首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过对采自河北汉诺坝玄武岩中的下地壳和上地幔包体的详细研究 ,建立了本区下地壳—上地幔地温线。该地温线高于大洋地温线和古老地盾地温线 ,接近克拉通边缘的地温线 ,符合该区的大地构造环境。由该地温线建立的下地壳—上地幔地质结构剖面表明 ,该区下地壳主要由不同类型的麻粒岩相岩石组成 ,其化学成分以镁铁质为主 ,深度范围为 2 5~ 4 2km。上地幔由超镁铁质的二辉橄榄岩组成 ,在尖晶石二辉橄榄岩和石榴石二辉橄榄岩之间有一过渡层。由地温线确定的壳幔边界位于 4 2km附近 ,与地震资料确定的莫霍面一致 ,但在壳幔边界之上的下地壳底部有下地壳麻粒岩和超镁铁质岩的互层。这一现象可以解释在下地壳底部常见的层状反射层。该区岩石圈底界大约在 95km ,其下的软流层仍由石榴石二辉橄榄岩组成  相似文献   

2.
A suite of ultramafic xenoliths 2–10 cm in size occurs in basanite near Papeete, Tahiti, and consists of spinel lherzolites with minor dunites and wehrlites. Petrographic examination of xenoliths reveals that they are typically coarse grained with well-developed annealed textures. Microprobe analyses of constituent minerals in 11 xenoliths indicate that bulk compositions of xenoliths are magnesian but with significant variability from xenolith to xenolith especially in Fe/Mg and Cr/Al ratios and in absolute amounts of Al2O3 and Cr2O3. Within any single xenolith, however, coexisting minerals are homogeneous and appear to be compositionally equilibrated. Geothermometry of coexisting orthopyroxene and augite indicates temperatures of equilibration of about 1100°C but there is considerable uncertainty in this estimate due to significant non-quadrilateral pyroxene substitutions. There is no accurate way to determine pressures, but the ubiquity of Cr-poor spinel and absence of garnet imply pressures less than about 15–20 kbar.The margins of most xenoliths show significant alteration through reaction with enclosing alkaline magma. Principal reaction features include zoning of spinels and olivines toward compositions in equilibrium with the magma, and reaction-melting of orthopyroxene to a symplectite of olivine plus silica-rich glass. Glass composition profiles across the symplectites indicate that alkalis, titanium and aluminum diffused into the symplectite from the magma and that silica diffused into the magma. All glass analyses show very low iron, magnesium and calcium.Xenolith mineral assemblages and chemistry indicate their origin in the upper mantle at relatively shallow depths. They are therefore not related genetically to the enclosing basanite magma which came from deeper in the mantle, but rather are accidental fragments of country rock picked up by magma on its way to the surface. The details of the reaction features strongly imply that the magma had partially crystallized by the time it reacted with xenoliths, possibly while still in the mantle.  相似文献   

3.
Mineral and whole-rock REE abundances in garnet lherzolite and megacrystalline nodules from The Thumb display broad correlations with major element compositions. Lherzolites with > 12 modal % clinopyroxene plus garnet (“high-CaAl lherzolites”) have relatively flat chondrite-normalized whole-rock REE patterns. Lherzolites poor in clinopyroxene and garnet (“low-CaAl lherzolites”) have lower HREE in clinopyroxenes and garnets and higher whole-rock LREE/HREE. It is concluded that the low-CaAl lherzolites may have undergone LREE metasomatism after depletion of the major element compositions by partial melting and that much of the garnet now present was originally dissolved in aluminous orthopyroxene. The high-CaAl lherzolites may be interpreted either as primordial mantle samples or as products of equilibration with very LREE-enriched liquids. The “megacrystalline” nodules are medium- to ultracoarse-grained intergrowths and megacrysts with mineral compositions similar to discrete nodule suites in kimberlites. The REE abundances of the megacrystalline minerals are consistent with an origin as cumulates from magma with extremely fractionated REE, similar to minette or kimberlite.The patterns of correlation of REE and major elements in this inclusion suite are similar to the patterns observed in the garnet lherzolite and discrete nodule suites of southern African kimberlites. Both of the subcontinental mantle provinces represented by these suites contain three distinct petrogenetic components: refractory garnet lherzolite enriched in LREE and depleted in HREE, fertile garnet lherzolite with generally chondritic REE abundances, and a suite of ultracoarse minerals precipitated from magma with extremely fractionated REE generally similar to the host magmas.  相似文献   

