首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 737 毫秒
1.
中国东北地区北部上地幔各向异性及其动力学意义   总被引:4,自引:4,他引:0       下载免费PDF全文
强正阳  吴庆举 《地球物理学报》2015,58(10):3540-3552
中国东北地区广泛发育新生代板内火山,晚中生代以来岩石圈遭受过多期拉张作用.作为中国唯一的深震孕育区,中国东北地区受到太平洋板块的西向俯冲,使得其成为研究岩石圈变形、板块俯冲和板内火山成因及其相互作用关系的天然实验室.通过分析架设在中国东北地区北部的147个流动和固定台站的SKS波形数据,共计得到了377对各向异性参数和251个无效分裂结果.结果表明,中国东北地区东西两侧具有不同的各向异性分布:西部地区各向异性方向变化范围为N143-199°E,平均N169°E,与晚中生代岩石圈伸展方向一致;其各向异性延迟时间平均值约为0.8s,说明来自地幔的各向异性比较微弱,主要由残留在岩石圈中的古老变形所引起.同时,在松辽盆地和佳木斯地块部分区域,观测到延迟时间较小的各向异性(~0.4s),可能是由于岩石圈的拆沉和热地幔物质的上涌侵蚀了保留在岩石圈的古老形变所致.在研究区东部,NNW-SSE朝向的各向异性被观测到,并伴随较大的延迟时间(大于1.0s),可能与太平洋板块撕裂回撤而产生的地幔流动有关.此外,近W-E方向的各向异性只在佳木斯地块被观测到,而太平洋板块在地幔过渡带中的俯冲可能是其产生的主要成因.  相似文献   

2.
贝加尔裂谷区地壳上地幔复杂的各向异性及其动力学意义   总被引:1,自引:3,他引:1  
位于西伯利亚板块东南缘的贝加尔裂谷是最典型的大陆裂谷之一,其形成的动力机制与演化过程一直是地学界争论的焦点.本研究使用一种改进的横波分裂测量方法——全局最小切向能量法,对研究区宽频带固定台站ULN和TLY记录的SKS震相和接收函数PmS震相进行分裂测量,得到了裂谷地区地壳和上地幔的各向异性属性.ULN台的SKS分裂测量结果表明,台站下方存在双层各向异性结构,其中,上层的快波偏振方向为N74°E,快、慢波分裂时差为0.80 s,下层的快波偏振方向为N128°E,快、慢波分裂时差为0.80 s;PmS震相分裂测量结果表明,台站下方地壳内存在单层各向异性结构,其快波偏振方向为N77°E,与SKS分裂测量的上层各向异性的快波偏振方向相近,快、慢波分裂时差为0.26 s,这说明SKS分裂测量的上层各向异性同时包含了地壳和地幔岩石圈.对TLY台进行SKS分裂测量时发现,台站下方上地幔结构表现出横向非均匀性:当反方位角<90°时,快波偏振方向在N60°E左右,快、慢波分裂时差为1.27 s;当反方位角>90°时,快波偏振方向约为N120°E,快、慢波分裂时差为1.40 s;PmS震相分裂测量没有获得有效的结果,并且不同方位的PmS震相到时基本一致,说明TLY台下方地壳结构接近各向同性.根据分裂测量结果,结合贝加尔裂谷区的构造演化过程,得到以下结论:(1)ULN台双层各向异性的上层主要是岩石圈原始结构的反映,并且存在地壳与地幔岩石圈的一致性形变,而下层指示着现今软流圈地幔的流动;(2)由于刚性的西伯利亚克拉通的阻挡,地幔流动方向在克拉通南缘发生了偏转,在深部绕克拉通边缘流动,因此形成了TLY台下方上地幔结构的横向变化.  相似文献   

