首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study is the first to measure the particulate phosphorus, including total inorganic phosphorus (TIP) and organic phosphorus (OP), in size-fractionated atmospheric particles. The results indicate that continental and marine sources are the key controls on the particle-size distribution of phosphorus species. For continental and local anthropogenic sources, both TIP and OP are associated with fine-mode aerosols during the winter and spring, and both are also associated with coarse particles during the summer and autumn. The coarse/fine ratios are low during periods with a non-oceanic source but high at other times, probably because of the biological growing season in the surface waters of the study area. The calculated annual fluxes based on estimates of dual-mode particles are 532±185, 435±172, and 96.8±48.8 μmol m−2 yr−1 for TP, TIP, and OP, respectively. Based on previously published solubility data for particulate phosphorus (34%), we calculated an annual flux of 180±63 μmol m−2 yr−1 for readily soluble particulate phosphorus.  相似文献   

2.
Rare earth elements (REEs) are widely used to increase crop production in China. However, little attention has been paid to their impacts on aquatic ecology. Batch cultivation was used here to study the effects of lanthanum (La) and EDTA on the growth and competition of the cyanobacterium Microcystis aeruginosa and the green alga Scenedesmus quadricauda. When EDTA was present at a very low concentration (0.269 μmol L−1), low lanthanum concentrations (?7.2 μmol L−1) had little stimulative effect on the growth of M. aeruginosa and S. quadricauda, whereas a high lanthanum concentration (72 μmol L−1) had significant inhibitory effect on both of them. The results of cultivation experiments suggested that the inhibitory effect on M. aeruginosa was higher than that on S. quadricauda and S. quadricauda could become dominant in mixed cultures. When lanthanum was not added to the culture medium, high EDTA concentrations (>13.4 μmol L−1) had a great inhibitory effect on the growth of M. aeruginosa but little effect on the growth of S. quadricauda, which could become dominant in the mixed cultures.Lanthanum and EDTA had complex effects on the growth and competition of M. aeruginosa and S. quadricauda. EDTA did not change the stimulation of low lanthanum concentrations on both, but at intermediated concentrations (2.69-13.4 μmol L−1) it could greatly alleviate lanthanum inhibition on M. aeruginosa; thus, M. aeruginosa would dominate S. quadricauda in these mixed cultures. Lanthanum at low concentration (7.2 μmol L−1) could also alleviate the inhibition of high EDTA on M. aeruginosa, but did not alter the outcome of the competition.  相似文献   

3.
The concentrations and sea-to-air fluxes of dissolved methane (CH4) were investigated in the North Yellow Sea during August 2006, January, April and October 2007. Dissolved CH4 concentrations showed obvious seasonal variation, with maximum values occurring in summer and lowest values occurring in winter. The saturations of dissolved CH4 in surface waters ranged from 78.7% to 1679.7% with an average of 252.4%. The estimated atmospheric CH4 fluxes using the Liss and Merlivat (LM86), and Wanninkhof formulae (W92) were (4.2±4.7), (11.6±10.3), (8.5±12.7) and (0.2±1.0), and (6.9±7.3), (14.6±22.3), (13.8±14.3) and (0.4±1.7) μmol·(m2 d)−1, respectively, for spring, summer, autumn and winter. Based on the average annual atmospheric CH4 flux and the area of the North Yellow Sea, the annual CH4 emission was estimated to be (2.4×10−2–4.2×10−2) Tg a−1, which suggests that the North Yellow Sea was a net source of atmospheric CH4.  相似文献   

4.
Mobilisation of sedimentary monosulfidic black ooze (MBO) may result in rapid deoxygenation and acidification of surface waters, and release of potentially toxic metals. This study examines the extent and nature of MBO accumulation in the Geographe Bay area, Western Australia. MBO accumulations were found to be widespread in benthic sediments of the Geographe Bay area with acid-volatile sulfide (AVS) contents as high as 320 μmol g−1. The MBO materials often had unusually high dissolved sulfide (S−II) concentrations in their pore-waters (up to 610 mg L−1) and elevated elemental sulfur (S0) contents (up to 51 μmol g−1). Dissolved S−II is able to accumulate due to limited iron availability and S0 is largely its partial oxidation product. The availability of organic carbon and Fe limited MBO accumulation at many sites. A comparison of AVS and simultaneously extracted metal (SEM) concentrations has shown that metals are likely to be bound in sulfide complexes.  相似文献   