4.
Major element data and Rb, Sr and87Sr/86Sr analyses for seven spinel lherzolite xenoliths and their Recent host basalt from Victoria, Australia, are presented. The exotic nature of the xenoliths is indicated by a wide spread in87Sr/86Sr values (0.7035–0.7076) compared with the basalt (0.7041). Five of the lherzolites provide evidence of a thermal event in the mantle 650 m.y. ago. Equilibration temperatures calculated from the compositions of the lherzolite phases (ca. 1050°C) apparently relate to this event. Estimates of the local geothermal gradient suggest temperatures of less than 700°C in the source region before eruption of the lherzolites.Isotopic analyses of the lherzolite minerals show that orthopyroxene contains more radiogenic Sr than coexisting olivine and clinopyroxene in three of the xenoliths. The87Sr/86Sr relationships between clinopyroxene and orthopyroxene suggest that internal isotopic disequilibrium has existed in the source region for up to 550 m.y.  相似文献   

5.
Sung Hi  Choi  Sung-Tack  Kwon 《Island Arc》2005,14(3):236-253
Abstract   The mantle-derived xenoliths entrained in the Pliocene basanite from Baengnyeong Island, South Korea, are spinel lherzolites and spinel harzburgites. The overall compositional range of the Baengnyeong xenoliths matches that of the post-Archean xenoliths of lithospheric mantle origin from eastern China, but without any compositional evidence for a refractory Archean mantle root. Mineral compositions of the xenoliths have been used to estimate the equilibrium temperatures and pressures, and to construct a paleogeothermal gradient of the source region. The xenolith-derived paleogeotherm is constrained from about 820°C at 7.3 kbar to 1000°C at 20.6 kbar. Like those from the post-Archean Chinese xenoliths of lithospheric mantle origin, the Baengnyeong geotherm is considerably elevated relative to the conductive models at the depth of the crust–mantle boundary, reflecting a thermal perturbation probably related to lithospheric thinning. There is no significant P / T difference between harzburgite and lherzolite, which suggests that the harzburgites are interlayered with lherzolites within the depth interval beneath Baengnyeong Island.  相似文献   

6.
Spinel-lherzolite xenoliths have been found in olivine tholeiite near Andover in the Tasmanian Tertiary volcanic province. They show a high-pressure mineralogy of predominant olivine (Mg90), with aluminous enstatite (Mg90) and lesser aluminous diopside and chrome-bearing spinel, and resemble lherzolite xenoliths commonly found in undersaturated lavas. Such xenoliths are unusual in tholeiitic basalts and the occurrence directly attests to a mantle origin for at least some tholeiitic magmas.The lherzolites are accompanied by doleritic and pyroxenitic xenoliths and by olivine, orthopyroxene, clinopyroxene and plagioclase xenocrysts. If near-liquidus phases are represented amongst the xenocrysts, then the magnesian number of the host basalt and its xenocryst assemblage provisionally suggest a magma derived by more than 15–20% partial melting of mantle peridotite, before commencing xenocryst crystallisation at pressures between 8–13 kbar.With this new record, lherzolite-bearing lavas in Tasmania now cover an extremely wide compositional range, extending from highly undersaturated olivine melilitite to olivine tholeiite. They also include a considerable number of fractionated alkaline rocks that are only sparsely reported in the literature as lherzolite hosts. This latter group contains representatives of a previously suggested but unestablished alkaline fractionation series based on olivine nephelinite, viz. calcic olivine nephelinite → sodic olivine nephelinite → potassi-sodic olivine nephelinite → mafic nepheline benmoreite → mafic phonolite.Lherzolite and megacryst-bearing lavas are relatively more abundant in peripheral parts to the main basalt sequences in Tasmania. This suggests that they developed in fringing zones of less intense mantle melting which enhanced stagnation and fractionation of magmas within the mantle before eruption. Calculated crustal thicknesses under these areas suggest that the magmas were generated at pressures exceeding 6–11 kbar, with the Andover tholeiitic magma exceeding 9 kbar.  相似文献   

