首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A three‐dimensional, time‐dependent hydrodynamic and salinity model was applied to the Danshuei River estuarine system and adjacent coastal sea in Taiwan. The model forcing functions consist of tidal elevations along the open boundary and freshwater flows from the main stem and tributaries in the Danshuei River system. The bottom roughness height was calibrated and verified with model simulation of barotropic flow, and the turbulent diffusivities were calibrated through comparison of time‐series of salinity distributions. The overall model verification was achieved with comparisons of residual current and salinity distribution. The model simulation results are in qualitative agreement with the available field data. The model was then used to investigate the tidal current, residual current, and salinity patterns under the low freshwater flow condition in the modelling domain. The results reveal that the extensive intrusion of saline water imposes a significant baroclinic forcing and induces a strong residual circulation in the estuary. The downriver net velocity in the upper layer increases seaward despite the enlargement of the river cross‐section in that direction. Strong residual circulation can be found near the Kuan‐Du station. This may be the result of the deep bathymetric features there. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
A 3-D, time-dependent, baroclinic, hydrodynamic and salinity model was implemented and applied to the Danshuei River estuarine system and the adjacent coastal sea in Taiwan. The model forcing functions consist of tidal elevations along the open boundaries and freshwater inflows from the main stream and major tributaries in the Danshuei River estuarine system. The bottom friction coefficient was adjusted to achieve model calibration and verification in model simulations of barotropic and baroclinic flows. The turbulent diffusivities were ascertained through comparison of simulated salinity time series with observations. The model simulation results are in qualitative agreement with the available field data.  相似文献   

3.
Transport time scales are key parameters for understanding the hydrodynamic and biochemical processes within estuaries. In this study, the flushing and residence times within the Arvand River estuary have been estimated using a two‐dimensional hydrodynamic model called CE‐QUAL‐W2. The model has been calibrated and verified by two different sets of field data and using the k‐ε vertical eddy diffusivity scheme. Flushing time has been estimated using different methods such as the tidal prism and fraction of freshwater methods. Moreover, residence times have been investigated using pulse residence time, estuarine residence time and remnant function approaches. The results have shown that different methods yield different time scales, and freshwater inflow has the greatest impact upon estimation of residence time, whereas tidal circulation hardly contributes to residence time at all. It has also been shown that the neap‐spring circulation and start phase of simulations have negligible effects on the Arvand's time scales. The investigation of bathymetry showed that two sills of the estuary tend to significantly increase residence time. Understanding the applicability of these time scales and their estimation approaches helps us to evaluate the water quality management of estuaries. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Wen‐Cheng Liu 《水文研究》2005,19(20):4039-4054
A vertical (laterally integrated) two‐dimensional numerical model was applied to study the hydrodynamic characteristics, salt‐water intrusion and residual circulation in the Danshuei River estuarine system. The cross‐sectional profiles measured in 2001 and 1990 respectively represent the conditions after and before channel regulation in the Keelung River. The model was re‐verified with the available hydrological data measured in 2001. Detailed model re‐verification has been conducted with water surface elevations, tidal current, and salinity distributions measured. The overall performance of the model is in qualitative agreement with the available field data. The model was then used to investigate the change in tidal ranges, salt‐water intrusion, and residual circulation as a result of channel regulation in the Keelung River. The model simulations indicate that more tidal energy propagates into the estuarine system before channel regulation because of the substantial increase in river cross‐sections. The residual circulations before channel regulation are greater than those after channel regulation and result in the limits of the salt intrusion before channel regulation being extended farther inland than those after channel regulation. This may show that channel regulation for flood control in the Keelung River did not contribute to the expansion of the mangrove areas and the disappearance of freshwater marshes at the Kuan‐Du wetlands. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Using the Taw Estuary as an example, data routinely collected by the Environment Agency for England and Wales over the period 1990-2004 were interrogated to identify the drivers of excessive algal growth. The estuary was highly productive with chlorophyll concentrations regularly exceeding 100 μg L−1, mostly during periods of low freshwater input from the River Taw when estuarine water residence times were longest. However, algal growth in mid estuary was often inhibited by ammonia inputs from the adjacent sewage treatment works. The reported approach demonstrates the value of applying conventional statistical analyses in a structured way to existing monitoring data and is recommended as a useful tool for the rapid assessment of eutrophication. However, future estuarine monitoring should include the collection of dissolved organic nutrient data and targeted high temporal resolution data because the drivers of eutrophication are complex and often very specific to a particular estuary.  相似文献   

