradiogenic Nd and Pb isotopic compositions. Compared with Group 2, Group 1 rocks have relatively higher K2O and Al2O3/(CaO + K2O + Na2O) in molar ratio, higher HFSE concentrations and lower Nb/Ta ratios, and higher Sr–Nd–Pb isotope ratios. Group 1 rocks were derived from a mixture of an enriched mantle‐derived magma and a lower crust that has developed radiogenic Sr and unradiogenic Nd and Pb isotopic compositions, whereas the Group 2 magmas were melts of another mixture between the same mantle‐derived component and another type of lower crust having even lower Sr, Nd, and Pb isotopic ratios. Shift in source region from Group 1 to Group 2 coincided with a change in melting conditions: hydrous melting of both the underplated basalt and the lower crust produced the earlier high‐Nb and low‐Nb/Ta melts with little or no residual Ti‐rich phases; while the younger low‐Nb and high‐Nb/Ta magmas were melted under a water‐deficient system, in which Ti‐rich phases were retained in the source. Generation of the two groups of intermediate–felsic volcanic rocks was genetically linked with the contemporaneous magma underplating event as a result of lithospheric thinning in the eastern NCB.  相似文献   

7.
We report Sr, Nd and Pb isotope ratios and parent and daughter element concentrations in 34 volcanic rocks from Samoa. The highly undersaturated post-erosional volcanics, which have erupted in Recent to Historic time along a 250-km-long fissure, have isotopic compositions that define fields distinct from those of the tholeiitic to alkalic lavas of the older Samoan shield volcanoes. Most shield lavas have206Pb/204Pb of 18.9–19.4,87Sr/86Sr of 0.7045–0.7055 and87Sr/86Sr (to 0.7075). In general, isotopic compositions of the shield lavas are similar to those of the Marquesas and Society Islands. Post-erosional samples have lower206Pb/204Pb and143Nd/144Nd and higher87Sr/86Sr than most shield lavas. The most striking feature of the post-erosional data is a negative correlation between207Pb/204Pb and206Pb/204Pb. This suggests that post-erosional lavas are derived from mixtures of the shield source and a high-207Pb/204Pb,87Sr/86Sr, low-206Pb/204Pb and143Nd/144Nd post-erosional source which may contain recycled ancient sediment. This enriched mantle domain may also underlie the Ontong-Java and Manihiki Plateaus to the north and west. Although both the Samoan shield and post-erosional lavas show chemical characteristics often associated with mantle plumes, only the shield volcanism can plausibly be related to a plume. The post-erosional eruptions appear to be the result of flexure and rifting due to plate bending at the northern termination of the Tonga Trench.  相似文献   

8.
Abstract We present chemical and Sr–Nd–Pb isotopic compositions of three Triassic (226–241 Ma) calc‐alkaline granitoids (the Yeongdeok granite, Yeonghae diorite and Cheongsong granodiorite) and basement rocks in the northern Gyeongsang basin, south‐eastern Korea. These plutons exhibit typical geochemical characteristics of I‐type granitoids generated in a continental magmatic arc. The Yeongdeok and Yeonghae plutons have similar initial Sr, Nd and Pb isotope ratios (87Sr/86Srinitial = 0.7041 ~ 0.7050, ?Nd(t) = 2.3 ~ 4.0, 206Pb/204Pbfeldspar = 18.22 ~ 18.34), but distinct rare earth element patterns, suggesting that the two plutons formed from partial melting of a similar source material at different depths. The Cheongsong pluton has slightly more enriched Sr–Nd–Pb isotopic compositions (87Sr/86Srinitial = 0.7047 ~ 0.7065, ?Nd(t) = 3.9 ~ 2.8, 206Pb/204Pbfeldspar = 18.24 ~ 18.37) than the other two plutons. The Nd model ages of the basement rocks (1.1 ~ 1.4 Ga) are slightly older than those of the plutons (0.6 ~ 1.0 Ga). The initial Sr and Nd isotopic ratios of the plutons can be modeled by the mixing between the mid‐oceanic ridge basalt‐like depleted mantle component and the crustal component represented by basement rocks, which is also supported by Pb isotope data. The Sr and Nd isotope data from granitoids and basement rocks suggest that the Gyeongsang basin, the Hida belt and the inner zone of south‐western Japan share relatively young basement histories (middle Proterozoic), compared with those (early Proterozoic to Archean) of the Gyeonggi and Yeongnam massifs and the Okcheon belt. The Nd isotope data of basement rocks suggest that the Hida belt might be better correlated with the basement of the Gyeongsang basin than the Gyeonggi massif, the Okcheon belt or the Yeongnam massif, although it may represent an older continental margin of East Asia than the Gyeongsang basin considering its slightly older Nd model ages.  相似文献   