7.
Two localities on the Leizhou Peninsula, southern China (Yingfengling and Tianyang basaltic volcanoes) yield a wide variety of mantle-derived xenoliths including Cr-diopside series mantle wall rocks and two distinct types of Al-augite series pyroxenites. Metapyroxenites have re-equilibrated granoblastic microstructures whereas pyroxenites with igneous microstructures have not thermally equilibrated to the mantle conditions. An abundant suite of megacrysts and megacrystic aggregates (including garnet, plagioclase, clinopyroxene, ilmenite and apatite) is interpreted as the pegmatitic equivalents of the igneous pyroxenite suite. Layered spinel lherzolite/spinel websterite xenoliths were formed by metamorphic differentiation caused by mantle deformation, inferred to be related to lithospheric thinning. Some metapyroxenites have garnet websterite assemblages that allow calculation of their mantle equilibration temperatures and pressures and the construction of the first xenolith geotherm for the southernmost China lithosphere. Heat flow data measured at the surface in this region yield model conductive geotherms (using average crustal conductivity values) that are consistent with the xenolith geotherm for the mantle. The calculated mean surface heat flux is 110 mW/m2. This high heat flux and the high geotherm are consistent with young lithospheric thinning in southern China, and with recent tomography results showing shallow low-velocity zones in this region. The xenolith geotherm allows the construction of a lithospheric rock type section for the Leizhou region; it shows that the crust–mantle boundary lies at about 30 km, consistent with seismic data, and that the lithosphere–asthenosphere boundary lies at about 100 km.  相似文献   

8.
Abstract   Spinel lherzolite is a minor component of the deep-seated xenolith suite in the Oki-Dogo alkaline basalts, whereas other types of ultramafic (e.g. pyroxenite and dunite) and mafic (e.g. granulite and gabbro) xenoliths are abundant. All spinel lherzolite xenoliths have spinel with a low Cr number (Cr#; < 0.26). They are anhydrous and are free of modal metasomatism. Their mineral assemblages and microtextures, combined with the high NiO content in olivine, suggest that they are of residual origin. But the Mg numbers of silicate minerals are lower (e.g. down to Fo86) in some spinel lherzolites than in typical upper mantle residual peridotites. The clinopyroxene in the spinel lherzolite shows U-shaped chondrite-normalized rare-earth element (REE) patterns. The abundance of Fe-rich ultramafic and mafic cumulate xenoliths in Oki-Dogo alkali basalts suggests that the later formation of those Fe-rich cumulates from alkaline magma was the cause of Fe- and light REE (LREE)-enrichment in residual peridotite. The similar REE patterns are observed in spinel peridotite xenoliths from Kurose and also in those from the South-west Japan arc, which are non-metasomatized in terms of major-element chemistry (e.g. Fo > 89), and are rarely associated with Fe-rich cumulus mafic and ultramafic xenoliths. This indicates that the LREE-enrichment in mantle rocks has been more prominent and prevalent than Fe and other major-element enrichment during the metasomatism.  相似文献   

9.
Studies on the deep-seated xenoliths from global volcanoes reveal that the present petrological crust-mantle boundary between the lower crust and the upper mantle actually is a transitional layer from mainly mafic granulites to ultramafic spinel lher-zolites[1,2], i.e. a transitional zone distinctive from the seismological Moho[3]. Oceanic lithosphere crust- mantle transitional zone can be established from the study on the exposed ophiolites. However, as for the continental lithosphere, since …  相似文献   