5.
This work deals with the environmental distribution of nonionic surfactants (nonylphenol and alcohol ethoxylates), their metabolites (NP, nonylphenol; NPEC, nonylphenol ethoxycarboxylates; and PEG, polyethylene glycols) and a selection of 64 pharmaceuticals in the Long Island Sound (LIS) Estuary which receives important sewage discharges from New York City (NYC). Most target compounds were efficiently removed (>95%) in one wastewater treatment plant monitored, with the exception of NPEC and some specific drugs (e.g., hydrochlorothiazide). Concentrations of surfactants (1.4–4.5 μg L−1) and pharmaceuticals (0.1–0.3 μg L−1) in seawater were influenced by tides and sampling depth, consistent with salinity differences. Surfactants levels in suspended solids samples were higher than 1 μg g−1, whereas only most hydrophobic or positively charged pharmaceuticals could be found (e.g., tamoxifen, clarithromycin). Maximum levels of target compounds in LIS sediments (PEG at highest concentrations, 2.8 μg g−1) were measured nearest NYC, sharply decreasing with distance from major sewage inputs.  相似文献   

6.
Seasonal variations in the inorganic carbon system in the Pearl River estuary are examined based on data from five surveys during the spring, summer, fall, and winter seasons. Both total dissolved inorganic carbon (DIC) and total alkalinity (TAlk) values in the freshwater end-members are high in the dry season (>2700 μmol kg−1 for DIC and >2400 μmol kg−1 for TAlk) and substantially lower in the wet season (DIC and TAlk were ∼1000 and 700 μmol kg−1, respectively). Riverine DIC flux and drainage basin weathering rates, however, are significantly higher in the wet season (611×109 mol yr−1 and 13.6×105 mol km−2 yr−1) than in the dry season (237×109 mol yr−1 and 5.3×105 mol km−2 yr−1).  相似文献   

7.
Concentrations of lead were assessed in the sea turtle, Lepidochelys olivacea, from a nesting colony of the Eastern Pacific. Twenty-five female turtles were sampled and a total of 250 eggs were collected during the “arribada” event of the 2005-2006 season. Considering the nesting season, the maternal transfer of lead (Pb) via egg-laying, in terms of metal burden in whole body, was 0.5%. Pb concentrations (in dry weight) in blood (0.95 ± 0.18 μg g−1) and egg samples (yolk, 0.80 ± 0.10 μg g−1; albumen, 1.08 ± 0.20 μg g−1; eggshell, 1.05 ± 0.20 μg g−1) were comparable or even lower than those found in other sea turtles. The isotope ratios (206Pb/207Pb and 206Pb/208Pb) in blood (1.183 ± 0.0006 and 2.452 ± 0.0006, respectively) were comparable to that of natural Pb-bearing bedrock in Mexico (1.188 ± 0.005 and 2.455 ± 0.008, respectively). According to international norms of Pb, the health of this population and its habitats is acceptable for Pb and corresponds to basic levels of a nearly pristine environment.  相似文献   

8.
The air–sea ice CO2 flux was measured over landfast sea ice in the Chukchi Sea, off Barrow, Alaska in late May 2008 with a chamber technique. The ice cover transitioned from a cold early spring to a warm late spring state, with an increase in air temperature and incipient surface melt. During melt, brine salinity and brine dissolved inorganic carbon concentration (DIC) decreased from 67.3 to 18.7 and 3977.6 to 1163.5 μmol kg−1, respectively. In contrast, the salinity and DIC of under-ice water at depths of 3 and 5 m below the ice surface remained almost constant with average values of 32.4±0.3 (standard deviation) and 2163.1±16.8 μmol kg−1, respectively. The air–sea ice CO2 flux decreased from +0.7 to −1.0 mmol m−2 day−1 (where a positive value indicates CO2 being released to the atmosphere from the ice surface). During this early to late spring transition, brought on by surface melt, sea ice shifted from a source to a sink for atmospheric CO2, with a rapid decrease of brine DIC likely associated with a decrease in the partial pressure of CO2 of brine from a supersaturated to an undersaturated state compared to the atmosphere. Formation of superimposed ice coincident with melt was not sufficient to shut down ice–air gas exchange.  相似文献   

