首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 328 毫秒
1.
由于GRACE Follow-On双星系统等效于基线长为星间距离的一维水平重力梯度仪,因此本文基于GRACE Follow-On卫星重力梯度法开展了精确和快速反演下一代地球重力场的可行性论证研究. 研究结果表明:第一,基于GRACE Follow-On卫星重力梯度法(GFO-SGGM),利用卫星轨道参数(轨道高度250 km、星间距离50 km、轨道倾角89°、轨道离心率0.001)、关键载荷测量精度(星间距离10-6 m、星间速度10-7 m·s-1、星间加速度10-10 m·s-2、轨道位置10-3 m、轨道速度10-6 m·s-1、非保守力10-11 m·s-2)、观测时间30天和采样间隔10 s反演了120阶地球重力场,在120阶处累计大地水准面精度为9.331×10-4 m. 第二,在120阶内,利用将来GRACE Follow-On双星反演地球重力场精度较现有GRACE双星平均提高61倍,因此GRACE Follow-On卫星重力梯度法是进一步提高地球重力场反演精度的优选方法. 第三,下一代GRACE Follow-On计划较当前GRACE计划的优点如下:轨道高度更低(200~300 km)、载荷精度更高(10-7 ~10-9 m·s-1)和星间距离更短(50~100 km).  相似文献   

2.
利用东港(40°N,124°E)台站于2013年9月15—16日的OH气辉成像观测数据报告了两个重力波事件(1和2).同时,结合北京十三陵(40.3°N,116.2°E)台站的多普勒流星雷达风场数据和位于39.4°N,130.6°E位置处的SABER/TIMED卫星的温度参数分析发现,观测的两个重力波事件于2013年9月15—16日02∶00—03∶00 LT时间段,和70~110 km高度是自由传播的.利用反射线追踪方法分析表明,重力波事件1和事件2分别产生于(39.3°N,117.2°E)和(47.1°N,121.3°E).且事件1的波源位置与对流活动和大气向上向下运动过程中产生的不稳定性吻合较好.然而,通过ECMWF再分析资料和MTSAT卫星观测数据分析表明,事件2可能由对流活动或大气向上运动过程中可能产生的不稳定性导致.利用MERRA自地面到约70 km高度的风场数据分析表明,观测的重力波事件1和事件2的水平相速度分别是83.5 m·s-1(事件1)和80.1 m·s-1(事件2),均大于低层-中层大气风速-10~45 m·s-1.因此,观测的两个重力波事件是可能从低层大气传播到中层-低热层大气的.  相似文献   

3.
应用超声波反射-透射法,在最高压力为1.0 GPa(室温),最高温度为700℃(1.0 GPa)的条件下对新疆东准噶尔地区的卡拉麦里花岗岩带和野马泉岩体的典型花岗岩类岩石(碱长花岗岩、碱性花岗岩、花岗闪长岩、二长花岗岩和石英闪长岩)的纵波速度(VP)和横波速度(VS)进行了测量.结果显示,在常温、压力0.4~1.0 GPa条件下,东准噶尔地区花岗岩类岩石的VP和VS均随压力呈线性增加,说明在这个压力段岩石中的微裂隙已基本闭合.室温、1.0 GPa时花岗岩类岩石的VP是5.79~6.84 km·s-1,VS是3.26~3.85 km·s-1.依据压力与VP及压力与VS的线性关系,拟合得到常温常压下花岗岩类岩石的纵波和横波压力系数分别是0.1568~0.4078 km/(s·GPa)和0.0722~0.3271 km/(s·GPa),VP0和VS0分别是5.62~6.47 km·s-1和3.15~3.75 km·s-1.恒压1.0 GPa、室温到700℃条件下,花岗岩类岩石的VP和VS均随温度的升高呈线性降低,温度系数分别为(-3.41~-4.96)×10-4 km/(s·℃)和(-0.88~-3.22)×10-4 km/(s·℃).利用实验获得的花岗岩类岩石的VP0、VS0及温度系数和压力系数,结合东准噶尔地区的地热资料,建立了VP和VS随深度变化的剖面.将获得的VP和VS-深度剖面与该区地球物理探测结果对比,发现东准噶尔地区的碱长花岗岩、碱性花岗岩、二长花岗岩和部分花岗闪长岩的VP和VS与该区上地壳速度吻合很好,同时这几种岩石的平均泊松比也与上地壳泊松比一致,因此我们认为这几种类型的岩石是该区上地壳的重要组成部分.另外,石英闪长岩的VP和VS均符合中地壳的速度,可能为中地壳中的一种岩石.  相似文献   

