首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
为研究井周裂缝发育特征,本文提出一种新型方位侧向测井方法,利用三维有限元法,模拟裂缝的方位侧向测井响应.结果显示,深浅侧向电阻率幅度差异受裂缝倾角的控制,低角度缝为负差异,高角度缝为正差异;倾斜裂缝张开度的增大使测井响应值减小,方位电阻率差异增大;井周方位电阻率可反映裂缝方位产状,单一缝或裂缝密度较小时,沿裂缝走向的方位电阻率小,沿裂缝倾向的方位电阻率大;裂缝发育地层的测井响应显示宏观各向异性特征,但方位电阻率的差异显示发生反转现象,即沿裂缝走向/层理方向的方位电阻率大,沿裂缝倾向/垂直层理方向的方位电阻率小;对方位电阻率测井响应进行井周成像,直观显示了裂缝的产状和发育特征.  相似文献   

2.
采用有限元分析软件ANSYS对裂缝的双侧向测井视电阻率与裂缝孔隙度、泥浆电阻率、裂缝倾角和基岩电阻率的关系进行了计算. 在大量正演数据的基础上得出双侧向测井响应反演公式和裂缝孔隙度计算公式,提出更为精细的裂缝倾角的弹性划分模型,用双侧向视电阻率值近似估算裂缝倾角的方法,提高了利用双侧向测井求裂缝产状与裂缝孔隙度(裂缝宽度)的精度.  相似文献   

3.
斜井泥浆侵入仿真及其阵列侧向测井响应数值模拟   总被引:5,自引:3,他引:2       下载免费PDF全文
为了研究斜井泥浆侵入储层的井周岩石物理特征,采用广义曲线坐标系统模拟斜井泥浆侵入特性,进而研究泥浆侵入过程的阵列侧向测井响应.数值仿真表明,采用广义曲线坐标系消除了笛卡儿坐标系统在斜井边界处网格划分的锯齿现象;储层非均质造成泥浆侵入不均匀,储层渗透性越好,泥浆滤液侵入越深;泥浆滤液侵入使得井周地层饱和度、孔隙水矿化度的分布发生变化,进而造成斜井井周岩石电阻率分布剖面复杂变化;泥浆侵入过程中阵列侧向视电阻率变化以及深浅视电阻率的幅度差异,有效反映了斜井泥浆侵入特性;文中采用了基于Marquardt方法的阵列侧向测井四参数反演,有效恢复了斜井储层侵入剖面,得到了原状地层电阻率.斜井泥浆侵入特征及其阵列侧向测井响应模拟分析,有助于正确认识斜井井周岩石物理特征和利用阵列侧向测井进行斜井储层评价.  相似文献   

4.
大斜度井/水平井中,随钻电磁波电阻率测井与双侧向测井由于测量原理不同,引起的测井响应特征有着较大差别。首先依据积分方程法模拟了随钻电磁波电阻率测井在大斜度井/水平井中的测井响应特征,采用三维有限元素法模拟了双侧向测井在大斜度井/水平井中的测井响应特征,然后对比分析了二者在水平地层中的测井响应差异和产生的原因。结果表明,水平井中随钻电磁波电阻率测井和双侧向测井响应差异的主要影响因素有:不同井斜角、地层各向异性、地层界面以及泥浆侵入等。随着相对井斜角的增大,随钻电磁波电阻率测井在地层界面处的测井响应异常大,而双侧向测井在地层界面附近受围岩影响逐渐变得平滑;随着相对井斜角的增加,各向异性的影响逐渐增大,但各向异性对双侧向测井的影响程度要小于对随钻电磁波电阻率的影响。这些差异如不能正确认识将导致水平井解释过程中出现偏差。最后根据实际资料,分析如何这些差异进行水平井测井解释。  相似文献   

5.
在大斜度井和水平井中,不同电阻率测井系列测量的结果并非完全一致,测量结果的差异性分析对于正确认识和评价地层非常重要.依据双侧向测井和随钻电磁波测井原理,采用三维有限元素法模拟双侧向在水平井中的测井响应特征,采用积分方程法模拟随钻电磁波电阻率在水平井中的测井响应特征,通过对比分析值模拟结果,造成大斜度井和水平井随钻电阻率与双侧向电阻率测井响应差异的主要因素有:井斜、各向异性、地层界面以及泥浆侵入.随钻电阻率一般受泥浆侵入影响小,但是它在水平井中容易产生极化现象,有助于地层界面识别,同时受各向异性影响明显;而双侧向电阻率在水平地层中对地层界面不敏感,且受各向异性影响相对较弱,但会受泥浆侵入影响严重;正确认识这些差异,可以有效指导水平井的合理解释.  相似文献   