10.
Phase equilibrium experiments were performed on typical ‘oceanic’ and ‘cratonic’ peridotite compositions and a Ca, Al-rich orthopyroxene composition, to test the proposal that garnet lherzolites exsolved from high-temperature harzburgites, and to further our understanding of the origin of ancient cratonic lithospheres. ‘Oceanic’ peridotites crystallize a garnet harzburgite assemblage at pressures above 5 GPa in the temperature range 1450–1600°C, but at 5 GPa and temperatures less than 1450°C, crystallize clinopyroxene to become true lherzolites. ‘Cratonic’ peridotites crystallize a garnet harzburgite assemblage at pressures above 5 GPa in the temperature range 1300–1600°C. Garnet-free harzburgite crystallizes from both ‘cratonic’ and ‘oceanic’ peridotite at temperatures above 1450°C and pressures below 4.5–5 GPa. Phase relations for the high Ca, Al-rich orthopyroxene composition essentially mirror those for ‘oceanic’ peridotite.The complete solution of garnet and clinopyroxene into orthopyroxene observed in all three starting compositions at temperatures near or above the mantle solidus at pressures less than 6 GPa supports the hypothesis that garnet lherzolite could have exsolved from harzburgite. The inferred cooling path for the original high-temperature harzburgite protoliths of garnet lherzolites differs depending on bulk composition. The precursor harzburgite protoliths of garnet lherzolites and harzburgites with ‘cratonic’ bulk compositions apparently experienced simple isobaric cooling from formation temperatures near the peridotite solidus to those at which most of these peridotites were sampled in the mantle (< 1200°C). The cooling histories for harzburgite protoliths of sheared garnet lherzolites with ‘oceanic’ compositional affinity are speculated to have involved convective circulation of mantle material to depths deeper than those at which it was originally formed.Phase equilibria and compositional relationships for orthopyroxenes produced in phase equilibrium experiments on peridotite and komatiite are consistent with an origin for ‘cratonic’ peridotite as a residue of Archean komatiite extraction, which has since cooled and exsolved clinopyroxene and garnet to become the common low-temperature, coarse-grained peridotite thought to comprise the bulk of the mantle lithosphere beneath the Archean Kaapvaal craton.  相似文献   

11.

The pyroxenite xenoliths in the volcanic rocks of Hoh Xil consist of clinopyroxenes and orthopyroxenes. The mineral composition of these pyroxenes is similar to that of mantle xenoliths including peridotite and pyroxenite from China and abroad, and different from that of granulites. The pyroxenes formed at 1101–1400°C (averaging 1250°C) and under 30–60 kb (averaging 46 kb). We deduced that the magma was derived from the mantle at a depth of more than 150 km, which fits in with the geophysical conclusion that the low-velocity layer existed in the mantle under 150 km.

  相似文献   

12.
Abstract Ultramafic xenoliths found in alkali basalts from Jeju Island, Korea are mostly spinel lherzolites accompanied by subordinate amount of spinel harzburgites and pyroxenites. The combination of results from a two-pyroxene geothermometer and Ca-in-olivine geobarometer yields temperature–pressure (T–P) estimates for spinel peridotites that fall in experimentally determined spinel lherzolite field in CaO-Fe-MgO-Al2O3-SiO2-Cr2O3 (CFMASCr) system. These T–P data sets have been used to construct the Quaternary Jeju Island geotherm, which defines a locus from about 13 kbar at 880°C to 26 kbar at 1040°C. The geothermal gradient of Jeju Island is greater than that of the conventional conductive models, and may be as a result of a thermal perturbation by the heat input into the lithospheric mantle via the passage and emplacement of magma. Spinel–lherzolite is the main constituent rock-type of the lithospheric mantle beneath Jeju Island. Pyroxenites may be intercalated in peridotites at similar depth and temperature as re-equilibrated veins or lenses.  相似文献   

13.
The Oligocene alkaline basalts of Toveireh area (southwest of Jandaq, Central Iran) exhibit northwest–southeast to west–east exposure in northwest of the central‐east Iranian microcontinent (CEIM). These basalts are composed of olivine (Fo70–90), clinopyroxene (diopside, augite), plagioclase (labradorite), spinel, and titanomagnetite as primary minerals and serpentine and zeolite as secondary ones. They are enriched in alkalis, TiO2 and light rare earth elements (La/Yb = 9.64–12.68) and are characterized by enrichment in large ion lithophile elements (Cs, Rb, Ba) and high field strength elements (Nb, Ta). The geochemical features of the rocks suggest that the Toveireh alkaline basalts are derived from a moderate degree partial melting (10–20%) of a previously enriched garnet lherzolite of asthenospheric mantle. Subduction of the CEIM confining oceanic crust from the Triassic to Eocene is the reason of mantle enrichment. The studied basalts contain mafic‐ultramafic and aluminous granulitic xenoliths. The rock‐forming minerals of the mafic‐ultramafic xenoliths are Cr‐free/poor spinel, olivine, Al‐rich pyroxene, and feldspar. The aluminous granulitic xenoliths consist of an assemblage of hercynitic spinel + plagioclase (andesine–labradorite) ± corundum ± sillimanite. They show interstitial texture, which is consistent with granulite facies. They are enriched in high field strength elements (Ti, Nb and Ta), light rare earth elements (La/Yb = 37–193) and exhibit a positive Eu anomaly. These granulitic xenoliths may be Al‐saturated but Si‐undersaturated feldspar bearing restitic materials of the lower crust. The Oligocene Toveireh basaltic magma passed and entrained these xenoliths from the lower crust to the surface.  相似文献   

