首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Ashley A. Webb 《水文研究》2009,23(12):1679-1689
Streamflows were measured in two Pinus radiata plantation catchments and one native eucalypt forest catchment in Canobolas State forest from 1999 to 2007. In 2002/2003, clearfall harvesting of 43·2 and 40·3% of two plantation catchments occurred, respectively. Water yields increased by 54 mm (52%), 71 mm (35%) and 50 mm (19%) in the first three years post‐harvest in treated catchment A and by 103 mm (118%), 157 mm (82%) and 119 mm (48%) in treated catchment B relative to the native forest control catchment. In the fourth post‐harvest water year annual rainfall was only 488 mm, which resulted in negligible run‐off in all catchments, regardless of forest cover. In both plantation catchments, monthly streamflows increased significantly (p = 0·01, p < 0·001) due to a significant increase in baseflows (p < 0·001) after harvesting. Monthly stormflows were not significantly affected by harvesting. Flow duration curve analyses indicated a variable response between the two plantation catchments. Treated catchment A was converted from an ephemeral stream flowing 42% of the time pre‐harvest to a temporary stream flowing 82% of the time post‐harvest. These changes occurred throughout all seasons of the year but were most pronounced during summer and autumn when baseflows were maintained post‐harvest but were not observed under native forest or mature pine plantations. By contrast, flow duration increased in treated catchment B from 12% of the time pre‐harvest to 38% of the time post‐harvest with the greatest changes measured during the winter and spring months when streamflow would normally occur under native forest conditions. These observations have important implications for the development of models of plantation water use to be utilized in water resource planning in Australia. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Spatial variability of throughfall (TF) isotopic composition, used as tracer input, influences isotope hydrological applications in forested watersheds. Notwithstanding, identification of the dominant canopy factors and processes that affect the patterns of TF isotopic variability remains ambiguous. Here, we examined the spatio‐temporal variability of TF isotopic composition in a Japanese cypress plantation, in which intensive strip thinning was performed and investigated whether canopy structure at a fine resolution of canopy effect analysis is related to TF isotopic composition and how this is affected by meteorological factors. Canopy openness, as an index of canopy structure, was calculated from hemispherical photographs at different zenith angles. TF samples were collected in a 10 × 10 m experimental plot in both pre‐thinning (from July to November 2010) and post‐thinning (from May 2012 to March 2013) periods. Our results show that thinning resulted in a smaller alteration of input δ18O of gross precipitation, whereas the changes in deuterium excess varied in both directions. Despite the temporal stability of spatial patterns in TF amount, the spatial variability of TF isotopic composition was not temporally stable in both pre‐ and post‐thinning periods. Additionally, after thinning, the isotopic composition of TF was best related to canopy openness calculated at the zenith angle of 7°, exhibiting three different relationships, that is, significantly negative, significantly positive, and nonsignificant. Changes in meteorological factors (wind speed, rainfall intensity, and temperature) were found to affect the relationships between TF δ18O and canopy openness. The observed shifts in the relationships reveal different dominant factors (partial evaporation and the selection), and canopy water flowpaths control such differences. This study provides useful insights into the spatial variability of TF isotopic composition and improves our understanding of the physical processes of interception through canopy passage.  相似文献   

