首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Field studies and seismic data show that semi-brittle flow of fault rocks probably is the dominant deformation mechanism at the base of the seismogenic zone at the so-called frictional-plastic transition. As the bottom of seismogenic fault, the dynamic characteristics of the frictional-plastic transition zone and plastic zone are very important for the seismogenic fault during seismic cycles. Granite is the major composition of the crust in the brittle-plastic transition zone. Compared to calcite, quartz, plagioclase, pyroxene and olivine, the rheologic data of K-feldspar is scarce. Previous deformation studies of granite performed on a quartz-plagioclase aggregate revealed that the deformation strength of granite was similar with quartz. In the brittle-plastic transition zone, the deformation characteristics of granite are very complex, temperature of brittle-plastic transition of quartz is much lower than that of feldspar under both natural deformation condition and lab deformation condition. In the mylonite deformed under the middle crust deformation condition, quartz grains are elongated or fine-grained via dislocation creep, dynamic recrystallization and superplastic flow, plagioclase grains are fine-grained by bugling recrystallization, K-feldspar are fine-grained by micro-fractures. Recently, both field and experimental studies presented that the strength of K-feldspar is much higher than that of quartz and plagioclase. The same deformation mechanism of K-feldspar and plagioclase occurred under different temperature and pressure conditions, these conditions of K-feldspar are higher than plagioclase. The strength of granite is similar to feldspar while it contains a high content of K-feldspar. High shear strain experiment studies reveal that granite is deformed by local ductile shear zones in the brittle-plastic transition zone. In the ductile shear zone, K-feldspar is brittle fractured, plagioclase are bugling and sub-grain rotation re-crystallized, and quartz grains are plastic elongated. These local shear zones are altered to local slip-zones with strain increasing. Abundances of K-feldspar, plagioclase and mica are higher in the slip-zones than that in other portions of the samples (K-feldspar is the highest), and abundance of quartz is decreased. Amorphous material is easily formed by shear strain acting on brittle fine-grained K-feldspar and re-crystallized mica and plagioclase. Ductile shear zone is the major deformation mechanism of fault zones in the brittle-plastic transition zone. There is a model of a fault failed by bearing constant shear strain in the transition zone:local shear zones are formed along the fractured K-feldspar grains; plagioclase and quartz are fine-grained by recrystallization, K-feldspar is crushed into fine grains, these small grains and mica grains partially change to amorphous material, local slip-zones are generated by these small grains and the amorphous materials; then, the fault should be failed via two ways, 1)the local slip-zones contact to a throughout slip-zone in the center of the fault zone, the fault is failed along this slip-zone, and 2)the local slip-zones lead to bigger mineral grains that are in contact with each other, stress is concentrated between these big grains, the fault is failed by these big grains that are fractured. Thus, the real deformation character of the granite can't be revealed by studies performing on a quartz-plagioclase aggregate. This paper reports the different deformation characters between K-feldspar, plagioclase and quartz under the same pressure and temperature condition based on previous studies. Then, we discuss a mode of instability of a fault zone in the brittle-plastic transition zone. It is still unclear that how many contents of weak mineral phase(or strong mineral phase)will control the strength of a three-mineral-phase granite. Rheological character of K-feldspar is very important for study of the deformation characteristic of the granitic rocks.  相似文献   

2.
华北地壳岩石波速类型及其地质意义   总被引:5,自引:1,他引:4       下载免费PDF全文
根据结晶岩的矿物成分、成因类型与高压室温下波速绝对值的关系,以及高温高压下岩石波速与物相变化的关系,把岩石分为7种波速类型。在一定的构造条件下,根据岩石波速随地壳深度的变化关系,提出了岩石级数的定量概念,它反映了岩石的酸性(或基性)程度,并可根据地震测深值获得相应深度下综合岩石的平均级数。在此基础上,对华北地壳的组成,角闪岩在壳内的生成和存在条件,地壳内石英岩的相和壳内低速层的成因等问题进行了讨论  相似文献   