4.
本文利用2013年6月至2015年10月北京南苑观象台两年多午后臭氧探空资料,初步分析了北京城区大气混合层内臭氧浓度的垂直分布规律以及典型天气条件下大气边界层臭氧的变化特征.主要结果有:(1)季节平均而言,地表至对流层中部(8 km)的臭氧浓度在夏季最高,冬季最低,相差50~130 μg·m-3,最大差异在边界层.总体而言,对流层臭氧浓度随高度有比较缓慢的增加,但是边界层内臭氧浓度的垂直结构随季节有比较大的差异:夏季混合层中部存在一个臭氧浓度极大值,这与夏季比较强的光化学生成臭氧有关;而在冬季地面臭氧浓度很低,平均值小于40 μg·m-3,说明冬季地面是臭氧很强的汇.(2)臭氧浓度季节内变率的季节差异也十分明显,夏季最大、冬季最小.季节内变率在从边界层向自由对流层过渡区域最小(夏季为24 μg·m-3,冬季仅为10 μg·m-3),在边界层内变率较大,夏季可达64 μg·m-3(冬季为30 μg·m-3),这也说明边界层化学过程明显影响臭氧浓度的变化.(3)我们从所有白天样本中严格筛选了部分混合层样本,并把臭氧浓度在由混合层向自由大气过渡时的垂直分布分成了三类,即臭氧浓度随高度增大(Ⅰ型)、减小(Ⅱ型)以及基本稳定不变(Ⅲ型);臭氧垂直结构类型有明显的季节特征,夏季主要是Ⅱ型,而冬季则以Ⅰ型为主.(4)此外,我们还针对一些典型天气过程(强风、静稳雾天和PM2.5污染)边界层内臭氧的变化特征进行了分析,结果表明:强风切变产生的机械对流引起的充分混合,有利于高层臭氧向低层输送,使得混合层内臭氧浓度的垂直梯度明显减小,同时混合层高度较高,达3 km以上;在高湿度静稳天气控制下,大气混合层较稳定,对北京上空污染物的垂直扩散十分不利:颗粒物浓度升高,削弱到达近地层的太阳辐射,从而降低臭氧的生成效率,混合层内臭氧浓度与混合层厚度都处于较低水平.  相似文献   

5.
利用中科院国家空间科学中心廊坊观测站(40.0° N,116.3° E)钠荧光多普勒激光雷达观测数据对钠原子的重力波输送和湍流输送进行分析,利用流星雷达观测数据对钠原子的环流输送进行分析,结果显示重力波动力学输送、重力波化学输送、湍流混合输送及环流输送对钠原子输送贡献的量级相当.其中重力波动力学输送在85~100 km整体为负向,在90~95 km占主要地位的平均输送速度为-3.1 cm·s-1;重力波化学输送在85~94 km为正向,94~100 km基本为负向,在85~90 km占主要地位的平均输送速度为3.3 cm·s-1;湍流混合输送在85~95 km为负向,95~100 km为正向,在85~90 km占主要地位的平均输送速度为-4.9 cm·s-1;85~100 km环流输送整体为正向,平均输送速度为1 cm·s-1.88~95 km四种动力学输送产生的平均合速度为-1 cm·s-1,负向的垂直输送特征对钠原子"源""汇"平衡十分重要.本文结果可为不同大气圈层之间重力波产生的能量物质交换机制研究和圈层之间的耦合过程研究提供观测事实参考,为大气化学成分的垂直输送机制建模提供参数化依据.  相似文献   

