首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
中纬度海洋热力状况异常影响大气主要通过两种途径:非绝热加热的直接强迫作用和大气瞬变涡旋反馈的间接强迫作用,而后者的作用并没有被很好地认识.为了进一步理解间接强迫作用的物理机制,本文利用观测资料分析和区域大气模式模拟,研究了伴随冬季北太平洋副热带海洋锋强度变化的中纬度大气场异常,特别是对流层中高层不同频率的涡旋扰动活动的异常.实际观测和数值试验结果均表明,当北太平洋副热带海表面温度锋偏强时,其上空的中纬度大气经向温度梯度增强;对应此时的大气斜压性增强,且中纬度大气西风急流整层加速;然而增强的大气斜压性并不对应一致性增强的大气涡旋扰动活动.中纬度大气的涡旋扰动根据其生命周期,进一步划分为高频(2~7天)和低频(10~90天)涡旋扰动.研究结果表明偏强的北太平洋副热带海洋锋对应着增强的中纬度大气高频涡旋扰动和减弱的低频涡旋扰动;其中,中纬度大气高频扰动活动的增强,将有利于削弱中纬度大气经向温度梯度,从而减弱中纬度大气斜压性;而高频扰动对纬向风倾向项的正贡献,有利于中纬度急流中心北侧及下游区域的西风加速,形成中纬度西风相当正压结构的增强;大气低频扰动的减弱,对中纬度大气纬向风倾向项产生负贡献,不利于急流的纬向均匀化,而其热力强迫异常则有利于维持中纬度对流层中层大气的经向温度梯度.  相似文献   

2.
利用卫星遥感和现场观测资料,结合线性Rossby波诊断解,研究了近20年热带太平洋和印度洋暖池区海面高度的快速升高趋势.结果表明,两大洋热带区域同步的海面上升趋势通过印度尼西亚海的海洋波导通道联系在一起,其动力关联主要发生在温跃层深度,表现为热带太平洋的海面高度低频波动信号通过印度尼西亚海传至印度洋,并影响到南印度洋的东部海区,而南印度洋西部的海面变化主要受印度洋内区局地风场的调制.超前-滞后相关分析的结果表明,东南印度洋海面高度的年际和年代际变化信号分别源自太平洋赤道和近赤道海区,分别受到了太平洋赤道风应力异常和近赤道风应力旋度异常的调控,并且分别与ENSO的年际过程和PDO的年代际过程密切相关.  相似文献   

3.
北太平洋副热带逆流区长Rossby波动力特性   总被引:10,自引:1,他引:9       下载免费PDF全文
利用2.5层海洋模式分析了北太平洋副热带逆流(STCC)区波长在450-840 km之间的长Rossby波的动力特性.不考虑耗散时,STCC区域的长Rossby波是中性波,其快模态的周期是88-110 d,相速度为0.06-0.09 m/s,群速度几乎与相速度相同.弱耗散作用使长Rossby波为弱衰减波,但几乎不影响其相速度与频率.观测的STCC区海平面高度(SSH)的准90d振荡对应长Rossby波的第一斜压模,"快"模态的波动振幅是"慢"模态的约5倍.准90d振荡存在的3个必要条件是:(1)第2层向西平均流取值为0.02-0.04m/s;(2)2个活动层的厚度超过480 m;(3)第2层的密度介于24.8-26.8之间.正因为北太平洋STCC区满足这3个条件,才在该海域出现SSH的准90d振荡.海面热通量的变化对快模态长Rossby波的传播特性影响不大,但对慢模态的传播特性有一定的影响.  相似文献   

4.
南极绕极流(Antarctic Circumpolar Current——ACC)对风应力强迫存在两种响应,即正压过程的即时响应与斜压过程的延时响应.主要关注南极绕极流的斜压不稳定机制,即纬向风应力的增强导致南大洋等密面斜率加大,平均流更趋于斜压不稳定;斜压不稳定产生中尺度涡,使得平均流势能向涡旋能量(势能和动能)转化,造成了ACC体积输运在时间上滞后两年的显著减弱.ACC输运与纬向风应力的这种滞后反相关关系可以很好地解释ACC体积输运在近20a保持基本稳定的现象.  相似文献   