3.
This proposed model is based on geological, geophysical and geochemical data. Previous models suggested for the lower continental crust consisted of basalt, gabbro, or charnockitic rocks; however, experimental and field petrological data indicate that the bulk of crustal rocks are metamorphic. A lower crust of heterogeneous metamorphic rocks also agrees with seismic reflection results which show numerous reflections from “layering”. Geothermal conditions favor a “dry” charnockitic or gabbroic lower crust rather than an amphibolitic lower crust because heat production data imply that wet amphibolitic rocks would have a higher heat production than their dry metamorphic equivalents. Relatively high velocities from field and laboratory measurements in such low-density rocks as granite, syenite, anorthosite and granulitic rocks in general imply that the composition of the lower crust is more felsic than gabbro. Variation in seismic velocity and depths from crustal refraction studies and numerous seismic reflections all indicate a highly heterogeneous lower crust. The lower crust, which has traditionally been described as gabbroic or mafic, may consist of such diverse rocks as granite gneiss, syenite gneiss, anorthosite, pyroxene granulite, and amphibolite, interlayered on a small scale, deformed, and intruded by granite and gabbro. Interlayering of these rocks explains the presence and character of seismic reflections. Abrupt changes in dip, tight folding, disruption of layers, intrusion, and changes in layer thickness explain the characteristic discontinuity of deep reflections. Igneous intrusions may be floored by metamorphic rocks. The lower crust consists of a complex series of igneous and metamorphic rock of approximate intermediate composition.  相似文献   

4.
应用超声波反射-透射法,在最高压力为1.0 GPa(室温),最高温度为700℃(1.0 GPa)的条件下对新疆东准噶尔地区的卡拉麦里花岗岩带和野马泉岩体的典型花岗岩类岩石(碱长花岗岩、碱性花岗岩、花岗闪长岩、二长花岗岩和石英闪长岩)的纵波速度(VP)和横波速度(VS)进行了测量.结果显示,在常温、压力0.4~1.0 GPa条件下,东准噶尔地区花岗岩类岩石的VP和VS均随压力呈线性增加,说明在这个压力段岩石中的微裂隙已基本闭合.室温、1.0 GPa时花岗岩类岩石的VP是5.79~6.84 km·s-1,VS是3.26~3.85 km·s-1.依据压力与VP及压力与VS的线性关系,拟合得到常温常压下花岗岩类岩石的纵波和横波压力系数分别是0.1568~0.4078 km/(s·GPa)和0.0722~0.3271 km/(s·GPa),VP0和VS0分别是5.62~6.47 km·s-1和3.15~3.75 km·s-1.恒压1.0 GPa、室温到700℃条件下,花岗岩类岩石的VP和VS均随温度的升高呈线性降低,温度系数分别为(-3.41~-4.96)×10-4 km/(s·℃)和(-0.88~-3.22)×10-4 km/(s·℃).利用实验获得的花岗岩类岩石的VP0、VS0及温度系数和压力系数,结合东准噶尔地区的地热资料,建立了VP和VS随深度变化的剖面.将获得的VP和VS-深度剖面与该区地球物理探测结果对比,发现东准噶尔地区的碱长花岗岩、碱性花岗岩、二长花岗岩和部分花岗闪长岩的VP和VS与该区上地壳速度吻合很好,同时这几种岩石的平均泊松比也与上地壳泊松比一致,因此我们认为这几种类型的岩石是该区上地壳的重要组成部分.另外,石英闪长岩的VP和VS均符合中地壳的速度,可能为中地壳中的一种岩石.  相似文献   