3.
Hemispherical photographs of forest canopies can be used to develop sophisticated models that predict incident below canopy shortwave radiation on the surface of interest (i.e. soil and water). Hemispherical photographs were collected on eight dates over the course of a growing season to estimate leaf area index and to quantify solar radiation incident on the surface of two stream reaches based on output from Gap Light Analyser and Hemisfer software. Stream reaches were shaded by a mixed‐deciduous Ozark border forested riparian canopy. Hemispherical photo model results were compared to observed solar radiation sensed at climate stations adjacent to each stream reach for the entire 2010 water year. Modeled stream‐incident shortwave radiation was validated with above‐stream pyranometers for the month of September. On average, the best hemispherical photo models underestimated daily averages of solar radiation by approximately 14% and 12% for E–W and N–S flowing stream reaches, respectively (44.7 W/m2 measured vs 38.4 W/m2 modeled E–W, 46.8 W/m2 vs. 41.1 W/m2N–S). The best hemispherical photo models overestimated solar radiation relative to in–Stream pyranometers placed in the center of each stream reach by approximately 7% and 17% for E–W and N–S stream reaches respectively (31.3 W/m2 measured vs 33.5 W/m2 modeled E–W, 31.5 W/m2 vs. 37.1 W/m2N–S). The model provides a geographically transferable means for quantifying changes in the solar radiation regime at a stream surface due to changes in canopy density through a growing season, thus providing a relatively simple method for estimating surface and water heating in canopy altered environments (e.g. forest harvest). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Land use related habitat degradation in freshwater ecosystems has considerably increased over the past decades, resulting in effects on the aquatic and the riparian communities. Previous studies, mainly in undisturbed systems, have shown that aquatic emergent insects contribute substantially to the diet of riparian predators. To evaluate the effect of land use on aquatic prey subsidies of riparian spiders, we performed a longitudinal study from June to August 2012 along a first order stream (Rhineland-Palatinate, Germany) covering three land use types: forest, meadow and vineyard. We determined the contribution of aquatic and terrestrial resources to the diet of web-weaving (Tetragnathidae spp.) and ground-dwelling (Pardosa sp.) riparian spiders using stable isotope analyses of aquatic emergent insects and terrestrial arthropods. The contribution of aquatic and terrestrial sources differed between Tetragnathidae spp. and Pardosa sp. as well as among land use types. Tetragnathidae spp. consumed 80–100% of aquatic insects in the meadows and 45–65% in the forest and vineyards. Pardosa sp. consumed 5–15% of aquatic insects in the forest, whereas the proportions of aquatic and terrestrial sources were approximately 50% in the meadow and vineyard. Thus, aquatic emergent insects are an important subsidy to riparian spiders and land use is likely to affect the proportion of aquatic sources in the spider diet.  相似文献   