5.
本文利用NCEP/NCAR再分析资料,分析了1979~2008年北半球冬季哈得莱(Hadley)环流年际变化的特征,在此基础上,讨论了在观测海温驱动下大气环流模式的模拟结果.观测分析表明,近30年北半球冬季哈得莱环流年际变率的主导模态呈现出空间上的非均匀变化,哈得莱环流圈位于热带部分与其位于副热带部分的强度变化符号相反,这在表征其年际变化特征的另一指标——经向风垂直切变中亦有显著体现.大气环流模式AMIP积分试验结果表明,北半球冬季哈得莱环流强度的上述年际变化源于海温强迫.分析发现,热带中东太平洋和南印度洋暖海温距平强迫导致了哈得莱环流强度年际变化的主导模态呈现出空间上的非均匀变化.ElNio的局地作用和大气桥作用激发的太平洋局地哈得莱环流(30°S~30°N,150°E~90°W)和大西洋局地哈得莱环流(30°S~30°N,90°W~10°W)并非呈现出整体一致的变化,尽管二者纬向平均后分别使气候平均的哈得莱环流圈强度加强和减弱.ElNio遥强迫作用激发的西北太平洋反气旋(0°~30°N,100°E~150°E)使北半球Hadley环流圈强度减弱,ElNio和南印度洋暖海温距平共同强迫出的南印度洋反气旋(30°S~0°,60°E~100°E)使南半球Hadley环流圈的强度亦减弱.上述局地哈得莱环流的变化叠加后,因纬向平均的太平洋局地哈得莱环流强度在(副)热带部分的增强大(小)于纬向平均的大西洋局地哈得莱环流和西北太平洋、南印度洋局地哈得莱环流在(副)热带地区的减弱,结果使得哈得莱环流圈的强度在(副)热带部分偏强(弱);较之南半球,北半球强度变化稍强.因此,北半球冬季哈得莱环流年际变率的主导模态在空间上呈现出非均匀变化.  相似文献   

6.
正压流体中,从准地转位涡方程出发采用摄动方法和时空伸长变换推导了在缓变地形下β效应的Rossby代数孤立波方程,得到Rossby波振幅满足带有缓变地形非齐次Benjamin-Davis-Ono(BDO)方程的结论.通过分析孤立Rossby波振幅的演变,指出了β效应、地形效应是诱导Rossby孤立波产生的重要因素,说明了在缓变地形强迫效应和非线性作用相平衡的假定下,Rossby孤立波振幅的演变满足非齐次BDO方程,给出在切变基本气流下缓变地形和正压流体中Rossby波的相互作用.  相似文献   

7.
利用中等复杂程度热带大气和海洋模式研究了热带太平洋和大西洋SST通过风应力桥梁的相互作用.利用1958~1998年NCEP分析的海表面温度场(SST)强迫大气模式得到的表面风应力与NCEP分析的同期热通量共同驱动海洋模式,作为控制试验;和控制试验平行,但强迫大气模式的SST在某一海盆取为多年气候平均值的试验作为敏感性试验;比较控制试验与敏感性试验模拟,则可反映风应力桥梁作用下热带某海盆SST异常对其他海盆的影响.结果表明,热带某一海盆SST暖(冷)异常总是引起局地海盆表面西部西(东)风异常和东部东(西)风异常;热带太平洋SST暖(冷)异常导致的该海盆东部表面东(西)风异常可以扩展到热带大西洋,从而导致热带大西洋SST冷(暖)异常;热带大西洋SST暖(冷)异常导致的该海盆西部表面西(东)风异常可以扩展到热带太平洋,从而导致热带太平洋SST暖(冷)异常.  相似文献   

8.
南极地区大气环流的流体物理实验(二)   总被引:1,自引:0,他引:1  
经一系列物理实验,研究了南极大地形及其表面冷却对南极附近大气环流的影响.实验中的主要动力相似参数是热力Rossby数R_(OT)及Taylor数T_a.实验表明,在与大气接近的实验参数值条件下,在南极上空,在流体下层形成向外的排溢流,在中高层形成极地涡旋.极地涡旋包括3~4个沿极圈按顺时针方向东移动的低压槽,形成沿极地外围的行星波环流结构.发现东移行星波的波形及强度有准周期低频振荡,其振荡周期相当于地球大气的21d.东移的槽在110°E以东逐渐发展,在160°W的Ross海附近发展得最深,再往东则逐渐减弱.实验表明,南极大陆地形及其地面冷源强迫作用,对南极附近大气环流特征的形成非常重要.  相似文献   