6.
洞穴型碳酸盐岩储层非均质性强、电测井响应复杂、测井识别和表征难度大,利用数值模拟方法明确该类储层的电测井响应特征,可为洞穴识别与评价提供理论依据.本文基于三维有限元素法(3D-FEM),引入边界局部加密技术,实现对复杂球形洞穴的精细刻画与响应精确计算;对比分析井眼钻穿型洞穴和井旁洞穴的双侧向测井响应特征和敏感性,进而考察双侧向测井对两者敏感范围的差异.结果表明:洞穴的存在导致双侧向测井响应明显降低,受洞穴边界及仪器探测深度等影响,井眼钻穿型洞穴双侧向测井曲线复杂,而井旁洞穴曲线呈"抛物线"型;双侧向测井对井眼钻穿型洞穴的敏感性远大于对井旁洞穴的敏感性,深侧向和浅侧向测井最大可对洞穴边界距井壁0.5 m和0.3 m的井旁洞穴敏感.  相似文献   

7.
由于南苏丹P区块没有可用于确定油层水淹程度的密闭取心新井资料,且单层生产及试油数据非常少,开采与完井时间间隔较长,地层水性质相同导致底水水淹与油水同层难以识别,因此,水淹层解释难度较大.本文首先根据区块地质特征与开发特征及水淹层水源和水进方向,归纳总结出研究区油层的水淹类型为边水与注入水推进水淹型和底水推进水淹型,注水水淹和边底水水淹在电阻率测井响应特征上均表现为电阻率值的明显降低.其次,采用新老井相同层位测井信息对比方法,结合相邻老井生产动态测试结果,确定出新井典型水淹层,分析水淹层测井响应特征,优选出深侧向电阻率、浅侧向电阻率、深浅侧向电阻率幅度差、深侧向电阻率与冲洗带电阻率幅度差等4个水淹敏感参数,其中深侧向电阻率和深浅侧向电阻率幅度差为最有效的水淹识别参数.利用深侧向电阻率值与深浅侧向幅度差交会,建立了水淹层定性识别图版,利用该图版可有效地区分水淹层与水层和油层.基于储层岩性物性测井响应特征分析,采用岩心刻度测井方法,建立了水淹层泥质含量、孔隙度、渗透率、饱和度等参数定量解释模型,利用计算的驱油效率值可有效地划分弱水淹、中水淹、强水淹.综合水淹层定性识别图版法以及定量解释方法,结合邻井生产动态,建立了水淹层综合测井评价方法,经实际井验证证明该方法结合了静态测井解释与动态生产数据在水淹层评价中优势,提高了水淹级别测井综合评价准确性.采用开发初期井连井剖面对比方法,确定出油水同层顶界面海拔深度,再结合邻井开发动态,寻找出新井水源,判断出新井水淹类型.对于底水水淹类型,新井不存在油水同层,只能为水淹层;对于边水水淹类型,将解释油水同层或水淹层海拔深度高于最高油水同层顶界面海拔深度的储层判定为水淹层,而海拔深度低于最高油水同层顶界面海拔深度的储层判定为油水同层,经实际井验证证明该方法可有效地区分底水水淹层与油水同层.  相似文献   

8.
碳酸盐岩缝洞储集体具有丰富的油气资源,洞穴是其最主要的储集空间,电性特征是评价洞穴充填情况的重要指标,利用双侧向测井资料表征洞穴充填物真实的电性特征对洞穴充填情况的准确评价具有重要的作用.应用三维有限元法对等效洞穴地层模型进行双侧向测井响应数值模拟,分析洞穴尺寸、洞穴充填物和基岩对双侧向测井响应的影响.分析结果表明:当洞穴较大时,浅侧向测井响应受基岩和洞穴尺寸影响很小,可直接将浅侧向测井响应作为洞穴充填物电阻率;当洞穴较小时,双侧向测井响应无法直接反映洞穴充填物电阻率,因此应用洞穴尺寸、基岩电阻率和浅侧向测井响应建立洞穴充填物电阻率的计算模型.该模型计算得到的洞穴充填物电阻率与给定的洞穴充填物电阻率具有很好的相似性,在西部某油田实际井资料处理解释中亦取得了良好的应用效果.洞穴充填物电阻率的准确计算为缝洞储集体的测井识别和解释评价提供了有力支撑.  相似文献   