6.
Wenrui Huang  M. Spaulding 《水文研究》2002,16(15):3051-3064
Residence time of an estuary can be used to estimate the rate of removal of freshwater and pollutants from river inflow. In this study, a calibrated three‐dimensional hydrodynamic model was used to determine residence time in response to the change of freshwater input in Apalachicola Bay. The bay is about 40 km long and 7 km wide, with an average 3 m water depth. Through hydrodynamic model simulations, the spatial and temporal salinity and the total freshwater volume in the bay were calculated. Then the freshwater fraction method was used to estimate the residence time. Results indicate that the residence time in Apalachicola Bay typically ranges between 3 and 10 days for the daily freshwater input ranging from 177 m3/s to 4561 m3/s. Regression analysis of model results shows that an exponential regression equation can be used to correlate the estuarine residence time to changes of freshwater input. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
Conceptual models of circulation theorise that the dominant forces controlling estuarine circulation are freshwater discharge from the riverine section (landward), tidal forcing from the ocean boundary, and gravitational circulation resulting from along-estuary gradients in density. In micro-tidal estuaries, sub-tidal water level changes (classified as those with periods between 3 and 10 days) with amplitudes comparable to the spring tidal range can significantly influence the circulation and distribution of water properties. Field measurements obtained from the Swan River Estuary, a diurnal, micro-tidal estuary in south-western Australia, indicated that sub-tidal water level changes at the ocean boundary were predominantly from remotely forced continental shelf waves (CSWs). The sub-tidal water levels had maximum amplitudes of 0.8 m, were comparable to the maximum tidal range of 0.6 m, propagated into the estuary to its tidal limit, and modified water levels in the whole estuary over several days. These oscillations dominated the circulation and distribution of water properties in the estuary through changing the salt wedge location and increasing the bottom water salinity by 7 units over 3 days. The observed salt wedge excursion forced by CSW was up to 5 km, whereas the maximum tidal excursion was 1.2 km. The response of the residual currents and the salinity distribution lagged behind the water level changes by ∼24 h. It was proposed that the sub-tidal forcing at the ocean boundary, which changed the circulation, salinity, and dissolved oxygen in the upper estuary, was due to a combination of two processes: (1) a gravity current generated by a process similar to a lock exchange mechanism and (2) amplified along-estuary density gradients in the upper estuary, which enhanced the gravitational circulation in the estuary. The salt intrusions under the sub-tidal forcing caused the rapid movement of anoxic water upstream, with significant implications for water quality and estuarine health.  相似文献   

8.
A laterally averaged two-dimensional numerical model is used to simulate hydrodynamics and cohesive sediment transport in the Tanshui River estuarine system. The model handles tributaries as well as the main stem of the estuarine system. Observed time series of salinity data and tidally averaged salinity distributions have been compared with model results to calibrate the turbulent diffusion coefficients. The overall model verification is achieved with comparisons of residual currents and salinity distribution. The model reproduces the prototype water surface elevation, currents and salinity distributions. Comparisons of the suspended cohesive sediment concentrations calculated by the numerical model and the field data at various stations show good agreement. The validated model is applied to investigate the tidally averaged salinity distributions, residual circulation and suspended sediment concentration under low flow conditions in the Tanshui River estuarine system. The model results show that the limit of salt intrusion in the mainstem estuary is located at Hsin-Hai bridge in Tahan Stream, 26 km from the River mouth under Q75 flow. The null point is located at the head of salt intrusion, using 1 ppt isohaline as an indicator. The tidally averaged sediment concentration distribution exhibits a local maximum around the null point.  相似文献   