5.
刘贵  周永胜 《地震地质》2012,34(2):365-383
在总结岩石变形机制与岩石流变学实验进展的基础上,讨论了岩石流变学数据的重复性。虽然高温高压流变学实验积累了大量的数据,但中、上地壳长英质岩石和早期获得的石英集合体的流变实验数据重复性比较差,而近年来发表的石英、长石的流变学实验数据重复性相对较好。虽然利用经验理论模型,根据端元组分可以拟合两相矿物集合体的流变律,但并不能满足定量确定复杂组分和特殊流变性的长英质岩石流变参数的需要。因此,利用长英质岩石流变参数估计大陆地壳流变强度剖面时,即使在相同地温和应变速率条件下,给出的流变曲线、脆-塑性转化带深度也有一定差别,还需要通过大量实验给出更精细的长英质岩石流变学实验数据。根据近年来流变学实验研究的新进展,讨论了在实验室条件下影响长英质岩石流变的各种因素,重点分析了流体、岩石成分、样品粒度和组构对流变的影响。微量结构水对岩石流变有显著的弱化作用,而熔体对流变的影响与熔体含量和分布相关,只有熔体呈薄膜状湿润颗粒边界时,熔体的弱化作用才显著。成分对岩石流变的影响不仅体现在样品的应力指数等流变参数的变化方面,还体现在样品从半脆性变形向塑性变形的转化温度方面。粒度主要影响岩石的变形机制,其中,细粒样品在扩散蠕变域具有应力与粒度线性负相关特性,是理想的应力计,可以用来定量确定韧性剪切带的流变强度;而在位错蠕变域,应力与粒度没有依存关系,这为将实验室条件得出的流变数据外推估计地壳流变提供了重要依据。组构和各向异性是地壳中岩石存在的普遍现象,但关于层状组构对多相矿物组成的岩石流变影响的研究非常少,需要通过新的实验来深入研究。  相似文献   

6.
The Shapinggou porphyry molybdenum(Mo) deposit, located in Jinzhai County, Anhui Province, China, is the largest in the Qinling-Dabie Mo Metallogenic Belt. The intrusive rocks in the Shapinggou Mo ore district formed in the Yanshanian can be divided into two stages based on zircon U-Pb dating and geochemical features. This study focuses on the late stage intrusions(quartz syenite and granite porphyry), which are closely genetically related to molybdenum mineralization. Petrographic observations identified two quartz polymorphs in the quartz syenite and granite porphyry, which were derived from the same magmatic sources and similar evolutionary processes. The quartzes were identified as a xenomorphic β-quartz within quartz syenite, while the quartz phenocrysts within the granite porphyry were pseudomorphous b-quartz, characterized by a hexagonal bipyramid crystallography. The pseudomorphous b-quartz phenocrysts within the granite porphyry were altered from b-quartz through phase transformation. These crystals retained b-quartz pseudomorph. Combined with titanium-inzircon thermometry, quartz phase diagrams, and granitic Q-Ab-Or-H_2O phase diagrams, it is suggested that the quartz syenite and granite porphyry were formed under similar magmatic origins, including similar depths and magmatic crystallization temperatures. However, the β-quartz within quartz syenite indicated that the crystallization pressure was greater than 0.7 GPa, while the original b-quartz within the granite porphyry was formed under pressures between 0.4 and 0.7 GPa. The groundmass of the granite porphyry which formed after the phenocryst indicated a crystallizing pressure below 0.05 GPa. This indicates that the granite porphyry was formed under repetitive and rapid decompression. The decompression was significant as it caused the exsolution of the ore-forming fluids, and boiling and material precipitation during the magmatic-fluid process. The volumetric difference during the phase transformation from b-quartz to β-quartz caused extensive fracturing on the granite porphyry body and the wall rocks. As the main ore-transmitting and ore-depositing structures, these fractures benefit the hydrothermal alteration and stockwork-disseminated mineralization of the porphyry deposit. It is considered that the pseudomorphous β-quartz phenocrysts of the porphyritic body are metallogenic indicators within the porphyry deposits. The pseudomorphous β-quartzes therefore provide evidence for the formation of the porphyry deposit within a decompression tectonic setting.  相似文献   