9.
Fresh basaltic glasses have been analyzed for U&z.sbnd;Th disequilibrium systematics as part of an extensive study on the East Pacific Rise (EPR) at 12°45′N. These samples are well described in terms of major and trace elements as well as in Nd, Pb and Sr isotopes. Our results show significant heterogeneities in the mantle source at a small scale, and show heterogeneities at larger scales also when compared to other EPR data.U and Th concentration and isotopic data rule out fractional crystallization as a main process and support a mixing model in agreement with the marble cake model developed by Alle`gre and Turcotte and constrained by trace elements and Nd, Sr and Pb isotopes on the same samples by Prinzhofer et al.Based on the high ( 230Th/232Th ) isotopic ratios on recent tholeiites especially the Th/U values inferred for their sources clearly show that the upper mantle Th/U has decreased with time.  相似文献   

10.
Ocean island basalt (OIB) suites display a wide diversity of major element, trace element, and isotopic compositions. The incompatible trace element and isotopic ratios of OIB reflect considerable heterogeneity in the mantle source regions. In addition to the distinctive Sr, Nd and Pb isotopic signatures of the HIMU, EMI and EMII OIB end-members, differences in incompatible trace element ratios among these end-members are of great help in identifying the nature and origin of their sources. Examination of trace element and isotopic constraints for the three OIB end-members suggests a relatively simple model for their origin. The dominant component in all OIB is ancient recycled basaltic oceanic crust which has been processed through a subduction zone, and which carries the trace element and isotopic signature of a dehydration residue (enrichment in HFSE relative to LILE and LREE, low Rb/Sr, but high U/Pb and Th/Pb ratios leading to the development of radiogenic Pb isotope compositions). HIMU OIB are derived from such a source, with little contamination from other components. Both the EMI and EMII OIB end-members are also dominantly derived from this source, but they contain significant proportions (up to 5–10%) of sedimentary components derived from the continental crust. In the case of EMI OIB, ancient pelagic sediment with high LILE/HFSE, LREE/HFSE, Ba/Th and Ba/La ratios, and low U/Pb ratios, is the contaminant. EMII OIB are also contaminated by a sedimentary component, in the form of ancient terrigenous sediment with high LILE/HFSE and LREE/HFSE ratios, but lacking relative Ba enrichment, and with higher U/Pb and Rb/Sr ratios. A model whereby the source for all OIB is ancient (1–2 Ga old) subducted oceanic crust ± entrained sediment (pelagic and/or terrigenous) is therefore consistent with the trace element and isotopic data. Although subducted oceanic lithosphere will accumulate and be dominantly concentrated within the mesosphere boundary layer, forming the source for hot-spots, such material may also become convectively dispersed within the depleted upper mantle as blobs or streaks, giving rise to small-scale chemical heterogeneities in the upper mantle.  相似文献   