6.
基于全天空F-P干涉仪反演热层垂直中性风   总被引:4,自引:0,他引:4       下载免费PDF全文
胡国元  艾勇  张燕革  刘珏  顾健 《地球物理学报》2014,57(11):3695-3702
由于测量与计算的难度,对热层垂直中性风的观测还很不够,这影响了人们对热层及热层-电离层耦合的认识.本文基于全天空法布里-珀罗干涉仪(FPI)对热层风场的观测,提出了一种反演垂直中性风的方法.利用该方法,对北极黄河站全天空FPI观测数据进行了垂直中性风的反演计算,结果表明,高热层与低热层的垂直风平均幅值分别在40 m·s-1和15 m·s-1,且垂直风日变化表现出明显的时间演变特性,且与地磁ap指数的变化有一定的相关性,在地磁活动强烈时,低热层垂直风会出现高达100 m·s-1的扰动,高热层甚至会达到300 m·s-1的扰动,这些特征与其他学者的观测结果相一致.本文方法不需要假设垂直风均值为零,也不用限制FPI的观测方位,可用于垂直风的反演.  相似文献   

7.
航空重力傅里叶基追踪低通滤波方法研究   总被引:2,自引:0,他引:2       下载免费PDF全文
航空重力测量受到各种各样的高频噪声干扰,因此,低通滤波是提取重力信号的重要环节,其关键在于设计性能优越的低通滤波器.目前航空重力测量中常用FIR(Finite Impulse Response)低通滤波方法存在明显的滤波边缘效应,导致不得不舍弃边缘部分数据.针对这一问题,本文引入一种可以有效抑制边缘效应的新方法——傅里叶基追踪低通滤波方法(Fourier Basis Pursuit Low Pass Filter,FBPLPF).该方法通过基追踪准则,选择全局优化,采用凸优化中的内点算法,将低频信号挤压在低频上,实现低频信号与高频信号的有效分离,能够有效减少有限时间序列造成的谱污染和谱泄漏.最后利用仿真实验和实测数据对该方法进行了验证,均方根误差(RMS)东西测线为0.7×10-5 m·s-2,南北测线为1.4×10-5 m·s-2,与FIR低通滤波方法舍弃边缘数据后统计的均方根误差相当.表明该方法可以不舍弃或者舍弃少量边缘数据,提高航空重力数据的利用率.  相似文献   

8.
利用日本GPS网探测2011年Tohoku海啸引发的电离层扰动   总被引:2,自引:1,他引:1       下载免费PDF全文
海平面的海啸波会产生大气重力波进而引发电离层扰动.本文利用日本GPS总电子含量数据来探测2011年3月11日Tohoku海啸引发的电离层扰动.观测结果表明,在日本上空的电离层中存在两种重力波信号,分别由海平面的海啸波以及地震破裂过程产生.地震产生的电离层重力波分布在震中周围(包括海洋上空以及远离海洋的区域),而海啸引发的电离层重力波主要分布在海洋上空.地震产生的电离层重力波具有不同的水平速度,包括约210 m·s-1以及170 m·s-1,其频率为1.5 mHz;而海啸引发的电离层重力波水平速度快于前者,约为280 m·s-1,其频率为1.0 mHz.此外,海啸引发电离层重力波与海平面上的海啸波有相似的水平速度、方向、运行时间、波形以及频率等传播特征.本文的研究将电离层中的海啸信号与地震信号区分开来,进一步确认电离层对海啸波的敏感性.  相似文献   