5.
Limited urban water supplies in southwestern USA cause water managers and planners to re‐assess water losses and needs from consumptive water use by riparian vegetation. Here, we report on field measurements of evapotranspiration (ET) for inland saltgrass [Distichlis spicata var. stricta (L.) Greene]; a once common riparian plant native to the desert southwest. The objective was to develop a saltgrass crop coefficient, Kc, similar to agricultural crop coefficients commonly used in irrigation water management. The developed Kc, in conjunction with the local climate, can then be used to assess the water savings that may be achieved in riparian zones for saltgrass versus invasive species and for use in irrigation management and scheduling of saltgrass in urban setting. The ET of saltgrass was measured in its native riparian setting located in the flood plain of the Rio Grande, north of Caballo Lake, New Mexico, in 2011 using an eddy covariance technique in the energy budget method. Total ET of 692 mm was measured during the growing season (n = 241 days) and 837 mm during the year. The American Society of Civil Engineers standardized ET for short crop (ETso) was calculated using climate data measured at the study site as 1560 mm during the growing season and 1870 mm during the year. Crop coefficients (ET/ETso) were fitted with a polynomial equation as a function of day of the year to develop saltgrass Kc function. A graphical and simplified method of computing Kc as a function of day of the year and crop season was also developed as an alternative method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Three main reservoirs were identified that contribute to the shallow subsurface flow regime of a valley drained by a fourth‐order stream in Brittany (western France). (i) An upland flow that supplied a wetland area, mainly during the high‐water period. It has high N‐NO3? and average Cl? concentrations. (ii) A deep confined aquifer characterized by low nitrate and low chloride concentrations that supplied the floodplain via flow upwelling. (iii) An unconfined aquifer under the riparian zone with high Cl? and low N‐NO3? concentrations where biological processes removed groundwater nitrate. This aquifer collected the upland flow and supplied a relict channel that controlled drainage from the whole riparian zone. Patterns of N‐NO3? and Cl? concentrations along riparian transects, together with calculated high nitrate removal, indicate that removal occurred mainly at the hillslope–riparian zone interface (i.e. first few metres of wetland), whereas dilution occurred in lower parts of the transects, especially during low‐water periods and at the beginning of recharge periods. Stream flow was modelled as a mixture of water from the three reservoirs. An estimation of these contributions revealed that the deep aquifer contribution to stream flow averaged 37% throughout the study period, while the contribution of the unconfined reservoir below the riparian zone and hillslope flow was more variable (from ca 6 to 85%) relative to rainfall events and the level of the riparian water table. At the entire riparian zone scale, NO3? removal (probably from denitrification) appeared most effective in winter, despite higher estimated upland NO3? fluxes entering the riparian zone during this period. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
In recent years, Moso bamboo (Phyllostachys pubescens) forests have rapidly expanded in Japan by replacing surrounding coniferous and/or broadleaved forests. To evaluate the change in water yield from forested areas because of this replacement, it is necessary to examine evapotranspiration for Moso bamboo forests. However, canopy interception loss, one of the major components of evapotranspiration in forested areas, has been observed in only two Moso bamboo forests in Japan with relatively high stem density (~7000 stems/ha). There are, in fact, many Moso bamboo forests with much lower stem density. Thus, we made precipitation (Pr), throughfall (Tf) and stemflow (Sf) observations for 1 year in a Moso bamboo forest with stem density of 3611 stems/ha and quantified canopy interception loss (Ic). Pr and Ic for the experimental period were 1636 and 166 mm, respectively, and Ic/Pr was 10%. The value was approximately the same as values for the other two Moso bamboo forests and lower than values for coniferous and broadleaved forests. On the other hand, Tf/Pr and Sf/Pr for our forest (86% and 4%, respectively) were approximately 10% of Pr larger and smaller than values for the other two Moso bamboo forests. These results suggest that the difference in stem density greatly affects precipitation partitioning (i.e. Tf/Pr and Sf/Pr) but does not greatly change Ic/Pr. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
J. W. Finch  A. B. Riche 《水文研究》2010,24(18):2594-2600
Concern has been expressed that Miscanthus x giganteus, a dedicated biomass crop, may have a high water use, with implications for its economic yield and impacts on water resources. There is particular uncertainty about one component of the water use, the interception loss. Measurements of the interception loss were made in a plot of the crop at a site in south‐east England, during 1997/1998 and 1998/1999. The measured interception losses were 25 and 24% of gross rainfall, respectively. Winter interception losses are relatively high, which is attributed to the slow rate of leaf loss. A Monte Carlo procedure was used to optimize three of the parameters of the Gash interception model on the 1997/1998 data. The simulated values had an uncertainty of 1·1 mm per storm in 1997/1998 and 2·9 mm per storm in 1998/1999. The model was also used to investigate the potential effect of the evaporation rate being overestimated due to the measurements being made in an experimental plot. This showed that the interception losses might be reduced to 21 and 18% in field scale plantations. A consideration of the relative interception rate demonstrated that the crop behaved more like a forest, in terms of the interception losses, during the winter months. © Crown Copyright 2010. Reproduced with the permission of Her Majesty's Stationery Office. Published by John Wiley & Sons, Ltd.  相似文献   

9.
In recent decades, riparian vegetation has been removed from important ecosystems around the world, in spite of its high ecological importance for aquatic biota. Nevertheless, the effects of catchment land use on zooplankton have been little studied. The present study investigated if replanting riparian vegetation in a tropical reservoir influences the richness and abundance of cladoceran communities, by addressing the question of whether cladocerans show differences in richness and abundance among four levels of riparian vegetation conditions: 1) native forest (NF); 2) 30 years after forest replanting (R1); 3) 10 years after forest replanting (R2); and 4) no forest (No-F). Zooplankton samples were obtained from 9 stations in the Volta Grande Reservoir, Minas Gerais, Brazil. Cladocerans in zones NF and R1 showed higher levels of richness and abundance than in zones No-F and R2. Ceriodaphnia reticulata, Ceriodaphnia laticaudata, and Diaphanosoma spinulosum showed higher abundances in zones NF and R1. Cladoceran community structure was influenced by the different levels of riparian vegetation. This study showed that the presence and age of riparian forest positively influence the abundance, richness and diversity of cladoceran assemblages. Furthermore, our results indicated that C. reticulata, C. laticaudata and D. spinulosum are more efficient than other cladocerans in exploiting allochthonous resources provided by riparian forest. Functional diversity was higher in zones NF and R1, suggesting that the trait composition of cladoceran assemblages responds positively to recovery of riparian forest. Overall, our research suggests that cladocerans are good indicators of riparian vegetation conditions and that restoration of riparian forest positively affects cladoceran assemblages of tropical reservoirs.  相似文献   