11.
Diverse87Sr/86Sr and143Nd/144Nd isotopic compositions among basalts from the Lau Basin (LBB), an active backarc basin in the southwest Pacific, indicate heterogeneity in the underlying mantle. Isotopic compositions display bimodal distributions which are related to geographic location. Type I LBB (87/Sr86Sr 0.70366;143Nd/144Nd 0.51297) include tholeiites from the central basin, Peggy Ridge, and Rochambeau Bank, while Type II basaltic and andesitic glasses from the northeastern portion of the basin, near Niua Fo'ou island, have higher87Sr/86Sr ( 0.7038) and lower 143Nd/144Nd ( 0.51288). Both depleted (e.g. N-MORB) and enriched (e.g. E-MORB) trace element abundances occur among Type I and Type II LBB.Covariation between trace element and isotopic ratios among Type I LBB is consistent with mixing between depleted mantle similar to the source for MORB and relatively enriched peridotite similar to the source for E-MORB. Relative to MORB, uniformly high87Sr/86Sr ( +0.0005) among all Type I LBB for given Nd isotopic compositions ( εNd = +8 to +12) may reflect a lithospheric component, such as ancient recycled altered ocean crust. Type II LBB have SrNd isotopic compositions which are gradational between enriched mantle similar to the source of OIB and a component with distinct Sr isotopic composition such as that observed in Samoan post-erosional basalts. Isotopic and geographic discontinuity between Type I and Type II LBB, and isotopic affinity of Type II and Niua Fo`ou island basalts with those from Samoa suggests that volcanism in the northeastern portion of the basin is tapping deeper mantle beneath the adjoining Pacific plate, as well as Indo-Australian mantle overlying the Pacific lithosphere that is subducted into the Tonga Trench.  相似文献   

12.
Two groups of rhyolites have been recognized at San Vincenzo (Tuscany, Italy). Group A rhyolites are characterized by plagioclase, quartz, biotite, sanidine and cordierite mineral assemblages. They show constant MgO and variable CaO and Na2O contents. Initial87Sr/86Sr ratios in group A samples range between 0.71950 and 0.72535, whereas the Nd isotopic compositions are relatively constant (0.51215–0.51222). Group B rhyolites are characterized by orthopyroxene and clinopyroxene as additional minerals, and show textural, mineralogical and chemical evidence of interaction with more mafic magmas. The Sr and Nd isotopic ratios range between 0.71283–0.71542 and 0.51224–0.51227 respectively. Magmatic inclusions of variable size (1 mm to 10 cm) were found in groups B rhyolites. These inclusions consist mainly of diopsidic clinopyroxene and minor olivine and biotite. They are latitic in composition and represent blobs of hybrid intermediate magmas entrained in the rhyolitic melts. These magmatic inclusions have relatively high Sr contents (996–1529 ppm) and Sr and Nd isotope-ratios of 0.70807–0.70830 and 0.51245–0.51252 respectively.87Sr/87Sr data on minerals separated from both group A and B rhyolites and magmatic inclusions reveal strong isotopic disequilibria due to the presence of both restitic and newly crystallized phases in group A rhyolites and due to interaction of rhyolites with a mantle-de-rived magma in group B rhyolites. Isotopic data on whole rocks and minerals allow us to interpret the group A rhyolites as representative of different degrees of melting of an isotopically fairly homogeneous pelitic source; conversely, group B rhyolites underwent interactions with a mantle-derived magma. The crustal source as inferred from isotopic systematics would be characterized by87Sr/86Sr and143Nd/144Nd ratios close to 0.7194 and 0.51216 respectively. The sub-crustal magma would have Sr isotopic composition close to 0.7077 and a143Nd/144Nd ratio greater than or equal to 0.51252. These isotopic features are different from those reported for the parental magmas postulated for Vulsini and Alban Hills in the nearby Roman Magmatic Province, and are similar to those of the Vesuvius and Ischia magmas.  相似文献   