9.
北极地区低平流层惯性重力波的观测研究   总被引:1,自引:0,他引:1       下载免费PDF全文
南极地区重力波活动有大量报道,相对而言,北极地区重力波的研究还很少.本文利用极区Ny-Alesund站点(78.9°N,11.9°E)无线电探空仪从2012年4月1日到2017年3月31日共5年的观测数据,统计分析了北极地区低平流层惯性重力波的特征.观测显示,月平均纬向风在20 km以下盛行东向风,再随着高度增加,逐渐呈现出半年振荡现象.对流层顶高度在5~13 km范围内变化,其月平均高度显示出年循环,最高出现在夏季,约为10 km,最低出现在冬季,约为8.5 km.对流层和低平流层月平均温度都显示出明显的年周期变化,这与中低纬度观测结果有所不同.结合Lomb-Scargle谱分析和矢端曲线方法,估算了准单色惯性重力波参数.个例研究表明,低平流层惯性重力波呈现出远离源区的自由传播性质.统计结果显示,惯性重力波的水平和垂直波长分别集中在50~450 km和1~4 km范围内,本征频率集中在1~2.5倍惯性频率间,这些值都比中低纬度观测值稍小.垂直方向本征相速度主要集中在-0.3~0 m·s-1,而纬向和经向本征相速度集中在-40~40 m·s-1之间.在5年的观测中,大约91.5%的惯性重力波向上传播.在冬季和早春,由于极地平流层极涡活动,激发出向下传播的惯性重力波,因此,向下传播的比例上升到相应月份的20%左右.由于低层大气盛行的东向风的滤波效应,低平流层大部分惯性重力波向西传播.波能量呈现出明显的年周期变化,最大值在冬季、最小值在夏季,与北半球中低纬度观测结果一致,表明北半球重力波活动普遍冬季强、夏季弱.  相似文献   

10.
地震S波速度是防震减灾中场地分类、强地面震动模拟建模等的重要参数.地震背景噪声成像方法可以重建地下浅层三维结构以及探测浅层速度结构变化,为页岩气开采提供参考,有效规避地震灾害风险.本文收集了2015年11月至2016年2月间四川威远地区50个流动台站记录到的垂直分量连续波形记录,利用波形互相关提取2~6 s的基阶Rayleigh波经验格林函数,采用一维地壳结构模型拟合相速度频散曲线,获得了该区域近地表5 km以内的三维S波速度模型.结果表明,威远地区深度2 km以内的S波速度为2.0~2.7 km·s-1;2.0~5.0 km深度的S波速度横向分布不均匀,西北地区大于2.7 km·s-1,东南地区在2.3~2.8 km·s-1之间,分别与背斜构造和较厚的盆地沉积层相对应.3个剖面图均表明S波速度随着深度的增加而逐渐增大,并且在台站S29附近的页岩气田钻井底部与2016年1月7日四川威远ML3.9地震震源位置较为接近,均处于松散的沉积盖层与较为坚硬的花岗岩基底的分界处,推测它们之间可能存在一定的联系.  相似文献   

11.
HWM07模式风场在高度60~100km的精度及建模初步研究   总被引:1,自引:0,他引:1       下载免费PDF全文
HWM07模式是一个应用广泛的国际标准参考大气风场模式,其在航天飞行器的设计阶段具有重要作用.因此,研究该模式风场精度具有重要意义,本文以廊坊中频雷达的风场资料(2014—2016年)为基准,利用偏差、绝对差、相关系数、相对偏差和Lomb-Scargle周期图方法,研究HWM07模式风场在高度60~100km的精度,最后,对本文建立的60~100km风场预报模型(UV_(DerM)模型)精度进行分析.结果表明,在高度60~100km范围内,(1)HWM07模式的纬向风偏差、绝对差、相关系数、相对偏差的平均值分别为14.0039 m·s-1、34.4750 m·s-1、0.1832、-75.4822%,经向风偏差、绝对差、相关系数、相对偏差的平均值分别为-2.0019m·s-1、25.3689m·s-1、0.1442、-88.9980%;经向风、纬向风的统计特征均与高度、季节有密切关系;(2)Lomb-Scargle周期图结果表明,中频雷达、HWM07模式风场在同一高度层显著(通过90%显著性检验)含有的波周期及功率谱存在较明显差异,不同高度、不同季节显著含有的波周期和功率谱也存在明显差异;(3)在高度86~92km,准全日潮汐波、准半日潮汐波分别在冬季、夏季的HWM07模式风场变化特征中为主要作用,而对中频雷达风场变化特征起主要作用的大气波动特征与高度、季节有关;(4)相对于HWM07模式风场,由UVDerM模型得到的纬向风更接近实况资料,但经向风无改进效果.  相似文献   