9.
The influence of subterranean water discharge on phytoplankton was studied at two localities (Progreso and Dzilam) on the northern coast of the Yucatan Peninsula. Hydrographic and phytoplankton samples were taken monthly between September 1998 and August 1999. High concentration of silicate (>65 μmol L−1) and nitrate (>80 μmol L−1) and low salinity showed the influence of submerged groundwater discharge (SGD) in the area. In Dzilam, hydrological conditions shows low salinity and high concentration of nitrate and silicate favored from the SGD. Meanwhile, high concentrations of ammonium, nitrite, and phosphate at Progreso (>150 000 inhabitants) suggest mixing of SGD and domestic waste waters. Thick-valve pennate diatoms dominated at Dzilam while dinoflagellates dominated in Progreso. Hydrological differences in both study zones suggest that local forcings, and interaction between coastal water masses and SGD plays an important role in hydrological conditions and primary productivity in the coastal zone of Yucatan. The anthropogenic modified SGD in Progreso may affect the nutrient regime and phytoplankton community structure, and may be used as indicator of eutrophication.  相似文献   

10.
Saronikos Gulf (Greece) practically constitutes the sea border of the metropolitan city of Athens and the alongshore outskirts, and it receives the treated wastes of ∼4 million people from a point source that discharges on the sea bottom at ∼65 m water depth. Total organic carbon (TOC) was measured in 477 seawater samples collected in the Saronikos Gulf, during 10 cruises, from August 2001 to May 2004 and analyzed with the High Temperature Catalytic Oxidation method (HTCO). TOC concentrations ranged from 49 to 198 μmol C L−1 in agreement with other Mediterranean coastal waters. The highest TOC concentrations were found in the upper waters (0–75 m), whereas in the deeper parts of the Gulf (between 100 and 400 m) TOC concentrations were kept constantly low (49–70 μmol C L−1). A general pattern towards higher TOC concentrations during summer was also observed. Calculations of non-refractory (labile+semi-labile) organic material based on a one-dimensional (1D) conceptual model showed that it corresponds to 33% of the bulk TOC during summer and to 27% during winter. Bacterial production (BP) was measured at selected stations of ∼70–80 m depth using the [3H] leucine method. Depth integrated BP values varied from 2.8 to 10.9 mmol m−2 d−1, whereas extraordinary high integrated BP values (126 and 140 mmol m−2 d−1) were observed at the station over the treated sewage outflow. From the turnover time, τ, of the non-refractory TOC by bacteria it was implied that organic matter in the effluents is extremely labile (2–58 days). Moreover, τ values at the other sites showed that during summer non-refractory organic material resisted bacterial degradation (1–8 months), whereas during early spring it was easily degradable (20–50 days). The balance of TOC fluxes for the Inner Gulf for June and September 2003 showed that the Inner Gulf acts as a net producer of TOC during summer. Our results suggest that the presence of the Athens treated sewage outfall does not contribute to the observed summer accumulation of TOC in the Inner Gulf and other causes such as increased bacteria predation and/or nutrient limitation must be responsible.  相似文献   