14.
A self-consistent approach is proposed for the investigation of the thermal conditions, chemical composition, and internal structure of the upper mantle of the Earth. Using this approach, the thermal state of the lithospheric mantle beneath the Siberian Craton (SC) is reconstructed from P velocities, taking into account the phase transitions, anharmonicity, and the effects of anelasticity. The velocities of seismic waves are more sensitive to temperature than to the composition of the mantle rocks, which allows the velocity models to be effectively used for reconstruction of the thermal regime of the mantle. The temperature at depths 100–300 km is reconstructed by inversion of the Kraton and Kimberlit superlong seismic profiles for compositions of the garnet harzburgite, lherzolite, and intermediate composition of garnet peridotite. The averaged temperature in the normal continental mantle is reconstructed by inversion of the IASP91 reference model for depleted and fertile substance. One-dimensional models and two-dimensional thermal fields undergo a substantial fall in temperature (~300–600°C) beneath the Siberian Craton as compared to the temperatures of the continental mantle and paleotemperatures inferred from the thermobarometry of xenoliths. Temperature profiles of the Siberian Craton deduced from seismic data lie between the conductive geotherms of 32.5–40.0 mW/m2 and below the P(H)-T values obtained for low- and high-temperature xenoliths from the Mir, Udachnaya, and Obnazhennaya kimberlite pipes. The thickness of the thermal lithosphere estimated from the intersection with the potential adiabat is 300–320 km, which is consistent with the data on heat flows and seismotomographic observations. This provides grounds for the assumption that the low-temperature anomalies (thermal roots of continents) penetrate down to a depth of 300 km. The analysis of the sensitivity of seismic velocity and density to the variations in temperature, pressure, and chemical and phase composition of petrological models shows that recognition of fine differences in chemical composition of the lithospheric rocks by seismic methods is impossible.  相似文献   

15.
A petrological model for the uppermost upper mantle and crust under the Koolau shield to a depth of about 60 km has been derived on the basis of petrology of the upper mantle and crustal xenoliths in nephelinites of the Honolulu Volcanic Series. Three main xenolith suites exist in the Koolau shield: dunites, spinel lherzolites, and garnet-bearing pyroxenites. On the basis of mineralogy, it is inferred that the dunites represent cumulates in shallow crustal tholeiitic magma chambers, the spinel lherzolites form a thick (~ 40 km) layer in the upper mantle, and the garnet pyroxenite suite occurs as veins and stringers in the spinel lherzolites at about 60 km depth.The eruption sequence in a Hawaiian volcano, i.e., tholeiite → transitional basalt → alkali basalt, is generated by partial melting of a volatile-bearing garnet-lherzolite part of a lithospheric plate as it rides over a hot spot. If the tholeiite, transitional, and alkali basalts of Hawaiian volcanoes are generated at the same depth, then the observed sequence of lavas requires replenishment of the source area with volatiles and gradual decrease of the degree of partial melting with time. Post-erosional olivine nephelinites are produced from isotopically distinct, deeper source area, which may be the asthenosphere.  相似文献   

