首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
{1} The first phase of the superstorm on April 6, 2000 was studied based on the analogy between systems of magnetospheric currents and wire electric currents. The conventional dataset supplemented with maps of ionospheric equivalent currents (ECs) and field-aligned currents (FACs) was also used. The application of this analogy made it possible to introduce spatial R.N inhomogeneities into FAC distributions in the two-dimensional ionosphere and three types of meridional current systems, MCS-0, MCS-1, and MCS-2, providing electric coupling of three Iijima and Potemra FAC Regions. This basis was used to describe the formation and observed dynamics of ionospheric auroral electrojets and three-dimensional current systems in a disturbed magnetosphere-ionosphere system. The results the modify known paradigms of the substorm current wedge (SCW). A new important fact was noted: simultaneously with the beginning of the disturbance expansion phase due to the stepwise growth in the dynamic pressure of the solar wind (SW), the stepwise growth in the area of polar cap and in the electromagnetic energy flux coming to the magnetosphere from the SW were observed.  相似文献   

2.
VLF wave impedance measurements have been successfully used to detect air-filled drainage galleries near the town of Alcala, Spain. The galleries are detectable by H-polarization electric field measurements due to the electric field anomalies associated with the galleries and overlying gravel deposits. The forced deviation of the primary current flowlines around the 2D void results in a higher-than-normal apparent resistivity and a relative phase low above the gallery. The findings support earlier theoretical predictions that at very low frequencies (VLFs), galvanic current effects may dominate over vortex currents in moderately conductive terrains. Theoretical modelling confirmed that for a resistive target no detectable E-polarization response can be expected from either magnetic or electric field measurements since current line deviations and vortex effects are negligible under such circumstances. The results demonstrate the importance of using at least two orthogonal VLF transmitters in order that anomalies arising from both galvanic and inductive effects may be identified, irrespective of orientation.  相似文献   

3.
By using Tsyganenko's model for the magnetosphere's magnetic field, which links two hemispheres of the ionosphere, and adopting a practical boundary condition for the electric potential around the polar cap, we developed a new ionosphere–magnetosphere coupling model based on prairie view dynamo code (PVDC). The new model takes the variations in solar wind and interplanetary magnetic field, as well as the geomagnetic activity, into account. Rather than the previous version of PVDC that is useful only for quiet conditions, the new model enables to calculate the electric potential and currents in the ionosphere and the field-aligned current (FAC) off the ionosphere in quiet and disturbed times. Comparison of the calculated FAC with the measurements of Space Technology 5 (ST5) mission shows a good agreement.  相似文献   

4.
The distribution of the electric potential, generated by the magnetospheric field-aligned currents flowing along the auroral oval and in the dayside cusp region at the upper atmospheric boundary in the polar ionosphere, is calculated. The obtained electric potential distributions are used to calculate the electric field strength near the Earth’s surface. The results of the model calculations are in good agreement with the electric field measurements at Vostok Antarctic station. It has been indicated that large-scale magnetospheric fieldaligned currents, related to IMF variations, can affect variations in the electric field strength in the polar regions via changes in the electric potential in the polar ionosphere, associated with these currents.  相似文献   

5.
Modelling of space weather effects on pipelines   总被引:1,自引:0,他引:1  
The interaction between the solar wind and the Earth's magnetic field produces time varying currents in the ionosphere and magnetosphere. The currents cause variations of the geomagnetic field at the surface of the earth and induce an electric field which drives currents in oil and gas pipelines and other long conductors. Geomagnetically induced currents (GIC) interfere with electrical surveys of pipelines and possibly contribute to pipeline corrosion.In this paper, we introduce a general method which can be used to determine voltage and current profiles for buried pipelines, when the external geoelectric field and the geometry and electromagnetic properties of the pipeline are known. The method is based on the analogy between pipelines and transmission lines, which makes it possible to use the distributed source transmission line (DSTL) theory. The general equations derived for the current and voltage profiles are applied in special cases. A particular attention is paid to the Finnish natural gas pipeline network.This paper, related to a project about GIC in the Finnish pipeline, thus provides a tool for understanding space weather effects on pipelines. Combined with methods of calculating the geoelectric field during magnetic storms, the results are applicable to forecasting of geomagnetically induced currents and voltages on pipelines in the future.  相似文献   