3.
鄂尔多斯块体及周缘上地幔各向异性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
对布设在鄂尔多斯块体及周缘的固定和流动宽频带地震台网共111个台站记录作远震SKS(SKKS)波形资料偏振分析,采用最小切向能量的网格搜索和叠加分析求得每一个台站的SKS(SKKS)快波偏振方向和快、慢波的延迟时间,获得了鄂尔多斯块体及周缘上地幔各向异性图像.在鄂尔多斯块体西缘和北缘,各向异性的快波方向为NW-SE方向,一致性较好;在鄂尔多斯多斯块体南缘,快波方向主要是NWW-SEE和近EW方向;在鄂尔多斯块体东缘,快波方向总体表现为近EW方向,间有NEE-SWW方向和NWW-SEE方向.在鄂尔多斯块体内部,快波方向在北部是近NS方向,而南部则是近EW方向.快、慢波的时间延迟范围是0.48~1.50s,鄂尔多斯块体内部的时间延迟平均值小于其周缘地区.通过分析研究区各向异性特征,认为构造稳定的鄂尔多斯块体内部的各向异性主要来自于古老的华北克拉通保存的"化石"各向异性;青藏高原东北缘向NE方向的推挤,造成岩石圈NW-SE方向的拉张伸展,鄂尔多斯块体西缘和北缘下的上地幔物质沿NW-SE方向发生了形变,使得上地幔中橄榄岩的晶格排列方向平行于物质形变的方向;在鄂尔多斯块体南缘,刚性的华北块体和扬子块体碰撞作用,使得各向异性快波方向平行于两个刚性块体的碰撞边界和秦岭造山带的走向.结合该区域绝对板块运动和速度结构研究,认为在秦岭造山带下可能存在一个青藏高原物质东流的地幔流通道;在鄂尔多斯块体东缘的汾河地堑和太行山,相对复杂的各向异性特征可能由于西太平板块俯冲、区域伸展构造、造山运动等共同作用引起的.对于YCI台得到的各向异性参数(快波方向变化范围是45°~106°,时间延迟变化范围是0.6~1.5s)随事件反方位角呈现出π/2周期的变化,符合双层各向异性模型.基于0.125Hz的主频和实测的各向异性参数,我们模拟得到了最佳的双层各向异性模型,下层φlower=132°,δtlower=0.8s,上层φupper=83°,δtupper=0.5s.上层各向异性归功于古老克拉通保留的"化石"各向异性,下层各向异性则受到了青藏高原东北缘NE方向推挤导致的岩石圈NW-SE方向的拉张伸展作用.通过该区域各向异性快波方向与全球定位系统(GPS)的观测结果的对比分析,鄂尔多斯块体的周缘壳幔变形符合垂直连贯变形模式,而其内部变形复杂,有待进一步研究.  相似文献   

4.
首都圈地区SKS波分裂研究   总被引:7,自引:2,他引:5       下载免费PDF全文
通过分析首都圈数字地震台网的49个宽频带和甚宽带台站的远震SKS波形资料,采用最小切向能量的网格搜索法和叠加分析方法,求得每一个台站的SKS快波偏振方向和快、慢波的时间延迟,获得了首都圈地区上地幔各向异性图象.首都圈地区的各向异性快波方向基本上呈WNW-ESE方向,快、慢波时间延迟为0.56-1.56 s.研究表明,首都圈地区上地幔存在明显的各向异性,引起各向异性的主要原因是研究区受太平洋板块俯冲作用下软流圈物质变形,使得上地幔橄榄岩等晶体的晶格优势取向沿物质流动方向.另外,中国大陆受印度板块与欧亚板块的强烈碰撞,大陆西部地壳增厚隆起,同时造成物质东向挤出,使得首都圈地区上地幔物质沿快波方向变形.通过研究区各向异性快波方向和伸展运动方向与GPS测量得到的速度场对比分析,首都圈地区壳幔变形可能具有垂直连贯变形特征.  相似文献   

5.
内蒙古阿巴嘎地区壳幔经历强烈变形,岩石圈变形机制尚不明确.利用布设在研究区的32个流动地震台站所记录到的远震剪切波数据,测量得到120对各向异性参数和113个无效分裂结果.结果表明,研究区快慢波延迟时间变化范围为0.4~1.4s,平均0.77±0.21s;各向异性快波方向变化范围为N101°E-N45°W.其中一组快波偏振方向为N82.0°E±12.3°,与区域内断裂走向平行,反映地幔矿物晶格定向排列;另一组快波方向集中位于华北克拉通内部,平均为N146.8°E±9.5°,平行于早白垩纪岩石圈伸展变形方向,推测由残留在岩石圈中的化石各向异性所引起.在研究区北部部分台站,只观测到无效分裂而没有观测到有效分裂结果,可能存在局部热地幔物质上涌.  相似文献   