7.
An elasto-plasticity theory is used to model the deformation of geological materials under various confining pressures and moderate temperatures. The effects of material hardening (or softening due to volumetric strains) are included, and the corresponding elasto-plastic rate constitutive relations are developed. To study the influence of pressure and temperature on the constitutive parameters, we use some published data of laboratory experiments on certain rocks. It is shown that over a wide range of pressures and low to moderate temperatures, when the rate effect can be ignored, the model can be used to describe the behaviour of geological materials. Based on this theory, dilatancy (i.e., inelastic volumetric expansion) of an intact granite is studied under conventional triaxial stress states. The effect of pressure and temperature on the magnitude of dilation and on the stress (measured relative to the peak stress) at the onset of dilatancy is investigated. It is found that, consistent with experimental data, the theory predicts this stress to be about 50% of the peak stress, but its specific value depends on pressure and temperature. As an illustration, stress-strain curves for intact granite at relatively shallow crustal depths are then predicted for possible application to the study of crustal deformation and for the prediction of fault behaviour.  相似文献   

8.
There are clear differences in the electrical conductivities of the crustal granites of the Qinghai-Tibet Plateau.Because these granites are among the major rock types on the Qinghai-Tibet Plateau, it is very important to detect the electrical conductivity of granites under high temperatures and pressures to study the electrical conductivity structure of this area. Using impedance spectroscopy at a frequency range of 10.1–106 Hz, the electrical conductivity of the muscovite-granite collected from Yadong was investigated at a confining pressure of 1.0 GPa and temperatures ranging from 577 to 996 K, while the electrical conductivity of the biotite-granite collected from Lhasa was investigated at a pressure of 1.0 GPa and temperatures ranging from587 to 1382 K. The calculated activation enthalpies of the Yadong muscovite-granite sample is 0.92 eV in the low-temperature range(577–919 K) and 2.16 eV in the high-temperature range(919–996 K). The activation enthalpies of the Lhasa biotite-granite sample is 0.48 eV in the low-temperature range(587–990 K) and 2.06 eV in the high-temperature range(990–1382 K). The change in the activation enthalpies of the granites at different temperature ranges may be associated with the dehydration of the two samples. The electrical conductivities of the granite samples obtained in the laboratory using impedance spectroscopy correspond well with field observations conducted near the sampling points, both in terms of the actual conductivity values and the observed variations between the low-temperature and high-temperature regimes. This correlation of laboratory and field conductivities indicates that the conductivities of the crustal rocks in the two regions closely correspond to granite conductivities.We calculated the electrical conductivities of muscovite-granite and biotite-granite samples using the effective medium and HS boundary models. When applied to the crustal rocks of southern Tibet, the results of the geophysical conductivity profiles lie within the range of laboratory data. Thus, the electrical characteristics of the crustal rocks underlying the southern Qinghai-Tibet Plateau can largely be attributed to granites, with the large changes to high conductivities at increasing depths resulting from the dehydration of crustal rocks with granitic compositions.  相似文献   

9.
云南西部地壳深部结构特征   总被引:10,自引:3,他引:7       下载免费PDF全文
在云南西部,穿过红河、小江断裂带完成了一条长360 km、呈北东向的深地震宽角反射/折射剖面.通过对该测线的观测资料进行一维、二维模拟解释,得到了沿剖面的二维地壳速度模型.研究结果显示,沿测线Moho界面埋深横线变化大,其西南侧Moho埋深约35 km,东北侧Moho最大埋深可达43 km.沿剖面从西南到北东方向,地壳平均P波速度从5.9 km/s逐渐增加到6.13 km/s,但显著低于全球大陆平均值.结合以往的接收函数和面波联合反演结果,我们推算沿测线从西南到东北,其下方地壳泊松比介于0.23~0.25之间.剖面西南侧上地壳具有异常低的P波速度和泊松比,暗示其下方上地壳以α-相长英质组分为主;而剖面东北上地壳相对较高的P波速度和泊松比则暗示其物质组成以花岗岩-花岗闪长岩为主.研究区下地壳的P波速度和泊松比分别介于6.25~6.75 km/s和0.24~0.26 km/s之间,暗示其上部组成以花岗岩相的片麻岩为主,而下部组成则以角闪石类岩石为主.红河断裂两侧地壳速度显著不同,从浅到深其速度差异逐渐变弱,但红河断裂两侧地壳厚度变化较大.而小江断裂下方两侧地壳速度和地壳厚度变化并没有红河断裂那么明显.  相似文献   