6.
The relationship between electric fields, height-integrated conductivities and electric currents in the high-latitude nightside electrojet region is known to be complex. The tristatic nature of the EISCAT UHF radar facility provides an excellent means of exploring this interrelationship as it enables simultaneous estimates to be made of the full electric field vector and the ionospheric Hall and Pedersen conductances, further allowing the determination of both field-perpendicular electric current components. Over 1300 h of common programme observations by the UHF radar system provide the basis of a statistical study of electric fields, conductances and currents in the high-latitude ionosphere, from which preliminary results are presented. Times at which there is significant solar contribution to the ionospheric conductances have been excluded by limiting the observations according to solar zenith angle. Initial results indicate that, in general, the times of peak conductance, identified from the entire set of EISCAT observations, do not correspond to the times of the largest electric field values; the relative contribution of ionospheric conductance and electric field to the electrojet currents therefore depends critically on local time, a conclusion which corroborates work by previous authors. Simultaneous measurements confirm a tendency for a decrease in both Hall and Pedersen conductances to be accompanied by an increase in the electric field, at least for moderate and large electric field value, a tendency which is also identified to some extent in the ratio of the conductances, which acts as an indicator of the energy of precipitating particles.  相似文献   

7.
For over 20 years, powerful VLF transmitters have been used as electromagnetic sources for subsurface investigations in mining exploration. Measurements initially concerned the vertical component of the magnetic field or the inclination of the field and were later extended to measurement of the horizontal electric field in the direction of the transmitter, to determine the resistivity of the terrain. Measurement of the electric field is usually performed with electric lines, grounded or not, with lengths of at least 5 m. This paper presents the concept of a VLF resistivity meter with a very short electric sensor (1 m) and the results obtained with it. This technique improves the measurement of the electric field, which is in principle a point value. It also permits a higher spatial sampling rate and, by closely linking the electric sensor with the magnetic sensor on a lightweight mount, makes it possible for the instrument to be used by a single operator. In addition, transformation of the electric field data, analogous to reduction to the pole in magnetism, is proposed to correct the horizontal deformation of the anomalies created by polarization of the primary field. Comparison with direct current electrical measurements shows highly satisfactory correlations. This transformation, validated for VLF, can be extended to any electrical or electromagnetic method using a uniform primary field, i.e. gradient array in direct current or low-frequency magnetotellurics. We call this verticalization of the electric field. Resistivity measurements and mapping using the VLF frequency range can be applied not only to mining but also to a wide range of shallow geophysical studies (hydrology, civil engineering, etc.) and are not limited to problems concerning the location of conductive targets  相似文献   

8.
The electromagnetic field due to ionospheric currents has to be known when evaluating space weather effects at the earths surface. Forecasting methods of these effects, which include geomagnetically induced currents in technological systems, are being developed. Such applications are time-critical, so the calculation techniques of the electromagnetic field have to be fast but still accurate. The contribution of secondary sources induced within the earth leads to complicated integral formulas for the field at the earths surface with a time-consuming computation. An approximate method of calculation based on replacing the earth contribution by an image source having mathematically a complex location results in closed-form expressions and in a much faster computation. In this paper we extend the complex image method (CIM) to the case of a more realistic electrojet system consisting of a horizontal line current filament with vertical currents at its ends above a layered earth. To be able to utilize previous CIM results, we prove that the current system can be replaced by a purely horizontal current distribution which is equivalent regarding the total (= primary + induced) magnetic field and the total horizontal electric field at the earths surface. The latter result is new. Numerical calculations demonstrate that CIM is very accurate and several magnitudes faster than the exact conventional approach.  相似文献   