9.
热带海盆对热力强迫的线性响应   总被引:1,自引:0,他引:1  
通过对线性两层海洋模式进行正交模求解,得到了热带矩形海盆在热力强迫下的海洋动力场水平结构.在这个线性两层模式中,没有施加风应力,仅考虑了热力强迫下的Rayleigh摩擦和Newton冷却效应.在一种理想化的经向不均匀加热强迫下,动力场表现出类似于风生环流的特征:窄而强的西边界区,宽而弱的东边界区;具有双涡(double-gyre)结构.线性响应中斜压模态比正压模态大一个量级,在响应中占主要地位.  相似文献   

10.
新疆夏季降水年代际转型的归因分析   总被引:4,自引:0,他引:4       下载免费PDF全文
本研究针对我国内陆新疆地区在20世纪80年代末出现由暖干向暖湿的年代际转型,从大气环流因子进行归因分析.结果显示,位于东亚沿海地区的东亚-太平洋型遥相关波列(EAP)的强度和位置的年代际加强和偏移对于新疆地区此次气候的干湿转型具有重要贡献.转型之前EAP强度偏弱,位置相对偏东,对新疆夏季降水变化没有明显贡献,且影响新疆夏季降水发生的主要环流系统是位于中纬度欧亚大陆上空的异常纬向波列.转型后EAP强度偏强,位置相对前期向西偏移,因此从西北太平洋向我国内陆地区的异常水汽输送显著增强,使得新疆地区大气含水量增加,从而导致20世纪80年代末以后新疆夏季降水的增加.  相似文献   

11.
The interannual variability of the tropical Indian Ocean is studied using Simple Ocean Data Assimilation (SODA) sea surface height anomalies (SSHA) and Hadley Centre Ice Sea Surface Temperature anomalies. Biannual Rossby waves (BRW) were observed along the 1.5° S and 10.5° S latitudes during the Indian Ocean Dipole (IOD) years. The SODA SSHA and its BRW components were comparable with those of Topex/Poseidon. The phase speed of BRW along 1.5° S is −28 cm/s, which is comparable with the theoretical speed of first mode baroclinic (equatorially trapped) Rossby waves. This is the first study to show that no such propagation is seen along 1.5° S during El Nino years in the absence of IOD. Thus the westward propagating downwelling BRW in the equatorial Indian Ocean is hypothesized as a potential predictor for IOD. These waves transport heat from the eastern equatorial Indian Ocean to west, long before the dipole formation. Along 10.5° S, the BRW formation mechanisms during the El Nino and IOD years were found to be different. The eastern boundary variations along 10.5° S, being localized, do not influence the ocean interior considerably. Major portion of the interannual variability of the thermocline, is caused by the Ekman pumping integrated along the characteristic lines of Rossby waves. The study provides evidence of internal dynamics in the IOD formation. The positive trend in the downwelling BRW (both in SODA and Topex/Poseidon) is of great concern, as it contributes to the Indian Ocean warming.  相似文献   

12.
Based on the merged satellite altimeter data and in-situ observations,as well as a diagnosis of linear baroclinic Rossby wave solutions,this study analyzed the rapidly rise of sea level/sea surface height(SSH)in the tropical Pacific and Indian Oceans during recent two decades.Results show that the sea level rise signals in the tropical west Pacific and the southeast Indian Ocean are closely linked to each other through the pathways of oceanic waveguide within the Indonesian Seas in the form of thermocline adjustment.The sea level changes in the southeast Indian Ocean are strongly influenced by the low-frequency westward-propagating waves originated in the tropical Pacific,whereas those in the southwest Indian Ocean respond mainly to the local wind forcing.Analyses of the lead-lag correlation further reveal the different origins of interannual and interdecadal variabilities in the tropical Pacific.The interannual wave signals are dominated by the wind variability along the equatorial Pacific,which is associated with the El Ni?o-Southern Oscillation;whereas the interdecadal signals are driven mainly by the wind curl off the equatorial Pacific,which is closely related to the Pacific Decadal Oscillation.  相似文献   