10.
陈睿  闫俊岗  郁军建 《中国地震》2016,32(4):618-626
本文利用接收函数反演了河南及邻区26个宽频带地震台站下方的地壳厚度和波速比。研究结表明:河南省地壳厚度及泊松比分布与地质构造密切相关。主要表现为:(1)太行山断块,地壳厚度由东向西逐渐递增,地壳深度范围为31.8~40.2km,区域东北部永年台及附近台站泊松比为0.23~0.25,与较大范围的花岗岩分布有关,主要是石英、长石含量高,焦作台、涉县台、浚县台泊松比为0.26~0.27,表明铁镁质和长英质成分含量相当。(2)东部黄淮海平原块地,地壳厚度为28~34km,其中驻马店台、尖山台和浚县台,地壳厚度分别为30.5km、34.9km和31.8km,该地区泊松比变化范围比较稳定,数值在0.24~0.25之间。(3)在秦岭地块断裂活动强烈,卢氏台下方的地壳厚度为38.4km、泊松比为0.23,反映出燕山运动使该地区地壳盖层产生了褶皱台隆和地幔酸性岩浆的侵入活动。南阳盆地北部地壳厚度反演结果为28.8km,泊松比为0.29,泊松比升高,表明以中性、基性岩石为主,地壳岩石中铁镁质成分明显增加,是由于地幔物质深度侵入改变了部分地区的岩石性质。(4)大别山地块位于苏鲁-大别超高压变质带,由大别山北部的商城台向南至大别山地块内的金寨台存在地壳厚度梯度带,地壳厚度从31.8km增加至35.8km,而泊松比由0.27下降到0.24,反映出陆相褶皱带内的逆冲推覆构造的显著特征。  相似文献   

11.
本文使用位于青藏高原东南缘的25个地震台站的远震数据,采用P波和S波接收函数的方法研究了台站下方的Moho深度、泊松比以及地幔过渡带的厚度.计算结果表明:① 青藏高原东南缘的地壳厚度由松潘—甘孜地体和羌塘地体的约60 km,向邻区的印支地体以及扬子板块分别减薄为约38 km和约42 km; ② 羌塘地体的泊松比主要集中范围为0.25~0.28,地壳物质组分主要为中基性岩石,推测与下地壳镁铁质成分的增加有关.松潘—甘孜块体、印支块体和扬子板块的泊松比为0.25~0.26,主要为中酸性岩石组分.缺乏高的泊松比(≥0.30)分布表明青藏高原东南缘的地壳不存在广泛的部分熔融,但是不排除局部部分熔融的存在;③ 青藏高原东南缘的羌塘地体内存在一个比较明显的、异常变化范围为10~26 km的地幔过渡带增厚区域,其对应着地幔过渡带内100℃~260℃的温度降低,可以推断与此异常区域的地幔过渡带内存在俯冲的板块有关.  相似文献   

12.
The Moshirabad pluton is located southwest of the Sanandaj–Sirjan Metamorphic Belt, Qorveh, western Iran. The pluton is composed of diorite, monzodiorite, quartz diorite, quartz monzodiorite, tonalite, granodiorite, granite, aplite, and pegmatite. In this study 31 samples from various rocks were chosen for whole‐rock analyses and 15 samples from different lithologies were chosen for mineral chemical studies. The compositions of minerals are used to describe the nature of magma and estimate the pressure and temperature at which the Moshirabad pluton was emplaced. Feldspar compositions are near the binary systems in which plagioclase compositions range from An5 to An53 and alkali‐feldspar compositions range from Or91 to Or97. Mafic minerals in the plutonic rocks are biotite and hornblende. Based on the composition of biotites and whole‐rock chemistry, the Moshirabad pluton formed from a calc‐alkaline magma. Amphiboles are calcic amphiboles (magnesio‐hornblende or edenite). Temperatures of crystallization, calculated with the hornblende–plagioclase thermometer, range 550–750°C. These temperatures indicate that plutonic rocks have undergone some retrogressive changes in their mineral compositions. Aluminum‐in‐hornblende geobarometry indicates that the Moshirabad pluton was emplaced at pressures of 2.3–6.0 kbar, equal to depths of 7–20 km, but with consideration of regional geology, lower pressures than the above pressure range are more probable. Alteration of amphiboles can be the reason for some overestimation of pressures.  相似文献   