11.
The distributions of 16 polycyclic aromatic hydrocarbons (PAHs) were determined in the aqueous phase, suspended particulate matter (SPM), sediment, and pore water of the Daliao River Estuary in Liaodong Bay, Bohai Sea (China). Total PAH concentrations ranged from 139.16 to 1717.87 ng L−1 in surface water, from 226.57 to 1404.85 ng L−1 dry weight in SPM, from 276.26 to 1606.89 ng g−1 dry weight in sediments, and from 10.20 to 47.27 μg L−1 in pore water. PAH concentrations were at relatively moderate levels in water, SPM, sediment and pore water in comparison with those reported for other estuary and marine systems around the world. Sedimentary PAH concentrations decreased offshore owing to active deposition of laterally-transported river-borne particles. PCA analysis of the possible PAH source suggested petrogenic and pyrolytic PAH inputs in the studied region.  相似文献   

12.
Temporal and spatial distributions of dimethylsulfide (DMS) and its precursor dimethylsulfoniopropionate (DMSP) were determined in the East China Sea and the Yellow Sea during June-July, 2006 and January-February, 2007. The concentrations of DMS and total DMSP in surface water in the study area were 5.64 (1.79-12.24) and 28.25 (13.98-44.93) nmol L−1 in summer, and were 1.79 (1.02-3.51) and 11.01 (6.90-17.98) nmol L−1 in winter, respectively. The distributions of DMS and DMSP in the study area were obviously influenced by the Yangtze River effluent and the Kuroshio water. Even under highly variable hydrographic conditions, a significant relationship was observed between DMS and chlorophyll a concentrations in summer as well as in winter, suggesting that phytoplankton biomass might play an important role in controlling DMS distribution in the study area. The summer ratios of DMS/chlorophyll a and DMSP/chlorophyll a were approximately twofold higher than winter values, corresponding with the temporal variation in phytoplankton community structure between summer and winter. The sea-to-air fluxes of DMS were estimated to be 5.32 and 11.92 μmol m−2 d−1 using the equations of Liss and Merlivat (1986) and Wanninkhof (1992), respectively.  相似文献   

13.
The anti-microbial agent triclosan (TCS), and its derivative methyl-triclosan (Me-TCS), are discharged with treated effluents from wastewater treatment plants to receiving environments. We investigated the bioconcentration of TCS and Me-TCS in mussels (Mytilus galloprovincialis) exposed to TCS (100 ng L−1) for 30 days in seawater aquaria (19 ± 2 °C) with fresh phytoplankton as a food source. Bioconcentration increased with time reaching a steady-state around 24–30 days. The bioconcentration factor (log BCF) for TCS were 2.81 L kg−1 (dry weight) and 4.13 L kg−1, when lipid normalised concentrations were used. Mussels were also deployed in cages at four marine locations receiving effluents from WWTPs. The mean (±SD) TCS and Me-TCS concentrations for mussels from these sites were 9.87 (±1.34) and 6.99 (±2.44) μg kg−1. The study showed that mussels can be a useful tool for monitoring pollution of TCS and Me-TCS in marine and estuarine environments.  相似文献   

14.
210Po and 210Pb in mussel (Mytilus galloprovincialis) and sediment samples collected at Candarl? Gulf during the period of 2010–2012 are presented and discussed. The activity concentrations of 210Po and 210Pb were measured by means of alpha spectrometry. Activity concentrations of 210Po and 210Pb in mussels are in the ranged of 332 ± 17–776 ± 23 Bq kg−1 dw and 14 ± 1–40 ± 5 Bq kg−1 dw, for sediments the ranges for 52 ± 5–109 ± 8 Bq kg−1 dw and 38 ± 5–92 ± 9 Bq kg−1 dw, respectively. The estimated consequent annual effective ingestion dose due to 210Po and 210Pb from mussel consumption in Candarl? Gulf coastal region were calculated. The highest dose due to 210Po and 210Po were calculated to be 4232 ± 126 μSv and 126 ± 16 μSv, respectively.  相似文献   