10.
Tim P. Duval 《水文研究》2019,33(11):1510-1524
Partitioning of rainfall through a forest canopy into throughfall, stemflow, and canopy interception is a critical process in the water cycle, and the contact of precipitation with vegetated surfaces leads to increased delivery of solutes to the forest floor. This study investigates the rainfall partitioning over a growing season through a temperate, riparian, mixed coniferous‐deciduous cedar swamp, an ecosystem not well studied with respect to this process. Seasonal throughfall, stemflow, and interception were 69.2%, 1.5%, and 29.3% of recorded above‐canopy precipitation, respectively. Event throughfall ranged from a low of 31.5 ± 6.8% for a small 0.8‐mm event to a high of 82.9 ± 2.4% for a large 42.7‐mm event. Rain fluxes of at least 8 mm were needed to generate stemflow from all instrumented trees. Most trees had funnelling ratios <1.0, with an exponential decrease in funnelling ratio with increasing tree size. Despite this, stand‐scale funnelling ratios averaged 2.81 ± 1.73, indicating equivalent depth of water delivered across the swamp floor by stemflow was greater than incident precipitation. Throughfall dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) averaged 26.60 ± 2.96 and 2.02 ± 0.16 mg L?1, respectively, which were ~11 and three times above‐canopy rain levels. Stemflow DOC averaged 73.33 ± 7.43 mg L?1, 35 times higher than precipitation, and TDN was 4.45 ± 0.56 mg L?1, 7.5 times higher than rain. Stemflow DOC concentration was highest from Populus balsamifera and TDN greatest from Thuja occidentalis trees. Although total below‐canopy flux of TDN increased with increasing event size, DOC flux was greatest for events 20–30 mm, suggesting a canopy storage threshold of DOC was readily diluted. In addition to documenting rainfall partitioning in a novel ecosystem, this study demonstrates the excess carbon and nitrogen delivered to riparian swamps, suggesting the assimilative capacity of these zones may be underestimated.  相似文献   

11.
The influence of riparian woodland on stream temperature, micro‐climate and energy exchange was investigated over seven calendar years. Continuous data were collected from two reaches of the Girnock Burn (a tributary of the Aberdeenshire Dee, Scotland) with contrasting land use characteristics: (1) semi‐natural riparian forest and (2) open moorland. In the moorland reach, wind speed and energy fluxes (especially net radiation, latent heat and sensible heat) varied considerably between years because of variable riparian micro‐climate coupled strongly to prevailing meteorological conditions. In the forested reach, riparian vegetation sheltered the stream from meteorological conditions that produced a moderated micro‐climate and thus energy exchange conditions, which were relatively stable between years. Net energy gains (losses) in spring and summer (autumn and winter) were typically greater in the moorland than the forest. However, when particularly high latent heat loss or low net radiation gain occurred in the moorland, net energy gain (loss) was less than that in the forest during the spring and summer (autumn and winter) months. Spring and summer water temperature was typically cooler in the forest and characterised by less inter‐annual variability due to reduced, more inter‐annually stable energy gain in the forested reach. The effect of riparian vegetation on autumn and winter water temperature dynamics was less clear because of the confounding effects of reach‐scale inflows of thermally stable groundwater in the moorland reach, which strongly influenced the local heat budget. These findings provide new insights as to the hydrometeorological conditions under which semi‐natural riparian forest may be effective in mitigating river thermal variability, notably peaks, under present and future climates. © 2014 The Authors. Hydrological Processes published by John Wiley & Sons Ltd.  相似文献   

12.
Peatlands provide a setting that is well suited for cranberry agriculture in the Northeastern United States. However, misconceptions exist about the amounts and forms of nitrogen (N) and phosphorus (P) export from cranberry farms. In this study, we report inorganic and organic forms of N and P export from five peatlands cultivated for cranberry production in southeastern, Massachusetts, United States. We then compare N loading rates among cranberry farms in southeastern Massachusetts, row crop farms in the Midwestern United States, and uncultivated peatlands in the United States and United Kingdom. Based on a fluvial mass balance analysis, we find that nonriparian cranberry farms export 2.56 kg of P ha−1 year−1of total P and 12.1 kg of N ha−1 year−1of total N. Total N export from riparian or “flow through” farms is two times higher than nonriparian farms due to less retention of N fertilizer in the vadose zone of riparian farms. Gross total N export from riparian and nonriparian cranberry farms consists of 35% particulate organic N, 26% dissolved organic N, 31% ammonium (NH4+), and 8% nitrate (NO3). The low proportions of NO3 export (13% of total dissolved N [TDN]) for cranberry farms differ from NO3 export for row crop farms (75% of TDN; p < .001) but not for uncultivated peatlands (17% of TDN; p = .61). Despite being highly modified by fertilizers and artificial drainage, low NO3 export (2.2 kg of N ha−1 year−1) from cranberry farms is consistent with field measurements of rapid N turnover in uncultivated peatlands. This finding suggests that state-funded wetland restoration efforts to restore denitrification in retired cranberry farms may be limited by NO3 rather than soil moisture or organic matter.  相似文献   