6.
地震各向异性方法是研究地幔流动以及岩石圈变形最直接有效的方法之一,利用远震事件识别近乎垂直入射的SKS波震相能直接反映台站下方的上地幔各向异性。近年来,SKS波分裂由于识别方位各向异性灵敏、多解性小逐渐发展为探究大陆动力学及其演化以及地幔形变特征的有力工具。本文收集了近20年来利用SKS波分裂在中国东部地区开展的各向异性研究工作,综述了该方法在中国东部的研究进展以及存在的不足和有待解决之处;同时,还通过在长江中下游地区布设的102个高质量高密度的宽频流动台站以及中国国家数字地震区域台网262个固定台站的数据,详细分析了该地区的上地幔各向异性变形特征。  相似文献   

7.
中亚造山带是显生宙以来最大的陆売增生造山带,由前寒武纪微陆块、岛弧、蛇绿混杂岩带以及大陆边缘区等不同构造单元之间相互作用而成,是研究大陆动力学的理想场所。而介质变形的方向和大小可以通过地震各向异性反映出来。因此,开展中亚造山带壳幔各向异性研究有助于我们理解该区域岩石圈变形和深部地幔过程。本文利用新的地震观测数据,使用剪切波分裂方法,获取了研究区地壳及上地幔各向异性参数,并对地幔流特征进行了数值模拟,讨论了其可能的地球动力学含义。利用中国东北地区116个流动台站和31个固定台站平均观测时间2年以上的地震数据开展了SKS分裂研究,得到了377对各向异性参数。结果表明,大致以127°E为界,东西两部分各向异性特征差异明显。其中,西部地区各向异性快波偏振方向变化范围为N143?199°E,平均N169°E,与晚中生代岩石圈伸展方向一致;各向异性延迟时间平均值约为0.8s,主要为残留在岩石圈中的古老变形。而在研究区东部,各向异性方向比较杂乱,NNW-SSE朝向的各向异性被观测到,并伴随较大的延迟时间,可能与太平洋板块撕裂回撤而产生的地幔流动有关。此外,佳木斯地块被观测到了近W-E向的各向异性快波方向,可能与太平洋板块西向俯冲有关。利用位于蒙古地区105套流动地震台站数据开展了SKS分裂研究,测量到231对各向异性参数。结果表明,蒙古地区各向异性大致以蒙古主缝合线和华北克拉通北部边缘为界,从北到南划分为3个区域:在蒙古主缝合线以北,各向异性快波方向主要呈NW-SE向,范围从N118°E至N155°E,平均N134°E,延迟时间从0.6 s到2.4 s变化,平均值为(1.4±0.4)s,其中有6个台站各向异性程度十分强烈,可能与局部地幔流有关;蒙古主缝合线以南区域,各向异性快波偏振方向介于N44°E到N103°E之间,平均N81.4°E,基本与韧性走滑断层剪切方向一致,平均延迟时间为0.8 s,可能与断裂引起剪切作用有关;而在华北克拉通北部边缘区域,各向异性快波偏振方向骤变为NNW-SSE向,推测与岩石圈在早白垩纪的伸展构造有关,为残留在岩石圈内部的化石各向异性。肯特山以南和阿巴嘎火山地区,33个台站只测量到null结果,推测与地幔热物质上涌有关。使用蒙古中南部地区69套流动地震台站数据,对接收函数Pms震相进行分裂研究,获取了1 473对地壳各向异性参数。结果表明,蒙古中南部地壳各向异性分布不均匀,在54个台站得到了NE-SW向各向异性快波偏振方向,平均值为N58°E±16°,与最大水平主应力方向和区域内主要断层走向一致,说明这部分地壳各向异性的主要成因与上地壳流体填充的微裂隙有关。而NW-SE向各向异性快波偏振方向在53个台站被观测到,各向异性方向变化范围平均N132°E±16°,与研究区大部分SKS分裂快波方向具有较好的一致性,说明下地壳造岩矿物晶格定向排列是各向异性的主要成因。利用GPS和断层第四纪滑动速率数据,计算得到了地表速度场。在简单软流圈地幔流假设下,联合地表速度场和实际测量各向异性数据,模拟了蒙古地区地幔流运动速度,结果表明蒙古下方存着两种可能的地幔流形式:在HS3热点参考系下,地幔流方向为NW向,大小约为25 mm/a;而在NNR无旋参考系下,地幔流方向为NE向,大小约为16 mm/a。  相似文献   