15.
We observed a phytoplankton bloom downstream of a large estuarine plume induced by heavy precipitation during a cruise conducted in the Pearl River estuary and the northern South China Sea in May–June 2001. The plume delivered a significant amount of nutrients into the estuary and the adjacent coastal region, and enhanced stratification stimulating a phytoplankton bloom in the region near and offshore of Hong Kong. A several fold increase (0.2–1.8 μg Chl L−1) in biomass (Chl a) was observed during the bloom. During the bloom event, the surface water phytoplankton community structure significantly shifted from a pico-phytoplankton dominated community to one dominated by micro-phytoplankton (>20 μm). In addition to increased Chl a, we observed a significant drawdown of pCO2, biological uptake of dissolved inorganic carbon (DIC) and an associated enhancement of dissolved oxygen and pH, demonstrating enhanced photosynthesis during the bloom. During the bloom, we estimated a net DIC drawdown of 100–150 μmol kg−1 and a TAlk increase of 0–50 μmol kg−1. The mean sea–air CO2 flux at the peak of the bloom was estimated to be as high as ∼−18 mmol m−2 d−1. For an average surface water depth of 5 m, a very high apparent biological CO2 consumption rate of 70–110 mmol m−2 d−1 was estimated. This value is 2–6 times higher than the estimated air–sea exchange rate.  相似文献   

16.
Bacterioplankton abundance (BA) and biomass (BB) from the eutrophic Pearl River Estuary (PRE) to the oligotrophic northern South China Sea (NSCS) were studied in the wet season. BA was significantly higher (p < 0.05) in PRE (12.51 ± 3.52 × 108 cells L−1), than in the continental shelf neritic province (CSNP, 4.95 ± 2.21 × 108 cells L−1) and in the deep oceanic province (OP, 3.16 ± 1.56 × 108 cells L−1). Nutrient-replete PRE waters (DIN > 100 μM and PO4 > 1 μM) resulted in high chl a and BB, whereas nutrient-depleted offshore waters (DIN <5 μM and PO4 < 0.5 μM) had low biomass. Temperature (>26 °C) was not the controlling factor of BA. BB was significantly correlated with chl a biomass both in PRE and NSCS. The bacteria to phytoplankton biomass (BB/PB) ratio increased clearly along the gradient from near-shore PRE (0.15) to offshore CSNP (0.93) and deep OP (2.75), indicating the important role of small cells in the open ocean compared to estuarine and coastal zones.  相似文献   

17.
Phytoplankton cells in estuary waters usually experience drastic changes in chemical and physical environments due to mixing of fresh and seawaters. In order to see their photosynthetic performance in such dynamic waters, we measured the photosynthetic carbon fixation by natural phytoplankton assemblages in the Jiulong River estuary of the South China Sea during April 24-26 and July 24-26 of 2008, and investigated its relationship with environmental changes in the presence or the absence of UV radiation. Phytoplankton biomass (Chl a) decreased sharply from the river-mouth to seawards (17.3-2.1 μg L−1), with the dominant species changed from chlorophytes to diatoms. The photosynthetic rate based on Chl a at noon time under PAR-alone increased from 1.9 μg C (μg Chl a)−1 L−1 in low salinity zone (SSS < 10) to 12.4 μg C (μg Chl a)−1 L−1 in turbidity front (SSS within 10-20), and then decreased to 2.1 μg C (μg Chl a)−1 L−1 in mixohaline zone (SSS > 20); accordingly, the carbon fixation per volume of seawater increased from 12.8 to 149 μg C L−1 h−1, and decreased to 14.3 μg C L−1 h−1. Solar UVR caused the inhibition of carbon fixation in surface water of all the investigated zones, by 39% in turbidity area and 7-10% in freshwater or mixohaline zones. In the turbidity zone, higher availability of CO2 could have enhanced the photosynthetic performance; while osmotic stress might be responsible for the higher sensitivity of phytoplankton assemblages to solar UV radiation.  相似文献   