13.
Six small, steep, south-west facing catchments (1.63–4.62 ha) have been monitored in Westland, New Zealand since 1974. Two catchments were retained in native mixed evergreen forest and the rest were subjected to various harvesting and land preparation techniques before being planted with Pinus radiata between 1977 and 1980. The 11-year water balance for the native forest catchments was: rain = streamflow + interception loss + transpiration + seepage (2370mm = 1290mm + 620mm + 360mm + 100mm). In the year after treatment streamflow generally increased by 200–250 mm, except for one treatment (clearfelling, herbicide application, no riparian reserve) where the increase was 550 mm. The catchments were planted with Pinus radiata, but rapid colonization by bracken (Pteridium esculentum) and Himalayan honeysuckle (Leycesteria formosa) led to a rapid decline in streamflow, which returned to pre-treatment levels after an average of about five years. Streamflow yields then continued to decline for another two to three years before stabilizing at a level about 250mm yr?1 lower than pre-treatment levels. At this time the catchments had a dense bracken/honeysuckle understorey beneath 5 m tall pine trees.  相似文献   

14.
Soil water depletion depth by planted vegetation on the Loess Plateau   总被引:4,自引:0,他引:4  
Evapotranspiration of much planted vegetation exceeds precipitation, and this can deplete soil water and cause a deep dry layer in the soil profile, which is a serious obstacle to sustainable land use on the Loess Plateau, China. This study aimed to determine water depletion depth of planted grassland, shrub, and forest in a semiarid area on the Loess Plateau. Soil moisture of five vegetation types was measured to >20 m in depth. The vegetation types were crop, natural grasse, seven-year-old planted alfalfa (Medicago sativa L.), 23-year-old planted caragana (Caragana microphylla Lam.) shrub, and 23-year-old planted pine (Pinus tabulaeformis L) forest land. Through comparing moisture of planted alfalfa grass, caragana shrub, and pine forest to crop and natural grassland, the depth and amount of soil water consumed by grassland, caragana brush and pine forest was determined. The depth of soil water depleted by alfalfa, caragana brush, and pine forest reached 15.5, 22.4 and 21.5 m, respectively. Supported by National Basic Research Program of China (Grant No. 2007CB407204) and National Natural Science Foundation of China (Grant No. 40471082)  相似文献   

15.
Alan R. Hill 《水文研究》1990,4(2):121-130
Groundwater cation concentrations in relation to hydrologic flow paths were studied in the riparian forest zone of a small headwater catchment near Toronto, Ontario. Groundwater entering the riparian zone from uplands showed significant differences in cation concentrations between slope-foot and near-stream locations. Mean Ca, Mg, K, and Na concentrations in shallow groundwater at the upland perimeter of the riparian forest were 65-0, 11-2, 0-7, and 1-8 mg L?1 respectively. Mean Ca, Mg, K, and Na concentrations in deep groundwater flowing upwards through glacial sands beneath the riparian zone were 52-1, 15-1, 1-3, and 2-6 mg L?1 respectively. Shallow groundwater emerged as slope-foot springs producing surface rivulets which crossed the riparian zone to the streams. Deep groundwater flowed upward through organic soils into the rivulets and also discharged directly to the streams as bed and bank seepage. Springs had higher Ca concentrations and lower Mg, K, and Na values than rivulets entering the streams. Conversely, Mg, K, and Na concentrations were higher and Ca concentrations were lower in bank seeps in comparison to rivulets. These results suggest that differences in cation concentrations in groundwater entering the streams result from initial contrast in the chemistry of shallow and deep groundwater rather than from the effects of riparian soils and vegetation.  相似文献   