13.
Cheong-Bin  Kim  V. J. Rajesh    M. Santosh 《Island Arc》2008,17(1):26-40
Abstract Geochemical and Sr–Nd–Pb isotope characteristics, as well as K–Ar geochronology of a massive pitchstone (volcanic glass) stock erupted into Late Cretaceous lapilli tuff and rhyolite in the Gohado area, southwestern Okcheon Belt, South Korea, are reported. The pitchstones are highly evolved with SiO2 contents ranging from ~72 to 73 wt%, K2O/Na2O ratios of 1.04–1.23 and low MgO/FeOt values (0.17–0.20). The pitchstones are weakly peraluminous and the ASI (molar Al2O3/Na2O + K2O + CaO) values are significantly lower than 1.1. The pitchstones also display a general calc‐alkaline nature with significant alkali contents. The rare earth elements (REE) compositions show moderately fractionated nature with (La/Yb)N ranging from 11 to 16. Chondrite normalized REE patterns show relative enrichment of light REE over heavy REE and moderate Eu anomaly (Eu/Eu* ratio varies from 0.53 to 0.57). A distinct negative Nb anomaly is observed for all pitchstones on a primitive mantle normalized trace element diagram, typical of subduction‐related magmatism and crustal‐derived granites. All these features are characteristic of I‐type granites derived from a continental arc. The pitchstones have Zr contents of 98.5–103.5 ppm with zircon thermometry yielding temperatures of 749–755°C (mean 752°C). The K–Ar analyses of representative pitchstone samples yielded ages of 58.7 ± 2.3 and 62.4 ± 2.1 Ma with a mean age of 61 Ma. The rocks show nearly uniform initial 87Sr/86Sr isotopic ratios of 0.7104–0.7106 and identical 143Nd/144Nd initial ratio of 0.5120. The rocks display negative εNd (61 Ma) values of ?12. The depleted mantle model ages (TDM) range from 1.54 Ga to 1.57 Ga. The Pb isotope ratios are 206Pb/204Pb = 18.522–18.552, 207Pb/204Pb = 15.642–15.680 and 208Pb/204Pb = 38.794–38.923. These ratios suggest that the Gohado pitchstones were formed in a continental arc environment by partial melting of a 1.54 Ga to 1.57 Ga parental sources of lower crustal rocks probably of mafic or intermediate compositions.  相似文献   

14.
New stratigraphic, major- and trace-element, and Sr-, Nd- and Pb- isotopic data on volcanic deposits older than 14 ka from the island of Procida, Italy, are presented and compared with published analyses from the rest of the Phlegraean Volcanic District (PVD). Procida rocks range in composition from basalt to shoshonite and trachyte and show 87Sr/86Sr, 143Nd/144Nd, 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios varying within the ranges 0.70523–0.70678, 0.512539–0.512630, 18.99–19.29, 15.67–15.69 and 39.10–39.39, respectively. The presence of a compositional gap in the range SiO2=54–59 wt % is evidence of magma bimodality, and suggests that the feeding magmatic system was formed by at least two different reservoirs located at different depths. Geochemical and isotopic variations with increasing differentiation can be explained by fractional crystallization mechanisms, that in some cases were associated with crustal contamination that occurred in both deeper and shallower reservoirs; the most evolved magmas formed in the shallower one. Mixing/mingling processes also occurred. The variation of isotopic composition through time observed both for Procida and for Campi Flegrei and Ischia rocks is evidence of strong affinity between magmas that erupted on the entire PVD until about 40 ka. This indicates that they share a common origin and a common plumbing system. Most of the PVD eruptive centers active until about 40 ka lie within a NE-SW-oriented volcano-tectonic belt extending from the southeastern part of Ischia, through Procida and Torregaveta volcano to the northeastern sector of the present Campi Flegrei caldera. This not only indicates the existence of a link between regional structures and volcanism in the area, but also suggests that PVD magma genesis and evolution were strongly regulated by extensional tectonics. In the last 40 ka the mafic rocks erupted along this extensional structure – from Torregaveta and the islands of Ischia and Procida – indicate that it still represents an important crustal discontinuity that focuses mantle-derived magmas. Procida trachybasalts are enriched in large ion lithophile elements (LILE) and light and middle rare earth elements (LREE and MREE), and show slight negative anomalies in the high field strength elements (HFSE) relative to average MORB. A slight depletion in HREE is present. Trace element and isotope systematics can be referred to a lithospheric mantle source. The lithospheric mantle source carries intra-plate and slab-derived components, the latter probably inherited from a previous subduction event.  相似文献   