12.
孟加拉湾夏季风爆发的判断指标及其年际特征   总被引:1,自引:0,他引:1       下载免费PDF全文
晏红明  孙丞虎  王灵  李蕊  金燕 《地球物理学报》2018,61(11):4356-4372
利用高低层大气环流、OLR(向外长波辐射)、CMAP降水、SST(海表温度)等资料分析了孟加拉湾地区3—5月多年气候平均大气环流及不同要素的演变特征,定义了一个新的孟加拉湾夏季风(BOBSM,下同)爆发指标为孟加拉湾地区(5°N—15°N,90°E—97.5°E)850 hPa和200 hPa纬向风区域平均的变化同时满足U850 > 3 m·s-1和U200 < -5 m·s-1,并持续5天的第一天即作为BOBSM爆发日期.该季风指数有明确的天气学意义,可以反映孟加拉湾低层西南风持续稳定和南亚高压在青藏高原建立早晚的特征.文章进一步分析了BOBSM爆发的年际特征及其前兆海洋信号特征,结果表明:1981—2010年BOBSM爆发的平均日期为5月10日,季风爆发有显著的年际波动,爆发最早在1999年(4月11日)和最晚在1968年(6月1日),年代际尺度上表现为由爆发偏晚至偏早的变化趋势;BOBSM爆发早(晚)与热带印度洋地区850 hPa的越赤道气流和西风异常加强(减弱),以及200 hPa青藏高原南亚高压的季节性建立偏早(晚)等密切联系;前期冬季赤道西太平洋的海温冷(暖)变化对BOBSM爆发早(晚)有很好的指示意义,前期冬季海温偏高(低)有利于季风偏早(晚),其影响的主要途径是通过热源变化激发纬向垂直环流及其热带印度洋和太平洋低层环流异常,进而影响季风爆发早晚.  相似文献   

13.
胡国元  艾勇  张燕革  单欣  顾健 《地球物理学报》2014,57(11):3688-3694
MERINO是沿120°E/60°W子午圈的全球联网观测项目,热层中性风是其中一个十分重要的观测参数.本文介绍了武汉大学扫描式F-P干涉仪(SFPI)及其在MERINO第一轮观测中的结果,并与同站点的流星雷达在98 km高度上的测风数据进行了验证,分析表明两台设备的吻合性很好,SFPI风速测量的误差分别为8 m·s-1(557.7 nm)和7.8 m·s-1 (630.0 nm).本文对地基扫描式FPI的误差做了详细分析,结果表明在FPI仪器设计之初,就需要考虑标准具通光孔径D和成像物镜焦距f的合理组合,在目前CCD和标准具规格的限制下,增加f会提高测风精度,但会牺牲通光量,可通过设置CCD为Binning读出模式来提高灵敏度.在FPI进行风场观测时,要对设备工作的环境温度进行控制,特别是控制标准具的温度漂移.FPI的测风精度可以理论推导,但实际测风误差还与反演算法、元器件的加工和安装精度有关,国际通用的误差评价方法是用统计偏差来表示.  相似文献   

14.
为探索断层岩石摩擦特性对于断层力学性质的影响,我们采集了龙门山汶茂断裂韧性剪切带中的富含层状硅酸盐矿物的糜棱岩样品进行了水热条件下摩擦滑动实验研究.实验在三轴压机之上完成,实验温度为100~600℃,有效正压力100MPa,孔隙水压分别为30MPa和130MPa.为获得摩擦滑动的稳定性参数(a-b),剪切滑移速率在1.22μm·s-1,0.244μm·s-1和0.0488μm·s-1之间切换.实验发现在200~500℃的温度范围内,摩擦系数随着温度的增加而显著增大(约0.56~0.72).在200~300℃范围内,随温度的升高糜棱岩的摩擦滑动表现出由稳定的速度强化向不稳定速度弱化转变的趋势.在有效正压力不变的情况下,孔隙水压的增大会促进糜棱岩的摩擦滑动在500~600℃温度范围内由不稳定的速度弱化向稳定的速度强化的转变.实验给出的断层在原地深度处的脆性和塑性变形机制的转变,有助于理解断层深部的地震成核机制以及成核的温压条件.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号