9.
双侧向测井曲线形状与地层侵入关系研究   总被引:5,自引:7,他引:5       下载免费PDF全文
通过对具有不同侵入特征地层的双侧向理论曲线的计算,研究双侧向测井曲线的形状与泥浆侵入地层状态的关系.发现双侧向视电阻率曲线在高侵剖面的地层界面处出现‘反冲’,曲线‘峰’和‘谷’均较尖锐,而在低侵剖面,深侧向和浅侧向视电阻率曲线在地层界面处出现‘过渡’趋势,且曲线形状较圆滑.研究表明:产生上述现象的原因是由于原状地层对电流的吸引和排斥,使主电极和屏蔽电极供出的电流增大或减小,因而屏流比变化,进而导致视电阻率的变化.  相似文献   

10.
双侧向型复电阻率测井响应的数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
《地震地质》2005,27(3):412-419
在二维地层模型条件下,应用有限元方法模拟了双侧向模式的复电阻率测井仪器在不同频率下的响应,结果表明当频率很低时,复电阻率测井的响应接近双侧向测井的响应;随着频率的提高,复电阻率测井的响应幅度降低。当地层具有一定的频散效应时,可以利用不同频率下的复电阻率测井响应直观地区分油水层  相似文献   

11.
本文采用有限元方法模拟了电缆地层测试器的双封隔器和谐波脉冲测试方法在井旁裂缝中的压力响应.根据裂缝性储层渗流力学原理,首先模拟了双封隔器压力测试在裂缝与井壁相交和不相交两种情况下的压力响应,模拟结果表明:当裂缝与井壁相交时,压力响应随裂缝导流性质的变化发生显著改变;当裂缝与井壁不相交时,除非裂缝的导流能力非常大或离井壁非常近,否则压力响应随着裂缝导流能力的变化并不明显.说明双封隔器测试方法可以有效评价与井壁相交裂缝的导流能力,而对远离井壁的裂缝并不敏感.谐波脉冲压力测试一直被用来探测地层的各向异性,本文通过数值模拟方法探讨和分析了谐波测试方法探测和评价与井壁不相交裂缝的可行性,数值模拟结果表明谐波的压力幅度和相位延迟对裂缝的导流能力变化敏感,说明该方法可以用来评价井旁裂缝.此外,本文还对脉冲频率和双探针间距对评价效果的影响进行了分析.  相似文献   

12.
沿裂隙发育的天然气水合物是印度深水盆地细粒沉积物中水合物的重要产出方式,水合物以结核状或脉状充填在高角度裂隙中.天然气水合物主要沿着构造主应力方向生成,由于裂隙的存在,含水合物的沉积物层呈现各向异性.利用孔隙介质中水合物呈均匀分布的速度模型计算的NGHP01-10D井水合物饱和度高达40%,而压力取芯表明水合物饱和度占孔隙空间的20%左右.为了研究水合物饱和度差异,基于层状介质的各向异性模型计算了裂隙充填型水合物的饱和度.在垂直井孔中,由于波入射角与裂隙倾角有关,考虑裂隙倾角变化,利用纵波和横波速度同时反演水合物饱和度和裂隙倾角.利用层状介质模型计算的水合物占孔隙空间的15%~25%,裂隙的倾角在60°~90°,多为高角度裂隙.在NGHP01-10D井中,纵横波速度联合计算的饱和度与压力取芯结果吻合更好.  相似文献   

13.
Borehole-wall imaging is currently the most reliable means of mapping discontinuities within boreholes. As these imaging techniques are expensive and thus not always included in a logging run, a method of predicting fracture frequency directly from traditional logging tool responses would be very useful and cost effective. Artificial neural networks (ANNs) show great potential in this area. ANNs are computational systems that attempt to mimic natural biological neural networks. They have the ability to recognize patterns and develop their own generalizations about a given data set. Neural networks are trained on data sets for which the solution is known and tested on data not previously seen in order to validate the network result. We show that artificial neural networks, due to their pattern recognition capabilities, are able to assess the signal strength of fracture-related heterogeneity in a borehole log and thus fracture frequency within a borehole. A combination of wireline logs (neutron porosity, bulk density, P-sonic, S-sonic, deep resistivity and shallow resistivity) were used as input parameters to the ANN. Fracture frequency calculated from borehole televiewer data was used as the single output parameter. The ANN was trained using a back-propagation algorithm with a momentum learning function. In addition to fracture frequency within a single borehole, an ANN trained on a subset of boreholes in an area could be used for prediction over the entire set of boreholes, thus allowing the lateral correlation of fracture zones.  相似文献   

