首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During solar flares and coronal mass ejections, nuclei and electrons accelerated to high energies are injected into interplanetary space. These accelerated particles can be detected at the SOHO satellite by the ERNE instrument. From the data produced by the instrument, it is possible to identify the particles and to calculate their energy and direction of propagation. Depending on variable coronal/interplanetary conditions, different kinds of effects on the energetic particle transport can be predicted. The problems of interest include, for example, the effects of particle properties (mass, charge, energy, and propagation direction) on the particle transport, the particle energy changes in the transport process, and the effects the energetic particles have on the solar-wind plasma. The evolution of the distribution function of the energetic particles can be measured with ERNE to a better accuracy than ever before. This gives us the opportunity to contribute significantly to the modeling of interplanetary transport and acceleration. Once the acceleration/transport bias has been removed, the acceleration-site abundance of elements and their isotopes can be studied in detail and compared with spectroscopic observations.  相似文献   

2.
Two Earth-directed coronal mass ejections (CMEs), which were most effective in energetic (1–50 MeV) particle acceleration during the first 18 months since the Solar and Heliospheric Observatory (SOHO) launch, occurred on April 7 and May 12, 1997. In the analysis of these events we have deconvoluted the injection spectrum of energetic protons by using the method described by Anttila et al. In order to apply the method developed earlier for data of a rotating satellite (Geostationary Operational Environmental Satellites, GOES), we first had to develop a method to calculate the omnidirectional energetic particle intensities from the observations of Energetic and Relativistic Nuclei and Electrons (ERNE), which is an energetic particle detector onboard the three-axis stabilized SOHO spacecraft. The omnidirectional intensities are calculated by fitting an exponential pitch angle distribution from directional information of energetic protons observed by ERNE. The results of the analysis show that, compared to a much faster and more intensive CMEs observed during the previous solar maximum, the acceleration efficiency decreases fast when the shock propagates outward from the Sun. The particles injected at distances <0.5 AU from the Sun dominate the particle flux during the whole period, when the shock propagates to the site of the spacecraft. The main portion of particles injected by the shock during its propagation further outward from the Sun are trapped around the shock, and are seen as an intensity increase at the time of the shock passage.  相似文献   

3.
太阳风湍流和磁层亚暴的一种机制   总被引:1,自引:0,他引:1       下载免费PDF全文
太阳风的动量涨落将通过磁层边界在磁尾激发磁流体力学波。快磁声波携带扰动能量传到等离子体片中,发展为激波,或者通过激波的相互作用而耗散能量,使等离子体加热。等离子体片中的随机费米加速机制,使麦克斯韦分布尾巴部分的高能量粒子被加速到更高能。在宁静态时,加热、加速与耗散过程平衡。当太阳风的动量或者其涨落较大时,整个加热和加速过程加剧,更多的高能粒子产生,并从等离子体片中逃逸,形成高速的等离子体流注入近地轨道和极区,表现为磁层亚暴过程。利用这种机制,可以解释地球磁层亚暴的定性特征。  相似文献   

4.
5.
Discovery of the Van Allen radiation belts by instrumentation flown on Explorer 1 in 1958 was the first major discovery of the Space Age. A view of the belts as distinct inner and outer zones of energetic particles with different sources was modified by observations made during the Cycle 22 maximum in solar activity in 1989–1991, the first approaching the activity level of the International Geophysical Year of 1957–1958. The dynamic variability of outer zone electrons was measured by the NASA–Air Force Combined Radiation Release and Effects Satellite launched in July 1990. This variability is caused by distinct types of heliospheric structure which vary with the solar cycle. The largest fluxes averaged over a solar rotation occur during the declining phase from solar maximum, when high-speed streams and co-rotating interaction regions (CIRs) dominate the inner heliosphere, leading to recurrent storms. Intense episodic events driven by high-speed interplanetary shocks launched by coronal mass ejections (CMEs) prevail around solar maximum when CMEs occur most frequently. Only about half of moderate storms, defined by intensity of the ring current, lead to an overall flux increase, emphasizing the need to quantify loss as well as source processes; both increase when the magnetosphere is strongly driven. Three distinct types of acceleration are described in this review: prompt and diffusive radial transport, which increases energy while conserving the first invariant, and local acceleration by waves, which change the first invariant. The latter also produce pitch angle diffusion and loss, as does outward radial transport, especially when the magnetosphere is compressed. The effect of a dynamic magnetosphere boundary on radiation belt electrons is described in the context of MHD-test particle simulations driven by measured solar wind input.  相似文献   