13.
Researches over the last 20 years show that the orogenic belt remains rather active after plate colli-sion[1,2]. A complete orogenic cycle in the last period of the Wilson cycle can be defined by three stages of development[3]: (1) horizontal contraction and crustal thickening due to collision, as well as formation of topography and the crustal and lithospheric root; (2) eclogite facies metamorphism of the crustal root; and (3) delamination of the crustal root or lithospheric mantle, extension…  相似文献   

14.
A field instrument package was installed for synchronous measurements of acoustic emission in rocks at frequencies of 0.1–10000 Hz and the vertical gradient of electric potential in near-ground atmosphere. These investigations for the first time revealed a relationship between emission disturbances in the kilohertz frequency range due to deformation of near-surface rocks and the electric field. The relationship may be observed both during seismically quiet periods and at the final phase of earthquake precursory periods.  相似文献   

15.
To measure elastic wave velocities in rocks at high temperature and high pressure is an important way to acquire the mechanics and thermodynamics data of rocks in the earth's interior and also a substantial approach to studying the structure and composition of materials there. In recent years, a rapid progress has been made in methodology pertaining to the measurements of elastic wave velocities in rocks at high temperature and high pressure with solids as the pressure-transfer media. However, no strict comparisons have been made of the elastic wave velocity data of rocks measured at high temperature and high pressure by various laboratories. In order to compare the experimental results from various laboratories, we have conducted a comparative experimental study on three measuring methods and made a strict comparison with the results obtained by using the transmission method with fluid as the pressure-transfer medium. Our experimental results have shown that the measurements obtained by the three methods are comparable in the pressure ranges of their application. The cubic sample pulse transmission method used by Kern is applicable to measuring elastic wave velocities in crustal rocks at lower temperature and lower pressure. The prism sample pulse reflection-transmission method has some advantages in pressure range, heating temperature and measuring precision. Although the measurements obtained under relatively low pressure conditions by the prism sample pulse transmission method are relatively low in precision, the samples are large in length and their assemblage is simple. So this method is suitable to the experiments that require large quantities of samples and higher pressures. Therefore, in practical application the latter two methods are usually recommended because their measurements can be mutually corrected and supplemented.  相似文献   

16.
Lattice thermal conductivities have been measured for single-crystal quartz, olivine and sodium chloride, and for three dunites and polycrystalline coesite over the temperature range 350–650 K and pressure range 2–5.6 GPa.Tables of data are presented giving conductivities, pressure coefficients at various temperatures and inverse temperature coefficients at various pressures; in all cases the coefficients are positive.Although the conductivities of crystalline quartz with heat flowing parallel and perpendicular to the optic axis change markedly with pressure and temperature, the anisotropy ratio shows only a small change.  相似文献   