9.
Freshwater flocculation of suspended sediments in the Yangtze River, China   总被引:3,自引:1,他引:2  
Leicheng Guo  Qing He 《Ocean Dynamics》2011,61(2-3):371-386
This study focuses on suspended sediments and in situ flocculation in the Yangtze River, with the goal of improving our understanding of the relationship between freshwater and estuarine flocculation. A field survey with state-of-the-art instruments was carried out in January 2008 in the reach from downstream of the Three Gorges Dam to the estuary. The data show that in situ floc mean diameters range from 22 to 182???m in the river, whereas the median dispersed grain sizes are 4.4?C11.4???m. This demonstrates that flocculation is an important process during the transport of suspended sediments along the river. The flocculation characteristics, suspended sediment concentration and dispersed grain sizes all vary longitudinally in the main stream of the Yangtze River. Biochemical factors are likely be more significant in the freshwater flocculation than in the estuary, where hydrodynamics and biochemical factors are both important. Flocculation is found in the freshwater river, in the estuary and in coastal waters, which indicates that dynamic break-up/reflocculation processes take place during the suspended sediment transport. The freshwater flocs may behave as parent flocs to the estuarine flocculation. This study enhances our understanding of flocculation from estuarine and coastal areas to fresh river systems and provides insights into the effects of input of riverine flocs to the estuarine flocculation and into the sources and fate of flocs.  相似文献   

10.
The southern Chilean region between the Boca del Guafo passage and Estero Elefantes contains one of the estuarine zones with the greatest freshwater influence on the planet. At the surface, plumes of freshwater from the fjord heads to their mouths, emptying into the Moraleda–Costa–Elefantes channel system and then the coastal ocean. The influence of this freshwater on the region’s estuarine dynamics, coastal ecology, and biogeochemical processes has only recently begun to be elucidated.Using hydrographic data from the CIMAR-Fiordos cruises (1998–2001), this study quantifies the equivalent height of freshwater, emphasizing the role it plays in the potential energy anomaly and front locations, as well as its relationship with river discharges. Using a criterion of equivalent height of freshwater >15% (density <1021 kg/m3 and salinity <28), the brackish layer was found to be 1–15 m thick (except in Estero Elefantes), with horizontal extensions on the order of 100 km. The limits of this layer tended to coincide with frontal zones having potential energy anomaly gradients >0.005 J/m4. The frontal zones were located in the extreme southeast of Jacaf Channel, at the head of Ventisquero Sound, in the central part of the Puyuguapi and Moraleda channels, and at the head and mouth of Aysén Fjord. The equivalent height of freshwater and potential energy anomaly showed a good correlation with the accumulated (5-day) river discharges (r2=0.87), which were greatest toward the fjord heads in spring. The brackish surface water had short residence times (3.5 days) in Aysen Fjord, unlike the deep layer, which other authors report to have a longer residence time (near 1 year).  相似文献   

11.
While recent studies have revealed that tidal fluctuations in an estuary significantly affect groundwater flows and salt transport in the riparian zone, only seawater salinity in the estuary has been considered. A numerical study is conducted to investigate the influence of estuarine salinity variations on the groundwater flow and salt dynamics in the adjacent aquifer to extend our understanding of these complex and dynamic systems. Tidal salinity fluctuations (synchronous with estuary stage) were found to alter the magnitude and distribution of groundwater discharge to the estuary, which subsequently impacted on groundwater salinity patterns and residence times, especially in the riparian zone. The effects of salinity fluctuations were not fully captured by adopting a constant, time-averaged estuarine salinity. The modelling analysis also included an assessment of the impact of a seasonal freshwater flush in the estuary, similar to that expected in tropical climates (e.g. mean estuary level during flood significantly greater than average), on adjacent groundwater flow and salinity conditions. The three-month freshwater flushing event temporarily disrupted the salt distribution and re-circulation patterns predicted to occur under conditions of constant salinity and tidal water level fluctuations in the estuary. The results indicate that the salinity variations in tidal estuaries impact significantly on estuary–aquifer interaction and need to be accounted for to properly assess salinity and flow dynamics and groundwater residence times of riparian zones.  相似文献   