6.
Coronal mass ejections (CMEs) and solar flares are the large-scale and most energetic eruptive phenomena in our solar system and able to release a large quantity of plasma and magnetic flux from the solar atmosphere into the solar wind. When these high-speed magnetized plasmas along with the energetic particles arrive at the Earth, they may interact with the magnetosphere and ionosphere, and seriously affect the safety of human high-tech activities in outer space. The travel time of a CME to 1 AU is about 1–3 days, while energetic particles from the eruptions arrive even earlier. An efficient forecast of these phenomena therefore requires a clear detection of CMEs/flares at the stage as early as possible. To estimate the possibility of an eruption leading to a CME/flare, we need to elucidate some fundamental but elusive processes including in particular the origin and structures of CMEs/flares. Understanding these processes can not only improve the prediction of the occurrence of CMEs/flares and their effects on geospace and the heliosphere but also help understand the mass ejections and flares on other solar-type stars. The main purpose of this review is to address the origin and early structures of CMEs/flares, from multi-wavelength observational perspective. First of all, we start with the ongoing debate of whether the pre-eruptive configuration, i.e., a helical magnetic flux rope (MFR), of CMEs/flares exists before the eruption and then emphatically introduce observational manifestations of the MFR. Secondly, we elaborate on the possible formation mechanisms of the MFR through distinct ways. Thirdly, we discuss the initiation of the MFR and associated dynamics during its evolution toward the CME/flare. Finally, we come to some conclusions and put forward some prospects in the future.  相似文献   

7.
本文利用试验粒子方法研究了在考虑等离子体湍动的情况下带电粒子在准垂直激波中的加速, 在计算中, 我们采用组合模型来拟合等离子体湍动. 计算结果表明, 在存在等离子体湍动的情况下, 粒子可横越背景磁场运动, 从而被激波反射的上游粒子在到达下游后可被等离子体湍动散射回到上游, 并再次被激波反射并加速, 这样的过程可重复很多次, 因而粒子可被加速到很高的能量. 我们还研究了激波角, 粒子的初始能量和等离子体湍动的强度, 以及相干长度和两种湍动组分强度比与加速粒子的能谱之间的关系.  相似文献   

8.
利用一维全粒子模拟得到的垂直无碰撞激波的位形,通过试验粒子方法研究了不同初始能量粒子的激波加速机制.将与激波相互作用的离子分成反射和直接穿过两类,发现只有被激波反射的离子可被激波明显加速,其中初始能量较小的反射离子通过激波冲浪机制加速,而初始能量较大的离子通过激波漂移加速机制加速.同时激波厚度还对离子被加速过程有重要影响.  相似文献   

9.
A useful index for estimating the transit speeds was derived by analyzing interplanetary shock observations. This index is the ratio of the in situ local shock speed and the transit speed; it is 0.6–0.9 for most observed shocks. The local shock speed and the transit speed calculated for the results of the magnetohydrodynamic simulation show good agreement with the observations. The relation expressed by the index is well explained by a simplified propagation model assuming a blast wave. For several shocks the ratio is approximately 1.2, implying that these shocks accelerated during propagation in slow-speed solar wind. This ratio is similar to that for the background solar wind acceleration.  相似文献   

10.
The properties of alpha particle fluxes, the density of which increase under the action of flares and development of coronal mass ejections (CMEs) and solar wind structural inhomogeneities, have been studied. The maximal alpha particle density in plasma fine structure volumes reaches 12 cm?3. The amount of ?? particles is sometimes higher than that of protons. This is explained by the effect of the mechanism by which individual solar wind zones are nonuniformly enriched in helium nuclei when strong flares develop.  相似文献   