8.
冯力理  陈运泰  雷军 《地震学报》2014,36(6):981-996
利用非洲台阵(Africa Array)最新的地震记录,通过测量远震SKS震相的分裂参数,详细分析了非洲中东部地区地球介质各向异性可能的成因,包括随应力场变化定向排布的裂隙和岩浆透镜体,以及橄榄石晶格的定向排布等. 结果表明,现今上地幔流动导致的橄榄石晶格定向排布是其各向异性的主要成因,该结果与250 km深度的地幔流动模型一致. 对于少数台站出现的异常结果,则尝试用D″各向异性和双层各向异性模型来解释,并在此基础上讨论了D″各向异性的研究意义.   相似文献   

9.
周鹏程  雷军 《地震学报》2016,38(1):1-14
针对太平洋大型横波低速带(Large Low Shear Velocity Province, 简写为LLSVP)东部边界的D″各向异性强度的问题, 利用中美洲和南美洲部分台站的地震记录, 通过对SKS和SKKS震相进行横波分裂分析, 得到22个SKS-SKKS震相对的横波分裂结果, 其中有6个震相对存在显著差异. 对比分析震相对的横波分裂结果差异, 可以保守地估计D″各向异性. 横波分裂结果显示, 地幔最下部存在各向异性; 对D″各向异性成因的分析结果认为, 如果LLSVP边界上的地幔最下部物质存在变形以及内部存在小尺度的非均匀体, 则有助于解释这些观测, 但是本文在LLSVP边界上并没有看到大量的有差异震相对聚集. 结合前人的观测研究推测, 该研究区域下方的LLSVP及其周围地幔的边界可能不是很陡峭, 边界附近没有积累强烈的变形, 并在此基础上讨论了地幔最下部各向异性结构的研究意义.   相似文献   

10.
蒙古中南部地区地壳各向异性及其动力学意义   总被引:1,自引:1,他引:0       下载免费PDF全文
利用蒙古中南部地区布设的69套宽频带数字地震仪2011年8月—2013年7月记录的远震事件,使用时间域反褶积方法提取接收函数,并挑选高质量Pms震相,通过改进的剪切波分裂方法对研究区地壳各向异性参数进行了研究,最终获取了1473对各向异性参数.经过统计分析,有48个台站可以归纳出两个方向的各向异性,11台站得到单个方向的各向异性,而剩余10个台站各向异性方向比较发散.结果显示,各向异性在蒙古中南部地壳中呈不均匀分布,有54个台站得到了NE-SW向各向异性,快波偏振方向平均值为N58°E±16°,与最大水平主应力σHmax方向和区域内主要断层走向一致,说明这部分地壳各向异性的主要成因存在于上地壳,可能与流体填充的微裂隙有关.而NW-SE向各向异性在53个台站被观测到,各向异性方向变化范围平均N132°E±16°,与研究区大部分SKS分裂快波方向具有较好的一致性,说明下地壳成岩矿物晶体定向排列是各向异性的主要成因.研究区地壳各向异性的分层特征总体上支持岩石圈受到NE-SW向挤压的动力学模型.  相似文献   