15.
SHRIMP zircon U–Pb dating, mineral chemical, element geochemical and Sr–Nd–Pb–Hf isotopic data have been determined for the Yulong monzogranite-porphyry in the eastern Tibet, China. The Yulong porphyry was emplaced into Triassic strata at about 39 Ma. The rocks are weakly peraluminous and show shoshonitic affinity, i.e., alkalis-rich, high K2O contents with high K2O / Na2O ratios, enrichment in LREE and LILE. They also show some affinities with the adakite, e.g., high SiO2 and Al2O3, and low MgO contents, depleted in Y and Yb, and enrichment in Sr with high Sr / Y and La / Yb ratios, and no Eu anomalies. The Yulong porphyry has radiogenic 87Sr / 86Sr (0.7063–0.7070) and unradiogenic 143Nd / 144Nd (εNd =  2.0 to − 3.0) ratios. The Pb isotopic compositions of feldspar phenocrysts separated from the Yulong porphyry show a narrow range of 206Pb / 204Pb ratios (18.71–18.82) and unusually radiogenic 207Pb / 204Pb (15.65–15.67) and 208Pb / 204Pb (38.87–39.00) ratios. In situ Hf isotopic composition of zircons that have been SHRIMP U–Pb dated is characterized by clearly positive initial εHf values, ranging from + 3.1 to + 5.9, most between + 4 and + 5. Phenocryst clinopyroxene geothermometry of the Yulong porphyry indicates that the primary magmas had anomalously high temperature (> 1200 °C). The source depth for the Yulong porphyry is at least 100 km inferred by the metasomatic volatile phase (phlogopite–carbonate) relations. Detailed geochemical and Sr–Nd–Pb–Hf isotopic compositions not only rule out fractional crystallization or assimilation-fractional crystallization processes, but also deny the possibility of partial melting of subducted oceanic crust or basaltic lower crust. Instead, low degree (1–5%) partial melting of a metasomatized lithosphere (phlogopite–garnet clinopyroxenite) is compatible with the data. This example gives a case study that granite can be derived directly by partial melting of an enriched lithospheric mantle, which is important to understand the source and origin of diverse granites.  相似文献   

16.
An integrated study based on incompatible trace elements and Sr–Nd–Pb isotopes is presented in order to assess the mantle sources involved in the genesis of the Paraná Magmatic Province (PMP) tholeiites. Particular emphasis is given to 33 new Pb isotope and concentration data obtained in representative samples of low-TiO2 (LTiB) and high-TiO2 (HTiB) flood basalts that occur in the province. Results show important differences with respect to type and location of these rocks. The LTiB and HTiB from northern PMP exhibit very similar initial Pb isotope ratios (average LTiB vs HTiB: 206Pb/204Pbi=17.78±0.03 vs 17.65±0.02; 207Pb/204Pbi=15.53±0.01 vs 15.52±0.01; 208Pb/204Pbi=38.12±0.03 vs 38.05±0.04). The LTiB from southern PMP, with initial 87Sr/86Sri≤0.7060, show small variation in initial Pb isotope compositions (average 206Pb/204Pbi=18.20±0.07; 207Pb/204Pbi=15.61±0.01; 208Pb/204Pbi=38.32±0.10), which are highly enriched in radiogenic Pb in comparison to the northern PMP analogues. The HTiB from southern PMP have initial Pb isotope ratios (average 206Pb/204Pbi=17.45±0.09; 207Pb/204Pbi=15.50±0.01; 208Pb/204Pbi=37.89±0.03) slightly less radiogenic compared with the HTiB from northern PMP. The data cover a large range of isotope compositions, which are accompanied by systematic changes in incompatible trace element ratios and Sr–Nd isotopes, indicating contributions from different mantle sources. The remarkable chemical and isotope differences between PMP basalts, N-MORB and Tristan da Cunha least evolved volcanics indicate that these asthenospheric sources did not play a significant role in the basalt genesis, suggesting generation from the melting of heterogeneous lithospheric mantle sources. The close similarity between the radiogenic isotopes of the Cretaceous carbonatites that surround the PMP and those of the HTiB rock-types and the LTiB from the northern Paraná suggests the involvement of the same mantle components in their genesis: a dominant EMI end member and a radiogenic isotope enriched component of EMII-type, as some phlogopite-peridotite mantle xenoliths (Japecanga) from the Alto Paranaíba Igneous Province. The latter component seems also to have an important role in the origin of the LTiB from the southern Paraná, where the other end member is highly depleted in radiogenic lead similar to DMM.  相似文献   