13.
The Solomon Sea is a key region in the Pacific Ocean where equatorial and subtropical circulations are connected. The region exhibits the highest levels in sea level variability in the entire south tropical Pacific Ocean. Altimeter data was utilized to explore sea level and western boundary currents in this poorly understood portion of the ocean. Since the geography of the region is extremely intricate, with numerous islands and complex bathymetry, specifically reprocessed along-track data in addition to standard gridded data were utilized in this study. Sea level anomalies (SLA) in the Solomon Sea principally evolve at seasonal and interannual time scales. The annual cycle is phased by Rossby waves arriving in the Solomon Strait, whereas the interannual signature corresponds to the basin-scale ENSO mode. The highest SLA variability are concentrated in the eastern Solomon Sea, particularly at the mouth of the Solomon Strait, where they are associated with a high eddy kinetic energy signal that was particularly active during the phase transition during the 1997–1998 ENSO event. Track data appear especially helpful for documenting the fine structure of surface coastal currents. The annual variability of the boundary currents that emerged from altimetry compared quite well with the variability seen at the thermocline level, as based on numerical simulations. At interannual time scales, western boundary current transport anomalies counterbalance changes in western equatorial Pacific warm water volume, confirming the phasing of South Pacific western boundary currents to ENSO. Altimetry appears to be a valuable source of information for variability in low latitude western boundary currents and their associated transport in the South Pacific.  相似文献   

14.
根据对卫星观测的海平面高度资料的分析,进一步证实了在北太平洋副热带两支向东的流(副热带逆流和夏威夷背风逆流)所在的区域内,海平面高度的70~210天周期振荡是主要的低频变化.发现在这两支向东的逆流区Rossby波的特性不同:副热带逆流区70~210天周期振荡对应的Rossby波西传过程中增幅,在台湾以东振幅达到最大;而在夏威夷背风逆流区,70~210天周期Rossby波在西传过程中不出现增幅现象.依据25层海洋模式得到的关于Rossby波振幅、频率与海洋层结之间的关系,揭示了周期为70~210天的Rossby波为不稳定波,这是由于副热带逆流海域模态水存在使得密度的垂直梯度变小的缘故;而在夏威夷背风逆流区位于表层逆流下的北赤道流西深东浅,70~210天周期Rossby长波在逆流的东部有可能不稳定,但其在逆流的西部是稳定的,因此不出现在西传过程中增幅现象;发现在北太平洋副热带两个向东流的海域,年周期Rossby波是稳定的,因此,在该海域海平面周期为70~210天的振荡的振幅要比年周期振荡的振幅大.  相似文献   

15.
Both the tropical Indian and tropical Pacific Oceans are active atmosphere-ocean interactive regions with robust interannual variability, which also constitutes a linkage between the two basins in the mode of variability. Using a global atmosphereocean coupled model, we conducted two experiments(CTRL and PC) to explore the contributions of Indian Ocean interannual sea surface temperature(SST) modes to the occurrence of El Ni?o events. The results show that interannual variability of the SST in the Indian Ocean induces a rapid growth of El Ni?o events during the boreal autumn in an El Ni?o developing year. However, it weakens El Ni?o events or even promotes cold phase conversions in an El Ni?o decaying year. Therefore, the entire period of the El Ni?o is shortened by the interannual variations of the Indian Ocean SST. Specifically, during the El Ni?o developing years, the positive Indian Ocean Dipole(IOD) events force an anomalous Walker circulation, which then enhances the existing westerly wind anomalies over the west Pacific. This will cause a warmer El Ni?o event, with some modulations by ocean advection and oceanic Rossby and Kelvin waves. However, with the onset of the South Asian monsoon, the Indian Ocean Basin(IOB) warming SST anomalies excite low level easterly wind anomalies over the west tropical Pacific during the El Ni?o decaying years. As a result, the El Ni?o event is prompted to change from a warm phase to a cold phase. At the same time, an associated atmospheric anticyclone anomaly appears and leads to a decreasing precipitation anomaly over the northwest Pacific. In summary, with remote forcing in the atmospheric circulation, the IOD mode usually affects the El Ni?o during the developing years, whereas the IOB mode affects the El Ni?o during the decaying years.  相似文献   

16.
The sea-surface height anomalies derived from Simple Ocean Data Assimilation (SODA) during 1958–2001, Topex/Poseidon satellite during 1993–2001 and the SODA heat content anomalies (125 m depth) during 1958–2001 are filtered into annual and biennial Rossby wave components using a two-dimensional Finite Impulse Response filter. The filtered Rossby wave components (both annual and biennial) in the southern Pacific and Indian Oceans have considerable strength and variability. The propagation of annual and biennial Rossby waves in the Indonesian through-flow region [12.5°S–7.5°S] of the Indian Ocean is in phase with the southern Pacific Ocean waves. So it is speculated that the Pacific Ocean influences the Indian Ocean, especially through the region 17.5°S to 7.5°S and thus the southern Pacific Rossby waves could be an unexplored contributor to the Indian Ocean Rossby waves. We also carried out Fast Fourier Transform (FFT) and wavelet analysis on the tide gauge sea-level data along the Australian coast to support our claim. Filtered annual and biennial components of SODA heat content anomalies (125 m depth) also support these findings.  相似文献   