9.
射频大地电磁法(RMT)是以潜艇天线发射的射线源等作为场源的一种地球物理勘探方法,目前被广泛应用于近地表工程和环境地球物理勘探.RMT数据解释常采用基于静态假设的大地电磁法(MT)程序,往往会反演出不真实的浅层目标体.为解决这一长期困扰RMT资料解释的问题,本文实现了考虑位移电流的RMT有限元数值模拟.为了处理任意复杂模型,如起伏地形,非结构的三角形网格被用于离散RMT模型.首先通过算例对比,验证了程序的正确性和可靠性.通过Dike模型讨论了空气层厚度对RMT数值解的影响,结果表明当空气层厚度大于1/4波长即可满足精度要求.以山脊模型为例计算了位移电流对RMT响应的影响,表明位移电流的影响会随着山脊高程的增加而增大.最后通过舒家店实际模型进一步验证了位移电流在RMT中的重要性.  相似文献   

10.
用Kamide-Matsushita方法,在行星际磁场具有较小的北向分量,且|By|>>|Bk|时,对磁语和磁扰状态以及Br>0和By<0等不同情况,分别计算了场向电流引起的电离层电势、电场和电流体系.结果表明,极隙区场向电流的存在使高纬向日面区域的电势发生畸变,当By>0时,无论是磁扰还是磁静日,极隙区电场具有显著的北向分量;等离子体对流有较大的西向分量;电离层电流为东向电流.当By<0时,电场和等离子体对流的方向与By>0时相反;电离层电流在磁抗日有西向分量,但在磁静日没有西向分量.电导率对电场和电流体系的影响十分明显,磁扰极光带电导率增强使电流涡从背阳面向向阳而漂移,与静日相比,磁扰时极隙区场向电流引起的电场畸变更为明显,但电场和电流强度的大小却基本保持不变.  相似文献   

11.
Parameters of field-aligned currents reconstructed by ground-based measurements of magnetic field in the Scandinavian countries (IMAGE) and ionospheric conductivity for specific events of the 6 and 8 December 2004 are represented here. Ionospheric conductivity was calculated from precipitating electron flux measured at DMSP-13 satellite and electron density EISCAT incoherent scattering radar direct measurements. There is a high correlation between field-aligned currents, calculated from DMSP-13 satellite data and field-aligned currents calculated from radar measurements for the December 6, 2004 in the presence of developed ionospheric current system. The comparison of field-aligned currents, reconstructed by the proposed method, with the currents calculated by the variation of magnetic field on the DMSP satellites, confirms correctness of the offered algorithm.  相似文献   

12.
Takeshi Hashimoto 《Island Arc》2001,10(3-4):306-317
Abstract A resistivity survey method using artificial telluric noise was examined and applied to a field of a fault zone. The electric earth current was measured at 50 sites in the Nojima Fault zone, which is in the northwestern part of Awaji Island, southwestern Japan. The dominant component of the observed electric field is supposed to be leakage currents from DC electric railways running outside the island. Amplitude and polarization of the stray current were systematically investigated and were revealed to represent the subsurface electrical structure of the study area. Some features on the fault zone's electrical structure have been pointed out, including: (i) an electrical boundary that corresponds to a geological one between granite (resistive) and sediments (conductive); and (ii) a low resistivity spot on the surface rupture of the earthquake fault. The structure estimated in the present study is both qualitatively and quantitatively consistent with previous resistivity surveys done using other methods pursued in the same area. It shows the validity of the 'stray current method' as one that is easy and uses low-cost resistivity exploration tools in a region where the effect of artificial noise caused mainly by leakage currents from electrical railways cannot be ignored.  相似文献   