17.
Alkali basalts and nephelinites from the southern end of the East African Rift (EAR) in northern Tanzania have incompatible trace element compositions that are similar to those of ocean island basalts (OIB). They define a considerable range of Sr, Nd and Pb isotopic compositions (87Sr/86Sr= 0.7035−0.7058,εNd = −5to+3, and206Pb/204Pb= 17.5−21.3), each of which partially overlaps the range found in OIB. However, they occupy a unique position in combined Nd, Sr and Pb isotopic compositional space. Nearly all of the lavas have radiogenic Pb, similar to HIMU with high time-integrated238U/204Pb coupled with unradiogenic Nd (+2 to −5) and radiogenic Sr (>0.704), similar to EMI. This combination has not been observed in OIB and provides evidence that these magmas predominantly acquired their Sr, Nd and Pb in the subcontinental lithospheric mantle rather than in the convecting asthenosphere. These data contrast with compositions for lavas from farther north in the EAR. The Pb isotopic compositions of basalts along the EAR are increasingly radiogenic from north to south, indicating a fundamental change to sources with higher time-integratedU/Pb, closer to the older cratons in the south. An ancient underplated OIB melt component, isolated for about 2 Ga as enriched lithospheric mantle and then remelted, could generate both the trace element and isotopic data measured in the Tanzanian samples. Whereas the radiogenic Pb in Tanzanian lavas requires a source with high time-integratedU/Pb, most continental basalts that are thought to have interacted with the continental lithospheric mantle have unradiogenic Pb, requiring a source with a history of lowU/Pb. Such lowU/Pb is readily accomplished with the addition of subduction-derived components, since the lower averageU/Pb of arc basalts (0.15) relative to OIB (0.36) probably reflects addition of Pb from subducted oceanic crust. If the subcontinental lithosphere is normally characterized by low time-integratedU/Pb it would appear that subduction magmatism is more important than OIB additions in supplying the Pb inventory of the lithospheric mantle. However,U/Pb ratios of xenoliths derived from the continental lithospheric mantle suggest that both processes may be important. This apparent discrepancy could be because xenoliths are not volumetrically representative of the subcontinental lithospheric mantle, or, more likely, that continental lithospheric mantle components in basalts are normally only identified as such when the isotopic ratios are dissimilar from MORB or OIB. Lithospheric enrichment from subaccreted OIB components appears to be more significant than generally recognized.  相似文献   

18.
143Nd/144Nd,87Sr/86Sr and trace element results are reported for volcanic and plutonic rocks of the Aleutian island arc. The Nd and Sr isotopic compositions plot within the mantle array with εNd values of from 6.5 to 9.1 and87Sr/86Sr ratios of from 0.70289 to 0.70342. Basalts have mildly enriched light REE abundances but essentially unfractionated heavy REE abundances, while andesites exhibit a greater degree of light to heavy REE fractionation. Both the basalts and andesites have significant large ion lithophile element to light rare earth element (LILE/LREE) enrichments. Variations in the isotopic compositions of Nd and Sr are not related to the spatial distribution of volcanoes in the arc, nor are they related to temporal differences. εNd and87Sr/86Sr do not correlate with major element compositions but do, however, correlate with certain LILE/LREE ratios (e.g. BaN/LaN). Plutonic rocks have isotropic and trace element characteristics identical to some of the volcanic rocks. Rocks that make up the tholeiitic, calc-alkaline and alkaline series in the Aleutians do not come from isotopically distinct sources, but do exhibit some differing LILE characteristics.Given these elemental and isotopic constraints it is shown that the Aleutian arc magmas could not have been derived directly from homogeneous MORB-type mantle, or fresh or altered MORB subducted beneath the arc. Mixtures of partially altered MORB with deep-sea sediment can in principle account for the isotopic characteristics and most of the observed LILE/LREE enrichments. However, some samples have exceedingly high LILE/LREE enrichments which cannot be accounted for by sediment contamination alone. For these samples a more complex scenario is considered whereby dehydration and partial melting of the subducted slab, containing less than 8% sediment, produces a LILE-enriched (relative to REE) metasomatic fluid which interacts with the overlying depleted mantle wedge. The isotopic and LILE characteristics of the mantle are extremely sensitive to metasomatism by small percentages of added fluid, whereas major elements are not substantially effected, Major element compositions of Aleutian magmas are dominantly controlled by the partial melting of this mantle and subsequent crystal fractionation; whereas isotopic and LILE characteristics are determined by localized mantle heterogeneities.  相似文献   