11.
During November 1992, a series of forward and reverse shocks passed the ULYSSES spacecraft. Spectral and anisotropy measurements are reported for protons and alpha particles between 0.28 and 6 MeV observed by the Energetic Particle Composition Experiment, data recorded by the Magnetometer Experiment and the high-energy (2.7-300 MeV) proton data from the Kiel Electron Telescope. An analysis of energetic particle, plasma and magnetometer data from ULYSSES has allowed a unique study of the corresponding arrival of fare particles, particles within a corotating interaction region and particles transported with a coronal mass ejection. We present an analysis of these data in terms of possible diffusive shock acceleration but conclude that this is likely to be incompatible with the short transit time of the particles. Shock drift acceleration of particles with energies 0.3 MeV/nucleon or solar acceleration followed by particle trapping behind the shock front are alternative possibilities.  相似文献   

12.
When solar cosmic rays (SCRs) can be observed with ground-based equipment (ground-level enhancements, GLEs), events are often characterized by a rapid increase in the relativistic proton intensity during the initial phase, which makes it possible to estimate the time of particle escape from the solar corona. This phase attracts attention of researchers owing to its closeness in time to the instant of particle acceleration. It is known that the observed SCR characteristics bear traces of many physical processes, including different acceleration mechanisms the relative role of which is still unclear. Flare processes and acceleration by a shock, related to coronal mass ejection (CME), are the main pretenders to the role of SCR accelerator. Several powerful solar proton events during cycle 23 are considered in the work, and the release time of the first particles from the corona and the dynamics of CMEs have been estimated. The time series of the X-ray and radio bursts, close in time to particle escape, are analyzed. The conclusion have been drawn that the first relativistic particles were most probably accelerated during flare processes.  相似文献   

13.
The challenges of ‘standard’ model of solar flares motivated by new observations with the spacecrafts and ground-based telescopes are presented. The most important problems are in situ heating of photospheric and chromospheric loop footpoints up to the coronal temperatures without precipitating particle beams accelerated in the corona, and the sunquakes which are unlikely to be explained by the impact of highenergy particles producing hard X-ray emission. There is also the long-standing ‘number problem’ in the physics of solar flares. It is shown that modern observations favored an important role of the electric currents in the energy release processes in the low solar atmosphere. Particle acceleration mechanism in the electric fields driven by the magnetic Rayleigh-Taylor instability in the chromosphere is proposed. The electric current value I ≥ 1010 A, needed for the excitation of super-Dreicer electric fields in the chromosphere is determined. It is shown that both Joule dissipation of the electric currents and the particles accelerated in the chromosphere can be responsible for in situ heating of the low solar atmosphere. Alternative model of the solar flare based on the analogy between the flaring loop and an equivalent electric circuit which is good tool for the electric current diagnostics is presented. Interaction of a current-carrying loop with the partially-ionized plasma of prominence in the context of particle acceleration is considered. The role of plasma radiation mechanism in the sub-THz emission from the chromosphere is discussed.  相似文献   

14.
We have performed a number of one-dimensional hybrid simulations (particle ions, massless electron fluid) of quasi-parallel collisionless shocks in order to investigate the injection and subsequent acceleration of part of the solar wind ions at the Earth’s bow shock. The shocks propagate into a medium containing magnetic fluctuations, which are initially superimposed on the background field, as well as generated or enhanced by the electromagnetic ion/ion beam instability between the solar wind and backstreaming ions. In order to study the mass (M) and charge (Q) dependence of the acceleration process He2+ is included self-consistently. The upstream differential intensity spectra of H+ and He2+ can be well represented by exponentials in energy. The e-folding energy Ec is a function of time: Ec increases with time. Furthermore the e-folding energy (normalized to the shock ramming energy Ep) increases with increasing Alfvén Mach number of the shock and with increasing fluctuation level of the initially superimposed turbulence. When backstreaming ions leave the shock after their first encounter they exhibit already a spectrum which extends to more than ten times the shock ramming energy and which is ordered in energy per charge. From the injection spectrum it is concluded that leakage of heated downstream particles does not contribute to ion injection. Acceleration models that permit thermal particles to scatter like the non-thermal population do not describe the correct physics.  相似文献   