16.
Kutch (northwest India) experienced lithospheric thinning due to rifting and tholeiitic and alkalic volcanism related to the Deccan Traps K/T boundary event. Alkalic lavas, containing mantle xenoliths, form plug-like bodies that are aligned along broadly east–west rift faults. The mantle xenoliths are dominantly spinel wehrlite with fewer spinel lherzolite. Wehrlites are inferred to have formed by reaction between transient carbonatite melts and lherzolite forming the lithosphere. The alkalic lavas are primitive (Mg# = 64–72) relative to the tholeiites (Mg# = 38–54), and are enriched in incompatible trace elements. Isotope and trace element compositions of the tholeiites are similar to what are believed to be the crustally contaminated Deccan tholeiites from elsewhere in India. In terms of Hf, Nd, Sr, and Pb isotope ratios, all except two alkalic basalts plot in a tight cluster that largely overlap the Indian Ridge basalts and only slightly overlap the field of Reunion lavas. This suggests that the alkalic magmas came largely from the asthenosphere mixed with Reunion-like source that welled up beneath the rifted lithosphere. The two alkalic outliers have an affinity toward Group I kimberlites and may have come from an old enriched (metasomatized) asthenosphere. We present a new model for the metasomatism and rifting of the Kutch lithosphere, and magma generation from a CO2-rich lherzolite mantle. In this model the earliest melts are carbonatite, which locally metasomatized the lithosphere. Further partial melting of CO2-rich lherzolite at about 2–2.5 GPa from a mixed source of asthenosphere and Reunion-like plume material produced the alkalic melts. Such melts ascended along deep lithospheric rift faults, while devolatilizing and exploding their way up through the lithosphere. Tholeiites may have been generated from the main plume head further south of Kutch.  相似文献   

17.
Experiments of the melt-peridotite reaction at pressures of 1 and 2 GPa and temperatures of 1250–1400°C have been carried out to understand the nature of the peridotite xenoliths in the Mesozoic high-Mg diorites and basalts of the North China Craton,and further to elucidate the processes in which the Mesozoic lithospheric mantle in this region was transformed.We used Fuxin alkali basalt,Feixian alkali basalt,and Xu-Huai hornblende-garnet pyroxenite as starting materials for the reacting melts,and lherzolite xenoliths and synthesized harzburgite as starting materials for the lithospheric mantle.The experimental results indicate that:(1)the reactions between basaltic melts and lherzolite and harzburgite at 1–2 GPa and 1300–1400°C tended to dissolve pyroxene and precipitate low-Mg#olivine(Mg#=83.6–89.3),forming sequences of dunite-lherzolite(D-L)and duniteharzburgite(D-H),respectively;(2)reactions between hornblende-garnet pyroxenite and lherzolite at 1 GPa and 1250°C formed a D-H sequence,whereas reactions at 2 GPa and 1350°C formed orthopyroxenite layers and lherzolite;and(3)the reaction between a partial melt of hornblende-garnet pyroxenite and harzburgite resulted in a layer of orthopyroxenite at the boundary of the pyroxenite and harzburgite.The reacted melts have higher MgO abundances than the starting melts,demonstrating that the melt-peridotite reactions are responsible for the high-Mg#signatures of andesites or adakitic rocks.Our experimental results support the proposition that the abundant peridotite and pyroxenite xenoliths in western Shandong and the southern Taihang Mountains might have experienced multiple modifications in reaction to a variety of melts.We suggest that melt-peridotite reactions played important roles in transforming the nature of the Mesozoic lithospheric mantle in the region of the North China Craton.  相似文献   

18.
The mantle xenoliths included in Quaternary alkaline volcanics from the Manzaz-district (Central Hoggar) are proto-granular, anhydrous spinel lherzolites. Major and trace element analyses on bulk rocks and constituent mineral phases show that the primary compositions are widely overprinted by metasomatic processes. Trace element modelling of the metasomatised clinopyroxenes allows the inference that the metasomatic agents that enriched the lithospheric mantle were highly alkaline carbonate-rich melts such as nephelinites/melilitites (or as extreme silico-carbonatites). These metasomatic agents were characterized by a clear HIMU Sr–Nd–Pb isotopic signature, whereas there is no evidence of EM1 components recorded by the Hoggar Oligocene tholeiitic basalts. This can be interpreted as being due to replacement of the older cratonic lithospheric mantle, from which tholeiites generated, by asthenospheric upwelling dominated by the presence of an HIMU signature. Accordingly, this rejuvenated lithosphere (accreted asthenosphere without any EM influence), may represent an appropriate mantle section from which deep alkaline basic melts could have been generated and shallower mantle xenoliths sampled, respectively. The available data on lherzolite xenoliths and alkaline lavas (including He isotopes, Ra < 9) indicate that there is no requirement for a deep plume anchored in the lower mantle, and that sources in the upper mantle may satisfactorily account for all the geochemical/petrological/geophysical evidence that characterizes the Hoggar swell. Therefore the Hoggar volcanism, as well as other volcanic occurrences in the Saharan belt, are likely to be related to passive asthenospheric mantle uprising and decompression melting linked to tensional stresses in the lithosphere during Cenozoic reactivation and rifting of the Pan–African basement. This can be considered a far-field foreland reaction of the Africa–Europe collisional system since the Eocene.  相似文献   