19.
Equations describing trace element and isotopic evolution in a magma chamber affected simultaneously by fractional crystallization and wallrock assimilation are presented for a model where the mass assimilation rate(?a) is an arbitrary fraction(r) of the fractional crystallization rate(?c). The equations also apply to recharge of a crystallizing magma. Relatively simple analytical expressions are obtained for both radiogenic isotope variations (Nd, Sr, Pb) and stable isotopes (O, H) including the effects of mass-dependent fractionation. Forr = 1 a modified zone refining equation is obtained for trace element concentrations, but forr < 1 behavior is a combination of zone refining and fractional crystallization. Asr → ∞, simple binary mixing is approached. The isotopic and trace element “mixing” trends generated can be much different from binary mixing, especially forr < 1. The model provides the basis for a more general approach to the problem of wallrock assimilation, and shows that binary mixing models are insufficient to rule out crustal assimilation as a cause of some of the isotopic variations observed in igneous rocks, including cases where clustering of isotopic values occurs partway between presumed endmember values. The coupled assimilation-fractional crystallization model provides an explanation for certain trace element and isotopic properties of continental margin orogenic magmas (e.g. Sr concentration versus87Sr/86Sr) which had previously been interpreted as evidence against assimilation. So-called “pseudoisochrons” can be understood as artifacts of contamination using this model. A significant correlation exists between country rock age and low143Nd/144Nd ratios in continental igneous rocks, clearly suggestive that crustal contamination is generally important.  相似文献   

20.
Nd and Sr isotopic variations of Early Paleozoic oceans   总被引:4,自引:0,他引:4  
We report143Nd/144Nd and87Sr/86Sr isotopic data for Lower Paleozoic phosphatic brachiopod and conodont fossils. The data appear to represent the isotopic values of Early Paleozoic seawaters. We show that different paleoceanic water masses can be distinguished on the basis of their εNd signatures. Two sides of what is classically considered one circulating Iapetus Ocean have different εNd signatures from at least the Middle Cambrian until the Late Middle Ordovician. We infer two ocean basins between North America and Baltica separated by an island and/or shoal circulation barrier. Thus, it appears necessary to redefine the area of the Iapetus Ocean. The εNd signature of the redefined smaller Iapetus Ocean ranges from −5 to −9 and the εNd signature of the larger, coeval Panthalassa Ocean, including part of what was formerly called the Iapetus Ocean, ranges from −10 to −20. The first time that the εNd values are identical in these two water masses is coincident with the onset of the Taconic Orogeny of North America. The paleogeographic geometry we infer from this work is consistent with paleogeographic reconstructions having the Baltica continent at very high latitudes in the Early/Middle Ordovician. The εNd and faunal distribution support temperature-controlled conodont faunal provinciality. A rough mean age for exposed continental crust in the Early Paleozoic can be obtained from the average εNd value of Early Paleozoic Oceans. The data suggest that the mean age of the crust as a function of time has remained essentially constant or even decreased during the past 500 Ma, and suggest substantial additions of new crust to the continents through the Phanerozoic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号