15.
The fluxes of energetic particles in the radiation belts are found to be strongly controlled by the solar wind conditions. In order to understand and predict the radiation particle intensities, we have developed a physics-based Radiation Belt Environment (RBE) model that considers the influences from the solar wind, ring current and plasmasphere. Recently, an improved calculation of wave-particle interactions has been incorporated. In particular, the model now includes cross diffusion in energy and pitch-angle. We find that the exclusion of cross diffusion could cause significant overestimation of electron flux enhancement during storm recovery. The RBE model is also connected to MHD fields so that the response of the radiation belts to fast variations in the global magnetosphere can be studied. We are able to reproduce the rapid flux increase during a substorm dipolarization on 4 September 2008. The timing is much shorter than the time scale of wave associated acceleration.  相似文献   

16.
Magnetic clouds modify the structure of the interplanetary magnetic field on spatial scales of tenth of AU. Their influence on the transport of energetic charged particles is studied with a numerical model that treats the magnetic cloud as an outward propagating modification of the focusing length. As a rule of thumb, the influence of the magnetic cloud on particle intensity and anisotropy profiles increases with decreasing particle mean free path and decreasing particle speed. Three cases are considered: (1) when the magnetic cloud is the driver of a shock that accelerates particles as it propagates outward, (2) when the magnetic cloud interacts with a prior solar energetic particle event, and (3) when a magnetic cloud already is present in interplanetary space at the time of a solar energetic particle event. In the latter case the cloud acts as a barrier, storing the bulk of the particles in its downstream medium.  相似文献   

17.
Coronal mass ejections (CMEs) are large-scale magnetized plasma structures ejected from closed magnetic field regions of the Sun. White light coronagraphic observations from ground and space have provided extensive information on CMEs in the outer corona. However, our understanding of the solar origin and early life of CMEs is still in an elementary stage because of lack of adequate observations. Recent space missions such as Yohkoh and Solar and Heliospheric Observatory (SOHO) and ground-based radioheliographs at Nobeyama and Nancay have accumulated a wealth of information on the manifestations of CMEs near the solar surface. We review some of these observations in an attempt to relate them to what we already know about CMEs. Our discussion relies heavily on non-coronagraphic data combined with coronagraphic data. Specifically, we discuss the following aspects of CMEs: (i) coronal dimming and global disk signatures, (ii) non-radial propagation during the early phase, (iii) Photospheric magnetic field changes during CMEs, and (iv) acceleration of fast CMEs. The relative positions and evolution of coronal dimming, arcade formation, prominence eruption will be discussed using specific events. The magnitude and spatial extent of CME acceleration may be an important parameter that distinguishes fast and slow CMEs.  相似文献   

18.
Statistical analysis is performed for the relationship of coronal mass ejections (CMEs) and X-ray flares with the fluxes of solar protons with energies >10 and >100 MeV observed near the Earth. The basis for this analysis was the events that took place in 1976–2015, for which there are reliable observations of X-ray flares on GOES satellites and CME observations with SOHO/LASCO coronagraphs. A fairly good correlation has been revealed between the magnitude of proton enhancements and the power and duration of flares, as well as the initial CME speed. The statistics do not give a clear advantage either to CMEs or the flares concerning their relation with proton events, but the characteristics of the flares and ejections complement each other well and are reasonable to use together in the forecast models. Numerical dependences are obtained that allow estimation of the proton fluxes to the Earth expected from solar observations; possibilities for improving the model are discussed.  相似文献   

19.
The observations of active region (AR) NOAA 10792 in the Ca II 8498 ? line with an ATB-1 solar telescope at the Sternberg State Astronomical Institute, Moscow State University (SSAI MSU) on July 30, 2005, are illustrated, and the events are analyzed using the data obtained on spacecraft. Three flares and accompanying coronal mass ejections (CMEs) are considered. It has been indicated that the beginning of the first compact CME lagged behind the flare onset by 3 min. Plasma ascended with acceleration that reached 0.4 km/s2 at the flare maximum. The matter was also apparently accelerated after the flare maximum, since an ejection could only appear at the edge of the occulting C 2 LASCO coronograph disk at 0557 UT when acceleration is about 0.5 km/s2. The second CME (of the halo type) leaded the beginning of the corresponding flare.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号