14.
由于石油压裂开采等开发措施的实施,会使在套管周围存在着许多被油气等高阻流体填充的微裂缝.尽管这些裂缝或孔隙可能很小,但对套管井电阻率测量会有非常大的影响,甚至会改变原地层的电阻率测井特征,因此裂缝测井响应的计算及考察对过套管电阻率测井十分重要.为解决裂缝测井响应的计算问题,本文提出了计算等效电阻的电流通量管模型,利用该电流通量管模型给出了含垂直裂缝地层横向电阻的计算方法,基于传输线方程法及地层电阻的过套管测量方法实现了含裂缝地层的过套管电阻率测井响应的数值计算,通过计算实例考察了地层裂缝对过套管电阻率测井响应的影响.算例表明:裂缝中的高阻流体对地层视电阻率测量结果会有较大的影响;环形裂隙比垂直裂缝有更大的电阻率测井响应.本文的研究为解决微裂缝过套管电阻率测井响应的计算这一关键技术问题提供了一种可行的计算与考察方法.  相似文献   

15.
In hydraulic fracturing treatments, locating not only hydraulic fractures but also any pre‐existing natural fractures and faults in a subsurface reservoir is very important. Hydraulic fractures can be tracked by locating microseismic events, but to identify the locations of natural fractures, an additional technique is required. In this paper, we present a method to image pre‐existing fractures and faults near a borehole with virtual reverse vertical seismic profiling data or virtual single‐well profiling data (limited to seismic reflection data) created from microseismic monitoring using seismic interferometry. The virtual source data contain reflections from natural fractures and faults, and these features can be imaged by applying migration to the virtual source data. However, the imaging zone of fractures in the proposed method is strongly dependent on the geographic extent of the microseismic events and the location and direction of the fracture. To verify our method, we produced virtual reverse vertical seismic profiling and single‐well profiling data from synthetic microseismic data and compared them with data from real sources in the same relative position as the virtual sources. The results show that the reflection travel times from the fractures in the virtual source data agree well with travel times in the real‐source data. By applying pre‐stack depth migration to the virtual source data, images of the natural fractures were obtained with accurate locations. However, the migrated section of the single‐well profiling data with both real and virtual sources contained spurious fracture images on the opposite side of the borehole. In the case of virtual single‐well profiling data, we could produce correct migration images of fractures by adopting directional redatuming for which the occurrence region of microseismic events is divided into several subdivisions, and fractures located only on the opposite side of the borehole are imaged for each subdivision.  相似文献   

16.
基岩油气藏裂缝性储层具有复杂的储集空间和储层非均质性,为了实现对基岩油气藏储层的精细评价,以地层微电阻率扫描成像测井和井周声波成像测井资料为核心,通过岩心资料标定,结合录井、常规测井、试油、地质等实际资料,系统建立了基岩油气藏变质岩储层的成像测井解释模式.根据成像测井模式的识别实现了对基岩油气藏特征的认识、准确的裂缝分析和现今地应力场分析.分析结果表明,研究区基底变质岩地层中基本以基岩内幕油气藏为主;裂缝以中高角度缝、网状裂缝为主,其主要走向与井旁断层走向大致平行,属纵裂缝;裂缝主要发育在东西两侧靠近断层、近源的构造陡坡上;现今最大水平主应力方向主要呈NE-SW和NEE-SWW.成像测井解释结果与地质情况吻合较好.  相似文献   

17.
Understanding fracture orientations is important for optimal field development of fractured reservoirs because fractures can act as conduits for fluid flow. This is especially true for unconventional reservoirs (e.g., tight gas sands and shale gas). Using walkaround Vertical Seismic Profiling (VSP) technology presents a unique opportunity to identify seismic azimuthal anisotropy for use in mapping potential fracture zones and their orientation around a borehole. Saudi Aramco recently completed the acquisition, processing and analysis of a walkaround VSP survey through an unconventional tight gas sand reservoir to help characterize fractures. In this paper, we present the results of the seismic azimuthal anisotropy analysis using seismic traveltime, shear‐wave splitting and amplitude attenuation. The azimuthal anisotropy results are compared to the fracture orientations derived from dipole sonic and image logs. The image log interpretation suggests that an orthorhombic fracture system is present. VSP data show that the P‐wave traveltime anisotropy direction is NE to SW. This is consistent with the cemented fractures from the image log interpretation. The seismic amplitude attenuation anisotropy direction is NW to SE. This is consistent with one of the two orientations obtained using transverse to radial amplitude ratio analysis, with the dipole sonic and with open fracture directions interpreted from image log data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号