16.
We investigated the dynamics of organic matter and type of detritus in a riparian zone of the Atlantic Rain Forest domain, and specifically determined the inputs and stock of detritus contributed by plant species, and their relationship to temperature and precipitation. Our hypotheses tested were: (1) the species composition of riparian vegetation influences the amount and type of detritus delivered to a stream in an Atlantic Rain Forest, and (2) the dynamics of litterfall in the riparian zone is influenced by climate factors. The plant community was formed principally by pioneer and early successional species such as Apuleia leiocarpa, Erytrina velutina, Erytrina verna, Eucalyptus torelliana, Ficus glabra, Ficus insipida, Guarea guidonea, Guarea guidonia, Maprounea guianensis and Psidium guajava. There was a large number of G. guidonea (318 individuals/ha), followed by Cupania oblongifolia (91), Trichilia pallida (52), Piptadenia gonoacantha (26) and E. torelliana (14). G. guidonea contributed >50% of the total litterfall; however, some species which were present in high density in the plant community and did not yield significant biomass, indicating that detritus production was based on the contribution of a few species. We found 697, 856 and 804 g/m2/year from vertical, terrestrial, and lateral inputs, respectively, whereas to the annual benthic standing stock was 3257 g/m2. Detritus was formed by leaves (60%), branches (32%), reproductive parts (3%), and unidentifiable fragments of organic-matter (5%). Inputs and benthic stock were markedly seasonal, with an increase of leaf litter during the dry season. Our results indicate that litterfall dynamics is basically composed of a few species that contribute with higher values of biomass. Moreover, ecological characteristics together with environmental factors can be viewed as the principal factors determining the energy balance of riparian ecosystems. The biological implications of the dynamics of organic matter have high importance for the maintenance and restoration of riparian zones. However, the amount of litterfall required to maintain the balance of the riparian community remains unclear in the tropical zone.  相似文献   

17.
Global increases in intensive forestry have raised concerns about forest plantation effects on water, but few studies have tested the effects of plantation forest removal and native forest restoration on catchment hydrology. We describe results of a 14-year paired watershed experiment on ecological restoration in south central Chile which documents streamflow response to the early stages of native forest restoration, after clearcutting of plantations of exotic fast-growing Eucalyptus, planting of native trees, and fostering natural regeneration of native temperate rainforest species. Precipitation, streamflow, and vegetation were measured starting in 2006 in four small (3 to 5 ha) catchments with Eucalyptus globulus plantations and native riparian buffers in the Valdivian Coastal Reserve. Mean annual precipitation is 2500 mm, of which 11% occurs in summer. Streamflow increased, and increases persisted, throughout the first 9 years of vigorous native forest regeneration (2011 to 2019). Annual streamflow increased by 40% to >100% in most years and >150% in fall and summer of some years. Streamflow was 50% to 100% lower than before treatment in two dry summers. Base flow increased by 28% to 87% during the restoration period compared to pre-treatment, and remained elevated in later years despite low summer precipitation. Overall, these findings indicate that removal of Eucalyptus plantations immediately increased streamflow, and native forest restoration gradually restored deep soil moisture reservoirs that sustain base flow during dry periods, increasing water ecosystem services. To our knowledge this is the first study to assess catchment streamflow response to native forest restoration in former forest plantations. Therefore, the results of this study are relevant to global efforts to restore native forest ecosystems on land currently intensively managed with fast-growing forest plantations and may inform policy and decision-making in areas experiencing a drying trend associated with climate change.  相似文献   