12.
Hexachlorocylcohexanes (HCHs) are pesticides that persist in air and water of the Northern hemisphere. To understand the spatial and temporal variability in HCH levels in estuarine surface waters we measured concentrations of two HCH isomers (-HCH and γ-HCH) at six sites in the York River estuary at bimonthly intervals for a year. Bacterial abundance and activity were also monitored using acridine orange direct counts and uptake of tritiated substrates, respectively. -HCH was consistently observed to be significantly higher in marine water compared to river water entering the estuary, suggesting that the Chesapeake Bay or Atlantic Ocean is a larger source of this compound to the York River estuary compared to riverine input. Moreover, following periods of high freshwater flow into the estuary during spring and early summer, both - and γ-HCH mixing curves indicated an additional source of these pollutants to the estuary such as land-derived runoff or groundwater discharge. In contrast, during low freshwater flow (late summer and fall) the estuary was a sink for HCHs, with γ-HCH more rapidly removed from the estuary than -HCH. During the period of low freshwater flow, concentrations of both - and γ-HCH were negatively correlated with bacterial activity. Bacterial activity as opposed to abundance appears to control HCH degradation in estuarine surface waters.  相似文献   

13.
This research reconstructed the Late Quaternary salinity history of the Pearl River estuary, China, from diatom records of four sedimentary cores. The reconstruction was produced through the application of a diatom–salinity transfer function developed based on 77 modern surface sediment samples collected across the estuary from shallow marine environment to deltaic distributaries. The statistical analysis indicates that the majority of sediment samples from the cores has good modern analogues, thus the reconstructions are reliable. The reconstructed salinity history shows the older estuarine sequence formed during the last interglacial was deposited under similar salinity conditions to the younger estuarine sequence, which was formed during the present interglacial. Further analysis into the younger estuarine sequence reveals the interplays between sea level, monsoon‐driven freshwater discharge, and deltaic shoreline movement, key factors that have influenced water salinity in the estuary. In particular, a core from the delta plain shows the effects of sea‐level change and deltaic progradation, while cores from the mouth region of the estuary reveal changes of monsoon‐driven freshwater discharge. This study demonstrates the advantages of quantitative salinity reconstructions to improve the quality of reconstruction and allow direct comparison with other quantitative records and the instrumentally observed values of salinity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The increase of salt intrusion in recent years in the Modaomen Estuary, one of the estuaries of the Pearl River Delta in China, has threatened the freshwater supply in the surrounding regions, especially the cities of Zhongshan, Zhuhai in Guangdong Province and Macau. A numerical modeling system using nested grids was developed to investigate the salt transport mechanisms and the response of salt intrusion to changes in river discharge and tidal mixing. The steady shear transport induced by estuarine circulation reaches maximum and minimum, respectively, during neap and spring tides, while the tidal oscillatory transport shows an opposite pattern. The net transport is landward during neap tides and seaward during spring tides. The salt intrusion length responding to constant river discharges generally follows a power law of ?0.49. The dependence of salt intrusion on tidal velocity is less than that predicted by theoretical models for exchange flow dominated estuaries. The response of salt intrusion to change in tidal velocity depends largely on river discharge. When river flow increases, the impact of tidal velocity increases and the phase lag of response time decreases. The asymmetries of salt intrusion responding to increasing and decreasing river discharge (tidal velocity) are observed in the estuary.  相似文献   