13.
The behavior of electric and magnetic field variations over the eastern coastal region of North America is studied using a scaled laboratory electromagnetic analogue model. The model source frequency used simulates a period of 1 h in the geophysical scale. The results indicate that deflection and conductive channelling of induced electric current is important for both the E-polarization (northeast-southwest direction of the electric field of the source) and the H-polarization (northwest-southeast) of the source field. In the model, conductive channelling occurs through the Strait of Belle Isle, Cabot Strait, and in the St. Lawrence River. Current deflection is particularly prevalent around the southeast coast of Newfoundland for both E- and H-polarization, and around the northeast coastline of Nova Scotia for E-polarization. The model results also show current deflection by cape and bay coastal features, as well as by ocean depth contours.A comparison of model measurements for the cases of a uniform source field and a line current source indicate that the nature of the source field has a measurable but surprisingly small effect on the vertical to horizontal magnetic field ratio for both E- and H-polarizations, and negligible effect on the magnetotelluric ratio for coastal regions.The model fields in coastal regions were found to be strongly influenced by induced currents, deflected and channelled by the coastline and ocean bathymetry, and were dependent on the nature and particularly the polarization of the source field. Thus, along the complex coastline of eastern North America, a wide range of electric and magnetic field values should be expected. In some regions the coast effect, measured by the vertical to horizontal magnetic field ratio at the coast, could be expected to be extremely small or absent, while in other regions the ratio could approach a value as large as unity for variations of 1 h period.  相似文献   

14.
The variability of air–earth electric currents in the lower 3-m air layer is analyzed in a complex with measurement data on the physical parameters that affect charge transfer in the atmosphere. Three types of air–earth current density profiles have been revealed during experimental observations in summer in Rostov region: (1) the current density decreases with an increase in the distance from the Earth’s surface and then stabilizes (nighttime conditions); (2) the current density increases with altitude up to 1 m and then decreases as altitude increases (day hours); (3) transient between types 1 and 2 that are observed in the morning and evening hours. The intensity of charge transfer in the surface air layer under the action of mechanical forces under different stratifications is estimated on the basis of data on altitude variations in the air–earth current density in view of the stationarity of electric processes and the constancy in the altitude of the total air–earth current density. Thermodynamic conditions are estimated with the use of wind velocity measurements and calculations of the turbulence factor and vertical component of the air temperature gradient.  相似文献   

15.
本文选取了INTERMAGNET地磁台网2001年到2012年的地磁数据,对其进行世界时(UT)到地方时(LT)的转换后利用自然正交分量法(NOC)从所选资料中提取出太阳静日变化Sq成分,再通过球谐分析方法建立模型分离内、外源Sq成分,逐日反演出内、外源Sq等效电流体系,并得到外源Sq等效电流体系南北电流涡中心电流强度.本文将外源Sq等效电流体系南北电流涡中心电流强度与同一时期的Dst指数进行了对比分析,研究表明它们之间具有同步变化的规律,且北半球电流涡中心电流强度在磁暴发生时的异常现象远高于南半球.对F10.7cm太阳射电流量与外源Sq等效电流体系南、北半球电流涡中心电流强度的长短周期分析发现,Sq等效电流表现出明显的11年周期特点,与太阳活动周期一致.外源南、北半球电流涡中心电流强度和F10.7cm年均值的相关系数分别达到了0.93和0.90,说明太阳活动是导致外源Sq电流体系变化的最直接也最主要的因素,这可能与电离层电导率受控于太阳的电磁辐射相关.  相似文献   

16.
In addition to the electric potentials induced by the gyral motions in the oceans, horizontal electric fields and currents result from the exchange of water between the depths and the surface in the presence of the main geomagnetic field. In this note a simple model representing such a circulation is considered, and the spatial distribution of the corresponding induced electric fields is calculated. A surface velocity of 2 knots could induce electric currents up to 10?4 Amp/m2. These steady currents in the ocean could be comparable with the normal oceanic daily variation. Since a proportion of the electric current would return through the earth below the sea floor, this calculation provides an upper limit to this component. An indication is also given of the magnetic field distortion and associated electric currents which occur in a highly conducting (Jovian) ocean.  相似文献   