19.
Peridotite inclusions, crystal fragments, and kimberlite breccia at Green Knobs, New Mexico, have been studied to evaluate compositions and processes in the upper mantle below the Colorado Plateau. Most peridotite inclusions are spinel lherzolites and harzburgites, or their partly hydrated equivalents, in the Cr-diopside group. Orthopyroxene-rich websterites and olivine websterites comprise 3% of the peridotites and formed as cumulates. Typical anhydrous or slightly hydrated peridotites contain aluminous, calcic diopside (5–7% Al2O3), aluminous orthopyroxene (3–6% Al2O3), spinel, and olivine (near Fa9). Geothermometers based on different mineral pairs yield temperatures from above 1100°C to below 700°C in single rocks. High values, derived from pyroxenes with included exsolution lamellae, may approximate temperatures of primary crystallization. Low values, based on olivine-spinel and olivine-clinopyroxene pairs, approach upper mantle temperatures before eruption. In rare samples, some spinel grains are rimmed by garnet while others are not rimmed; garnet formation was controlled by nucleation kinetics. About one-third of the peridotites were deformed shortly before eruption, with effects ranging from mild cataclasis to the production of ultramylonites.Discrete crystals of garnet, olivine (near Fa8), and Cr-diopside represent garnet peridotite. Eclogites were not found. The garnet peridotite is more depleted than overlying spinel peridotite, and it is not a likely source for the minettes associated with the kimberlites.The mantle below Green Knobs consists of spinel peridotite from 45 to perhaps 60 km depth immediately underlain by more-depleted garnet peridotite. The position of the spinel-garnet transition may be fixed by kinetics. The kimberlite may have been produced when heat from ascending minette magma released volatiles from otherwise depleted garnet peridotite. Resulting gas-solid mixtures erupted along zones of deformation associated with Colorado Plateau monoclines. Sheared lherzolites formed during renewed movement along these zones.  相似文献   

20.
Toshio  Nozaka 《Island Arc》1997,6(4):404-420
Abstract Basic and ultrabasic xenoliths included in Cenozoic alkali basalts from the Kibi and Sera plateaus, Southwest Japan, can be classified into five groups on the basis of mineral association and texture. Their equilibration P-T conditions estimated from paragenesis and mineral chemistry indicate that the dominant rock type from the lower crust to upper mantle changes with increasing depth as follows: (i) pyroxene granulite (Group V) and meta-sediments; (ii) garnet gabbro (Group 111) and corundum anorthosite (Group IV); (iii) spinel pyroxenite (Group 11); and (iv) spinel peridotite and pyroxenite (Group I). Groups I1 and I11 show a lower degree of recrystallization than Groups I and V, and have similarities in composition and mineral chemistry to host basalts. Based on these facts along with the P-T conditions of equilibration, Groups I1 and I11 are interpreted as formed from basaltic magma that intruded beneath the crust-mantle boundary at an early stage of the magmatism of the alkali basalts, where the lower crust and uppermost mantle had consisted of Group V and metasediments, and Group I, respectively. It follows that the crust has grown downward due to underplating of basaltic magma beneath the bottom of pre-existing crust. Group IV has commonly the same mineral assemblage, corundum + calcic plagioclase + aluminous spinel, and shows locally, nearby kyanite crystals, almost the same texture as fine-grained aggregates in a quartzite xenolith. The aggregates appear to have been formed by reaction between kyanite and host basalt, and accordingly Group IV is interpreted as formed by reaction between metasediments and basaltic magma at the time of the underplating. The Kibi, Sera and Tsuyama areas are distinguished from the areas nearby the Sea of Japan by the occurrence of the garnet gabbro and corundum anorthosite xenoliths, by the absence of the association of olivine + plagioclase in basic and ultrabasic xenoliths, and by the lower temperature of equilibration of basic xenoliths. From these facts it is stressed that in general the crust becomes thinner and geothermal gradient becomes higher towards the back-arc side. Such a regional variation in crustal structure must reflect the tectonic situation of Southwest Japan at the time of the magmatism of the alkali basalts, namely rifting and shallow-level magmatism at the back-arc side.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号