11.
中国大陆及邻区SKS波分裂研究   总被引:12,自引:14,他引:12       下载免费PDF全文
SKS波分裂测量是研究大陆地幔的形变特征、探索大陆动力学和演化过程的重要工具. 本文对中国大陆及邻区地震台站的SKS波分裂现象进行了研究. 选用中国数字化宽频带地震台网(CB台网)和美国IRIS数据中心提供的三分量宽频带数字化地震资料,使用SC(Silver and Chan,1991)方法,得到了中国大陆及周边地区80多个台站下方上地幔各向异性参数,即快波偏振方向φ和快慢波到时差δt. 快波偏振方位在相同地块有一定的优势排列方向,大多数台站快波偏振方向都能与过去或现今大规模的构造运动得到很好的符合. 整个研究区域所得到的分裂延迟时间在0.4~2.4s之间,平均为1.2s. 根据SKS波测量得到的分裂参数,分析了该研究区域各向异性介质的特性,从而探索与岩石弹性各向异性相关的地球内部动力学过程.  相似文献   

12.
上地幔俯冲板块的动力学过程:数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
大洋板块俯冲到地幔转换带,进而可形成不同的形态:板块可以停滞在660km不连续面,抑或穿过地幔转换带进入下地幔.这些不同的俯冲模式可进一步影响到海沟的运动.为更好地理解上地幔中俯冲板片的变形行为以及俯冲过程与海沟运动之间的关系,本文通过建立一系列高精度二维热-力学自由俯冲的数值模型,揭示了俯冲板块在上地幔中的变形方式及其与地幔转换带之间的相互作用过程.模拟结果显示,在俯冲板块与地幔转换带的相互作用过程中,其动力学过程可以分为以海沟后撤主导、海沟前进主导以及稳定型海沟等三种主要动力学类型.对于年龄较老,厚度较大的俯冲板块容易形成海沟后撤型俯冲,俯冲板块停滞在660km不连续面.相反,年龄较小,塑性强度较小的板块容易形成海沟前进型俯冲,俯冲板块穿越660km不连续面.  相似文献   

13.
刘渊  薛梅 《地震学报》2021,43(1):73-83
基于DONET海底观测网的直达S波地震记录,采用波形旋转互相关方法和最小特征值最小化方法求得了日本南海海域俯冲带横波分裂快轴方向和分裂时间,获得了该俯冲带地震波的各向异性结果。结果显示:该俯冲带地震波的各向异性快轴方向基本平行于南海海槽走向,分裂时间为0.1—0.96 s。这表明:日本南海海域俯冲带各向异性来源于太平洋俯冲板块上覆地幔楔和菲律宾海俯冲板块;地幔楔各向异性产生于二维地幔楔拐角流所导致的各向异性矿物晶体的定向排列;菲律宾海俯冲板块的各向异性则产生于板块扩张时期形成的“化石各向异性”和俯冲过程中板块挠曲产生的断层;日本南海海域俯冲带大范围变化的分裂时间反映了该地区各向异性介质的强度和(或)厚度的不均匀性。   相似文献   

14.
利用我国第24次和第25次南极科学考察队于2008年2月—2010年3月南极长城站记录到的地震事件数据进行剪切波分裂研究. 选取近震事件对Sg波进行剪切波分裂计算,结果表明快波偏振方向有两个,分别为北东向和近南北向; 慢波延迟时间的范围为1.45—5.17 ms/km,平均值为3.54 ms/km.同时选取长城站记录到的远震数据SKS波震相进行剪切波分裂计算,得出上地幔快波偏振方向优势取向为北东向, 慢波延迟时间平均值为1.60 s. 剪切波分裂结果显示长城站地区地壳和上地幔具有明显的各向异性, 并显示长城站地区地壳与上地幔快波偏振方向几乎平行,表明壳幔变形的一致关系.另外,地壳和上地幔各向异性的快波偏振方向不仅与长城站附近的海沟方向平行,同时也与绝对板块的运动方向平行.该结果进一步说明了绝对板块的运动是构成上地幔各向异性的主要原因.   相似文献   