17.
O. Amm 《Annales Geophysicae》1998,16(4):413-424
The method of characteristics for obtaining spatial distributions of ionospheric electrodynamic parameters from ground-based spatial observations of the ground magnetic disturbance and the ionospheric electric field is presented in spherical geometry. The method includes tools for separation of the external magnetic disturbance, its continuation to the ionosphere, and calculation of ionospheric equivalent currents. Based on these and the measured electric field distribution, the ionospheric Hall conductance is calculated as the primary output of the method. By estimating the Hall- to-Pedersen conductance ratio distribution, the remaining ionospheric electrodynamic parameters are inferred. The method does not assume = 0 to allow to study time-dependent situations. The application of this method to a Harang discontinuity (HD) situation on 27 October 1977, 17:39 UT, reveals the following: (1) The conductances at and north of the HD are clearly reduced as compared to the eastern electrojet region. (2) Plasma flow across the HD is observed, but almost all horizontal current is diverted into upward-flowing field-aligned currents (FACs) there. (3) The FACs connected to the Hall currents form a latitudinally aligned sheet with a magnitude peak between the electrically and magnetically defined HD, where break-up arcs are often observed. Their magnitude is larger than that of the more uniformly distributed FACs connected to the Pedersen currents. They also cause the southward shift of the magnetically defined HD with respect to the electrically defined one. (4) A tilt of the HD with respect to geomagnetic latitude as proposed by an earlier study on the same event, which used composite vector plot technique, and by statistical studies, is not observed in our single time-step analysis.Also at: Finnish Meteorological Institute, Geophysical Research, P.O. Box 503, FIN-00101 Helsinki, Finland.  相似文献   

18.
Summary The paper presents comprehensive theory based on the boundary integral method for calculations of the electric potential, electric field and corresponding magnetic field due to a pair of D.C. source electrodes near a vertical resistivity contact in the halfspace, indlucing a 3-D disturbing body in the vicinity of the contact. Special attention is paid to the case when the disturbing body touches the vertical contact. Results of numerical calculations are presented in the form of sounding curves and a set of isoline graphs for potential, components of the electric and magnetic field (total and anomalous) on the surface of the Earth. It is shown that the presence of the disturbing body at the contact is most pronounced in the electrical characteristics. Anomalies in the magnetic field are small in comparison to the field due to the electric current in the electrode cable and primary currents flowing from the electrodes.  相似文献   

19.
The tidal motion of sea water across the earth's magnetic field is known to induce small electric currents to flow in the oceans and the surrounding land. There has been recently a great deal of interest in this phenomenon. Here we consider a model ocean in the form of an infinitely long channel with a tidal wave passing along it. It is shown that for the lunar tidal frequency of 12.45 hours the solution of this problem for typical ocean depths exhibits characteristics which are essentially due to the high frequency. The solution therefore differs appreciably from low-frequency solutions which are therefore only applicable as models of the shallow seas. In our model we observe concentrations of electric current near the coast and phase changes relative to the oceanic tide. A new “equivalent field exclusion principle” is presented and used to explain some of the results we have obtained. The method used is simple and applies readily to waves of any frequency, and results are given for waves of higher frequencies. The amplitude and phase lag of the magnetic field of a channel simulating the Atlantic Ocean are discussed.  相似文献   

20.
High-resolution measurements by the double probe electric field instrument on the Freja satellite are presented. The observations show that extremely intense (up to 1 V m−1) and fine-structured (<1 km) electric fields exist at auroral latitudes within the altitude regime explored by Freja (up to 1700 km). The intense field events typically occur within the early morning sector of the auroral oval (01-07 MLT) during times of geomagnetic activity. In contrast to the observations within the auroral acceleration region characterized by intense converging electric fields associated with electron precipitation, upward ion beams and upward field-aligned currents, the intense electric fields observed by Freja are often found to be diverging and located within regions of downward field-aligned currents outside the electron aurora. Moreover, the intense fields are observed in conjunction with precipitating and transversely energized ions of energies 0.5-1 keV and may play an important role in the ion heating. The observations suggest that the intense electric field events are associated with small-scale low-conductivity ionospheric regions void of auroral emissions such as east-west aligned dark filaments or vortex streets of black auroral curls located between or adjacent to auroral arcs within the morningside diffuse auroral region. We suggest that these intense fields also exist at ionospheric altitudes although no such observations have yet been made. This is possible since the height-integrated conductivity associated with the dark filaments may be as low as 0.1 S or less. In addition, Freja electric field data collected outside the auroral region are discussed with particular emphasis on subauroral electric fields which are observed within the 19–01 MLT sector between the equatorward edge of the auroral oval and the inner edge of the ring current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号