15.
Hong Kong is surrounded by estuarine, coastal and oceanic waters. In this study, monthly averages over a 10 year time series of salinity, temperature, chlorophyll a (chl a), dissolved oxygen (DO), dissolved inorganic nitrogen (DIN), silicate (SiO4) and orthophosphate (PO4) at three representative stations around Hong Kong were used to examine if excess nitrogen in estuarine influenced waters is due to P limitation. The monthly distribution clearly shows the dominant influence of the seasonal change in river discharge in the Pearl River estuary and adjacent coastal waters. In winter, the river discharge is small and more oceanic waters are dominant and as a result, salinity is high, and chlorophyll and nutrients are low. In summer, when the river discharge is high, salinity decreases and nutrients increase. DIN is very high, reaching 100 μM in the estuary. This indicates over enrichment of nitrogen relative to P and consequently there is an excess of N in coastal waters of Hong Kong. P remains low (∼1 μM) and can potentially limit both phytoplankton biomass and N utilization which was demonstrated in field incubation experiments. P limitation would result in excess N being left in the estuarine influenced waters south of Hong Kong. Phosphate concentration is lower in the Pearl River estuary than in many other eutrophied estuaries. Therefore, this relatively low PO4 concentration should be a significant factor limiting a further increase in the magnitude of algal biomass and in the degree of eutrophication in the Pearl River estuary. The export of the excess N offshore into the northern South China Sea may result in an increase in the size of the region that is P limited in summer.  相似文献   

16.
Surface waters collected along the salinity gradient of the Hudson River estuary in four cruises between 1995 and 1997 were size-fractionated into particulate (>0.45 μm), ‘dissolved' (<0.45 μm), colloidal (10 kDa, 0.45 μm) and low molecular weight (<10 kDa) phases. Dissolved Cd concentrations (range: 0.11–1.19 nM) in surface waters of the estuary appear to have decreased fourfold (from an average of 2.36 to 0.61 nM) over a 23-year period, since the initial analysis of samples collected in the 1970s by Klinkhammer and Bender [Estuar. Coastal Shelf Sci. 12 (1981) 629–643]. This interannual decline reflects improvement in sewage treatment and the elimination of industrial Cd sources to the Hudson River estuary. In contrast, dissolved Mn levels (range: 0.033–1.46 μM) have remained relatively constant over the same period of time, suggesting that anthropogenic sources have very limited impact on Mn concentrations in the estuary. The concentrations of both Cd and Mn appeared to strongly depend on the season and/or river discharge. The highest concentrations were detected under low freshwater discharge, implying that limited hydraulic flushing allows a build-up of metals in the water column. Although the decline in Cd levels within the estuary reflects a reduction in the magnitude of anthropogenic inputs, mass balance estimates indicated that current sources of Cd to the estuary include sewage discharges (in the lower estuary around Manhattan) and diagenetic remobilization from industrial Cd deposited in sediments nearly 2 decades ago (in the upper estuary near Foundry Cove). Moreover, under low river discharge, the sources considered in our model (sewage, riverine input, atmospheric deposition, and benthic fluxes) could account for no more than 60% of the Cd exported from the lower estuary to the ocean. This suggests that undefined sources such as ground water and inputs from other watersheds (e.g., Long Island Sound and Newark Bay) may potentially influence the water quality of the New York Harbor. The size-fractionated metal concentrations indicated that most of the traditionally defined ‘dissolved' Cd and Mn consisted of <10 kDa molecular weight species. High molecular weight colloidal species of Mn accounted for about 50% of the dissolved fraction at the riverine end-member and <5% at intermediate and high salinities. Colloidal Cd accounted for <6% of the dissolved phase throughout the estuary. Unlike the non-conservative excess (relative to ideal dilution of river water and seawater) of dissolved Mn observed along the estuary, high molecular weight colloidal Mn appeared to be removed at the head of the estuary. The small contribution of colloidal Cd and Mn to the ‘dissolved' phase suggests that remobilization from suspended particulate phases and/or from sediments occurs through the formation of small molecular weight species.  相似文献   

17.
The results of two surveys of the distributions of dissolved and suspended particulate phthalate esters in the River Mersey Estuary are reported. Significant contamination of both the water and the suspended particulate fraction with phthalate esters has been measured. Statistical analysis of the results indicates that dissolved phthalate esters behave relatively conservatively within the estuary and that their probable source is the numerous wastewater discharges in the upper estuary. Particulate associated phthalate esters show few consistent trends and it is suggested that they may be associated with specific fractions within the suspended particulate material.  相似文献   