15.
青藏高原中部地壳和上地幔各向异性分析   总被引:1,自引:1,他引:0       下载免费PDF全文
张智  田小波 《地球物理学报》2011,54(11):2761-2768
对布设于青藏高原中部INDEPTH-III宽频带数字地震台阵的41个台站记录的远震体波资料所提取出的P波接收函数和SKS波形资料做偏振分析,并采用以误差为权的叠加分析方法求得每一个台站的Pms和SKS快波偏振方向和快慢波的时间延迟,获得了从拉萨块体中部,经喀喇昆仑-嘉黎断裂系和班公湖-怒江缝合带,到羌塘块体中部的地壳和...  相似文献   

16.
Polarization analysis of teleseismic data has been used to determine the XKS(SKS,SKKS,and PKS)fast polarization directions and delay times between fast and slow shear waves for 59 seismic stations of both temporary and permanent broadband seismograph networks deployed in the eastern Himalayan syntaxis(EHS)and surrounding regions.The analysis employed both the grid searching method of the minimum tangential energy and stacking analysis methods to develop an image of upper mantle anisotropy in the EHS and surrounding regions using the newly obtained shear wave splitting parameters and previously published results.The fast polarization directions are oriented along a NE-SW azimuth in the EHS.However,within the surrounding regions,the fast directions show a clockwise rotation pattern around the EHS from NE-SW,to E-W,to NW-SE,and then to N-S.In the EHS and surrounding regions,the fast directions of seismic anisotropy determined using shear wave splitting analysis correlate with surficial geological features including major sutures and faults and with the surface deformation fields derived from global positioning system(GPS)data.The coincidence between structural features in the crust,surface deformation fields and mantle anisotropy suggests that the deformation in the crust and lithospheric mantle is mechanically coupled.In the EHS,the coherence between the fast directions and the NE direction of the subduction of the Indian Plate beneath the Tibetan Plateau suggests that the lithospheric deformation is caused mainly by subduction.In the regions surrounding the EHS,we speculate that a westward retreat of the Burma slab could contribute to the curved anisotropy pattern.The Tibetan Plateau is acted upon by a NE-trending force due to the subduction of the Indian Plate,and also affected by a westward drag force due to the westward retreat produced by the eastward subduction of the Burma slab.The two forces contribute to a curved lithospheric deformation that results in the alignment of the upper mantle peridotite lattice parallel to the deformation direction,and thus generates a curved pattern of fast directions around the EHS.  相似文献   

17.
Azimuthal anisotropy in lithosphere on the Chinese mainland from observations of SKS at CDSN(郑斯华)(高原)Azimuthalanisotropyinlit...  相似文献   

18.
Over the past 10 years,the number of broadband seismic stations in China has increased significantly.The broadband seismic records contain information about shear-wave splitting which plays an important role in revealing the upper mantle anisotropy in the Chinese mainland.Based on teleseismic SKS and SKKS phases recorded in the seismic stations,we used the analytical method of minimum transverse energy to determine the fast wave polarization direction and delay time of shear-wave splitting.We also collected results of shear-wave splitting in China and the surrounding regions from previously published papers.From the combined dataset we formed a shear-wave splitting dataset containing 1020 parameter pairs.These splitting parameters reveal the complexity of the upper mantle anisotropy image.Our statistical analysis indicates stronger upper mantle anisotropy in the Chinese mainland,with an average shear-wave time delay of 0.95 s;the anisotropy in the western region is slightly larger(1.01 s)than in the eastern region(0.92 s).On a larger scale,the SKS splitting and surface deformation data in the Tibetan Plateau and the Tianshan region jointly support the lithospheric deformation mode,i.e.the crust-lithospheric mantle coherent deformation.In eastern China,the average fast-wave direction is approximately parallel to the direction of the absolute plate motion;thus,the upper mantle anisotropy can be attributed to the asthenospheric flow.The area from the Ordos block to the Sichuan Basin in central China is the transition zone of deformation modes between the east and the west regions,where the anisotropy images are more complicated,exhibiting"fossil"anisotropy and/or two-layer anisotropy.The collision between the Indian Plate and the Eurasian Plate is the main factor of upper mantle anisotropy in the western region of the Chinese mainland,while the upper mantle anisotropy in the eastern region is related to the subduction of the Pacific Plate and the Philippine Sea Plate beneath the Eurasian Plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号