18.
Identifying nutrient sources, primarily nitrogen (N) and phosphorus (P), sufficient to support high biomass blooms of the red tide dinoflagellate, Karenia brevis, has remained problematic. The West Florida Shelf is oligotrophic, yet populations >106 cells L−1 frequently occur and blooms can persist for months. Here we examine the magnitude and variety of sources for N and P that are available to support blooms. Annual average in situ or background concentrations of inorganic N in the region where blooms occur range 0.02–0.2 μM while inorganic P ranges 0.025–0.24 μM. Such concentrations would be sufficient to support the growth of populations up to ∼3×104 cells L−1 with at least a 1 d turnover rate. Organic N concentrations average 1–2 orders of magnitude greater than inorganic N, 8–14 μM while organic P concentrations average 0.2–0.5 μM. Concentrations of organic N are sufficient to support blooms >105 cells L−1 but the extent to which this complex mixture of N species is utilizable is unknown. Other sources of nutrients included in our analysis are aerial deposition, estuarine flux, benthic flux, zooplankton excretion, N2-fixation, and subsequent release of organic and inorganic N by Trichodesmium spp., and release of N and P from dead and decaying fish killed by the blooms. Inputs based on atmospheric deposition, benthic flux, and N2-fixation, were minor contributors to the flux required to support growth of populations >2.6×104 cells L−1. N and P from decaying fish could theoretically maintain populations at moderate concentrations but insufficient data on the flux and subsequent mixing rates does not allow us to calculate average values. Zooplankton excretion rates, based on measured zooplankton population estimates and excretion rates could also supply all of the N and P required to support populations of 105 and 106 cells L−1, respectively, but excretion is considered as “regenerated” nutrient input and can only maintain biomass rather than contribute to “new” biomass. The combined estuarine flux from Tampa Bay, Charlotte Harbor, and the Caloosahatchee River can supply a varying, but at times significant level of N and P to meet growth and photosynthesis requirements for populations of approximately 105 cells L−1 or below. Estimates of remineralization of dead fish could supply a significant proportion of bloom maintenance requirements but the rate of supply must still be determined. Overall, a combination of sources is required to maintain populations >106 cells L−1.  相似文献   

19.
Perfluorinated chemicals including PFOA and PFOS have been widely used in consumer products and have become ubiquitous pollutants widely distributed in the aqueous environment. Following a major flood event in 2011, water samples were collected along a spatial gradient of the Brisbane River system to provide an initial estimate of the release of PFASs from flooded urban areas. PFOA (mean concentrations 0.13–6.1 ng L−1) and PFOS (mean concentrations 0.18–15 ng L−1) were the most frequently detected and abundant PFASs. Mean total PFASs concentrations increased from 0.83 ng L−1 at the upstream Wivenhoe Dam to 40 ng L−1 at Oxley Creek, representing an urban catchment. Total masses of PFOA and PFOS delivered into Moreton Bay from January to March were estimated to be 5.6 kg and 12 kg respectively. From this study, urban floodwaters appear to be a previously overlooked source of PFASs into the surrounding environment.  相似文献   

20.
Our investigation on macrophytes in Lake Qattieneh, a large, shallow reservoir in western Syria, is a first assessment of ecological status of this lake. We studied spatial distribution patterns of aquatic macrophyte vegetation and heavy metal concentrations to determine if they can be used as indicators of point sources of pollution. Industrial and municipal point sources at the lake shore increase nutrient load and contamination by heavy metals. Water analyses revealed high concentrations of some heavy metals at some littoral sites: Ni 88.7 μg L−1, Cr 49.99 μg L−1, Co 14.38 μg L−1, and Cu 11.65 μg L−1. Despite hypertrophic conditions and high heavy metal contamination, we recorded several submerged macrophyte species with heterogeneous spatial distribution patterns. Whereas Potamogeton pectinatus L. dominates in the eastern part of the lake, near industrial point sources, both Myriophyllum spicatum L. and Potamogeton lucens L. form extended patches in the western part of the lake. The shallow, littoral areas near villages are dominated by Ranunculus trichophyllus Chaix in Villars and Ceratophyllum demersum L. The west-east gradient in nutrient and heavy metal concentrations in waters and sediments are reflected by the spatial distribution of submersed species. While the heavy metal concentrations of the water body vary considerably in different seasons, the contents in submersed macrophytes integrate seasonal variations of longer time periods. Spatial distribution and tissue accumulation of littoral macrophyte species reflect the environmental conditions at respective sites such as heavy metal contents in water and sediment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号