17.
Chausudake Volcano is representative of the active volcanoes in northeastern Japan, and has a record of many historical eruptions. Because its 16-ky eruptive history is well documented, Chausudake is well-suited for examining the temporal change of magma chamber processes and for assessing potential hazards. The activity of the Chausudake Volcano can be divided into six magmatic units (CH1-CH6). Most of its products have similar characteristics, but those from unit CH1 show wider variation. Most rocks are andesite and have plagioclase, clinopyroxene, orthopyroxene, and Fe-Ti oxides as phenocrysts, with or without olivine or quartz. Mafic inclusions, which are observed in most products, are basaltic andesites that have various combinations of the same phenocryst species. Petrographic features observed in host rocks and mafic inclusions, such as disequilibrium phenocrysts and resorbed textures, suggest magma mixing/co-mingling. Whole rock compositions of both host rocks and mafic inclusions show linear trends in variation diagrams, which suggest that the rocks are derived from the mixing/co-mingling between mafic and felsic end members. Bulk silica content of the mafic end-member magma is estimated to be ca. 52%, and contains Mg-rich olivine and An-rich plagioclase. The temperature of this end member is estimated to have been higher than 1,100 °C. Bulk silica content of the felsic end-member magma is estimated to be ~66%, and contains Mg-poor pyroxenes, An-poor plagioclase, and quartz phenocrysts, with a temperature of between 800 and 900 °C. Trace element compositions show that the end members have different origins, but have changed little over the entire 16-ky of activity. The mafic end-member magmas might come from a lower-crustal homogeneous, large magma chamber, whereas the felsic end-member magmas may be partial melts of crustal materials produced by the heat of the mafic end member. Felsic end-member magma may have accumulated in the middle crust before CH1 activity. The mixing ratio of the felsic to mafic end members was 0.5:0.5 to 0.4:0.6 for the CH1 unit, and ca. 0.4:0.6 for the other units. Considering that ca. 75% of the total volume of the eruptive products form the first unit, its wider compositional variation is attributed to more heterogeneous mixing ratios.  相似文献   

18.
依据穿过巴颜喀拉地块的北部、秦岭地块、祁连地块、海原弧形构造区和鄂尔多斯地块的玛沁-兰州-靖边人工地震剖面的P波、S波的速度结构和泊松比结构,对青藏高原东北缘的地壳组成进行研究,并探讨其动力学过程. 首先,系统地归纳总结出一套将地震测深得到的原位P波速度校正到实验室温压条件下波速的具体可行的方法,利用大地热流值求取地壳不同深度的温度是该方法的关键. 然后,将上述剖面的原位P波速度校正到600 MPa和室温条件下,结合泊松比与相同温压条件下的实验室岩石波速测量结果进行对比,确定研究区的岩性组成. 结果表明,青藏高原东北缘地壳平均P波校正波速为6.43 km/s,地壳整体像上地壳一样呈酸性. 巴颜喀拉地块和秦岭地块南部的下地壳底部缺失校正速度Vp>6.9 km/s的基性岩,下地壳中酸性互层,下地壳整体呈酸性. 其他地块下地壳底部有2~10 km厚的校正速度Vp>6.9 km/s的基性岩,下地壳整体呈中性. 最后,根据青藏高原东北缘地壳结构和组成的研究成果,支持地壳增厚主要发生在下地壳的观点;提出巴颜喀拉地块和秦岭地块南部曾发生过下地壳拆沉作用,并导致高原的加速隆升.  相似文献   

19.
Crustal structure in a number of Kamchatka volcanic regions is deduced from geophysical data. Anomalous structure and physical properties of the crust are found beneath some volcanic groups. Beneath the Klyuchevskaya and Avachinskaya volcanic groups crustal layers have high elastic properties. There is a thick transition layer from the crust to the upper mantle which has lower clastic properties and electrical resistance. These data, supported by experimental investigations of elastic properties of xenoliths in volcanic rocks at high pressures and temperatures, enable the probable substance composition of the crustal layers to be defined. The feeding zones and magma chambers of individual volcanoes are deduced from anomalies in gravity, electrical conductivity and seismic wave propagation.  相似文献   

20.
The elastic and density properties of rocks of the Shamakha-Ismailly seismogenic blocks are studied by the ultrasonic pulse method in quasi-hydrostatic high pressure apparatuses. An attempt is made to more accurately determine the upper crustal lithology of these blocks. The observed values of the elastic and density characteristics of the rocks at high pressures suggest that the upper layers in the Ismailly and Shamakha blocks can consist of sedimentary carbonate rocks such as marls, sandstones, mudstones, and limestones. The middle layers apparently consist of volcaniclastic rocks: lithoclastic tuffs, andesites, etc. The lower layer (basement) in both blocks is likely composed of basic rocks such as basalts, trachybasalts, etc. According to the values of elastic wave velocities and densities, gabbroid rocks may compose the fourth layer of the Buinuz intrusion, identified from seismic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号