18.
A pot experiment was conducted to investigate microbial characteristics and the biodegradation process of bensulfuron‐methyl (BSM) in a rhizosphere soils planted with different riparian plants. The results showed that microbial population decreased with BSM addition in the rhizosphere, especially for bacteria and fungi. The activities of the dehydrogenase (DHase) were stimulated firstly, due to BSM addition, but then were inhibited, and recovered to the initial level, while the activities of the phosphatase and urease showed obviously decreasing trend throughout the whole experiment. Rhizosphere soil substrate‐induced respiration (SIR) was depressed by BSM, especially at the initial 14 days of incubation. Compared to Zizania aquatica and Phragmites australis, Acorus calamus showed a significantly (p < 0.05) higher DHase activity and larger SIR in the rhizosphere soils treated with BSM, which means that A. calamus can effectively alleviate inhibitory effect of the sulfonylurea herbicide addition on microbial activity. There were significant (p < 0.05) differences in microbial degradation dynamics of BSM in the rhizosphere soils among three kinds of riparian plants. A. calamus displayed a significantly (p < 0.05) higher degradation efficiency of BSM in the rhizosphere soils, followed by Z. aquatica and P. australis. The residual BSM concentration in A. calamus rhizosphere soil was 23.1 and 32.2% lower than that in Z. aquatica and P. australis rhizosphere soils, respectively, indicating a greater improvement effect on biodegradation of BSM in A. calamus rhizosphere soils.  相似文献   

19.
Water resource scarcity and uneven distribution are 2 major environmental issues in China today. Forest structure is a dominant factor that influences hydrological processes, but the specific interactions remain uncertain due to the predominant use of individual or 1‐dimensional forest structure metrics in previous studies. In this study, forest structures in 8 run‐off plots on Mount Miaofeng in north China were parameterized by metrics of different dimensionalities. The relation between canopy interception and forest structure, shrub/litter interception, and forest structure as well as run‐off and forest structure were analysed by regression method and validated by leave‐one‐out cross test. The results showed that canopy interception rates ranged from less than 0.10 all the way to 0.80, affected by forest structure and precipitation, with interception rate decreasing logarithmically as precipitation increased. Forests with a larger canopy area (CA), leaf area index (LAI), and higher average height (H) had a narrow range of canopy interception rates, and forest with larger value of diameters at breath height (DBH), H, LAI, vertical heterogeneity coefficient (T), and structure complexity index (SCI) had higher interception rates. Forests with higher value of DBH, H, and horizontal heterogeneity coefficient (R) had higher shrub/litter interception rates on the forest floor. The run‐off coefficient was only significantly associated with LAI, T, and SCI. The validation test indicated that regression analysis of canopy interception rates and shrub interception are reliable and SCI is a key factor to influence the run‐off coefficient. However, the regression results of litter interception have a relatively large error. According to the results, to reduce the risks of the landslides and floods, forest managers should complicate the canopy and preserve trees with thicker stems and larger canopies. By contrast, to obtain more water resource from run‐off in arid regions, forest managers should harvest trees with large canopies and construct complex vertical structures by intermediate cutting.  相似文献   

20.
Forest harvesting often increases catchment quickflow (QF, water delivered rapidly to the stream channel), a metric of high‐flow events controlling a catchment's solute and sediment export. Nevertheless, our understanding of QF responses to various silvicultural strategies (e.g., clearcutting, selection harvest, and shelterwood harvest) is incomplete. We present a 31‐year examination of QF delivery from treatment (clearcut, selection harvest, and shelterwood harvest) and control catchments in a deciduous forest landscape in central Ontario, Canada. Growing season root‐zone storage capacity was estimated using a water balance approach to evaluate temporal changes in QF response to precipitation (P) for pretreatment and posttreatment periods. Threshold relationships between QF and P were assessed for control and treatment catchments for pretreatment and posttreatment periods using piecewise regression. Root‐zone storage capacity demarcated shifts in the hydrologic regime arising from forest harvesting and subsequent regeneration. This was particularly pronounced for clearcutting where postharvest decline in root‐zone storage capacity was followed by a rise to preharvest values. Similar pretreatment threshold relationships between QF and P, and near‐identical P thresholds for producing significant QF, reflected similar soil and overburden depths in the catchments. Harvesting effects were indicated by increases in QF/P ratios for relative small P and the number of P events that generated QF, thus changing treatment QF vs. P threshold relationships. Prior to harvesting there was no significant increase in QF with P below a threshold P of 35–45 mm; however, there was a significant QF vs. P relationship below this threshold for all treatments postharvest. Clearcutting increased the number of QF events for the entire postharvest period and the first 9‐year postharvest compared to the other treatments; nevertheless, evidence for intertreatment differences in total QF depth delivered from the catchments during the growing season was inconclusive. Our work suggests that changes in threshold relationships between QF and P, coupled with knowledge of the physical processes underlying them, are useful when evaluating hydrologic responses to forest harvesting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号