18.
The Bras d’Or Lakes (BdOL) are a large, complex and virtually land-locked estuary in central Cape Breton Island of Nova Scotia and one of Canada’s charismatic ecosystems, sustaining ecological and cultural communities unique in many aspects. The BdOL comprise two major basins, many deep and shallow bays, several narrow channels and straits and a large, geologically complex watershed. Predictive knowledge of the water movement within the estuary is a key requirement for effective management and sustainable development of the BdOL ecosystem. A three-dimensional (3D) primitive-equation ocean circulation model is used to examine the estuary’s response to tides, winds and buoyancy forcing associated with freshwater runoff in a series of numerical experiments validated with empirical data. The model results generate intense, jet-like tidal flows of about 1 m s?1 in the channels between the basins and connecting them to the ocean and relatively weak tidal currents in other regions, which agrees well with previous observations and numerical results. Wind forcing and buoyancy forcing associated with river runoff play important roles in generating the significant sub-tidal circulations in the estuary, including narrow channels, deep basins and shallow bays. The circulation model is also used to reconstruct the 3D circulation and temperature-salinity distributions in the summer months of 1974, when current and hydrographic measurements were made at several locations. The sub-tidal circulation in the estuary produced by the model is characterised by wind and barometric set-up and set-down in different sections of the system, and a classic two-layer estuarine circulation in which brackish, near-surface waters flow seaward from the estuary into the Atlantic Ocean, and deep salty waters flow landward through the major channel. The model results reproduce reasonably well the overall features of observed circulation and temperature-salinity fields made in the BdOL in 1974 but generally underestimate the observed currents and density stratification. The model discrepancies reflect the use of spatially mean wind forcing and spatially and monthly mean surface heat flux and the inability of the coarse model horizontal resolution (~500 m) to resolve narrow channels and straits.  相似文献   

19.
The aim of this 6?year study was to assess whether freshwater inputs (rainfall and dam discharges) were acting as physical, physiological or trophic forcing factors on phytoplankton pigment concentrations and the dominant mysids of a temperate estuary (Guadalquivir estuary; SW, Spain). The effects of natural and human-controlled freshwater inputs modified the physico-chemical conditions and consequently biological production (bottom up control). Nutrient (nitrogen hypernutrification), suspended particulate matter and allochthonous photosynthetic pigment imports linked to freshwater inputs from adjacent habitats were observed, as well as light-limited autochthonous primary production. Seasonal and/or spatial patterns were shown by all study variables, including mysids. Freshwater management effects on dominant mysids differed depending on the species?? salinity tolerance (physiological forcing) and preferred prey availability (trophic forcing). Moreover, high inorganic matter content had a negative effect on the density of Mesopodopsis slabberi (physical forcing), which led to an increased detritivory/herbivory ratio (Neomysis integer/M. slabberi ratio). In conclusion, freshwater inputs appeared to effect estuarine lower trophic levels via a combination of different forcing mechanisms. Although several general patterns can be derived, the response of the system to freshwater inputs was not always univocal.  相似文献   

20.
In this work, two field campaigns were performed in July 2008 (wet season) and March 2009 (dry season) to produce original data on the concentration, partition and distribution of mercury and butyltin compounds along the tropical Bach Dang Estuary located in North Vietnam (Haiphong, Red River Delta). The results demonstrate that mercury and butyltin speciation in the surface waters of this type of tropical estuary is greatly affected by the drastic changes in the seasonal conditions. During high river discharge in the wet season, there was a large estuarine input of total Hg and tributyltin, while the longer residence time of the waters during the dry season promotes increasing MMHg formation and TBT degradation. Although most of the Hg and TBT is transported into the estuary from upstream sources, tidal cycle measurements demonstrate that this estuary is a significant source of TBT and MMHg during the wet (~3kgTBT/day) and dry (~3gMMHg/day) seasons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号