17.
Previous literature has suggested that multiple peaks in sea level anomalies (SLA) detected by two-dimensional Fourier Transform (2D-FT) analysis are spectral components of multiple propagating signals, which may correspond to different baroclinic Rossby wave modes. We test this hypothesis in the South Pacific Ocean by applying a 2D-FT analysis to the long Rossby wave signal determined from filtered TOPEX/Poseidon and European Remote Sensing-1/2 satellite altimeter derived SLA. The first four baroclinic mode dispersion curves for the classical linear wave theory and the Killworth and Blundell extended theory are used to determine the spectral signature and energy contributions of each mode. South of 17°S, the first two extended theory modes explain up to 60% more of the variance in the observed power spectral energy than their classical linear theory counterparts. We find that Rossby wave modes 2–3 contribute to the total Rossby wave energy in the SLA data. The second mode contributes significantly over most of the basin. The third mode is also evident in some localized regions of the South Pacific but may be ignored at the large scale. Examination of a selection of case study sites suggests that bathymetric effects may dominate at longer wavelengths or permit higher order mode solutions, but mean flow tends to be the more influential factor in the extended theory. We discuss the regional variations in frequency and wave number characteristics of the extended theory modes across the South Pacific basin.  相似文献   

18.
The linear theory predicts that Rossby waves are the large scale mechanism of adjustment to perturbations of the geophysical fluid. Satellite measurements of sea level anomaly (SLA) provided sturdy evidence of the existence of these waves. Recent studies suggest that the variability in the altimeter records is mostly due to mesoscale nonlinear eddies and challenges the original interpretation of westward propagating features as Rossby waves. The objective of this work is to test whether a classic linear dynamic model is a reasonable explanation for the observed SLA. A linear-reduced gravity non-dispersive Rossby wave model is used to estimate the SLA forced by direct and remote wind stress. Correlations between model results and observations are up to 0.88. The best agreement is in the tropical region of all ocean basins. These correlations decrease towards insignificance in mid-latitudes. The relative contributions of eastern boundary (remote) forcing and local wind forcing in the generation of Rossby waves are also estimated and suggest that the main wave forming mechanism is the remote forcing. Results suggest that linear long baroclinic Rossby wave dynamics explain a significant part of the SLA annual variability at least in the tropical oceans.  相似文献   

19.
Based on the well established importance of long, non-dispersive baroclinic Kelvin and Rossby waves, a resonance of tropical planetary waves is demonstrated. Three main basin modes are highlighted through joint wavelet analyses of sea surface height (SSH) and surface current velocity (SCV), scale-averaged over relevant bands to address the co-variability of variables: (1) a 1-year period quasi-stationary wave (QSW) formed from gravest mode baroclinic planetary waves which consists of a northern, an equatorial and a southern antinode, and a major node off the South American coast that straddles the north equatorial current (NEC) and the north equatorial counter current (NECC), (2) a half-a-year period harmonic, (3) an 8-year sub-harmonic. Contrary to what is commonly accepted, the 1-year period QSW is not composed of wind-generated Kelvin and Rossby beams but results from the excitation of a tuned basin mode. Trade winds sustain a free tropical basin mode, the natural frequency of which is tuned to synchronize the excitation and the ridge of the QSWs. The functioning of the 1-year period basin mode is confirmed by solving the momentum equations, expanding in terms of Fourier series both the coefficients and the forcing terms. The terms of Fourier series have singularities, highlighting resonances and the relation between the resonance frequency and the wavenumbers. This ill-posed problem is regularized by considering Rayleigh friction. The waves are supposed to be semi-infinite, i.e. they do not reflect at the western and eastern boundaries of the basin, which would assume the waves vanish at these boundaries. At the western boundary the equatorial Rossby wave is deflected towards the northern antinode while forming the NECC that induces a positive Doppler-shifted wavenumber. At the eastern boundary, the Kelvin wave splits into coastal Kelvin waves that flow mainly southward to leave the Gulf of Guinea. In turn, off-tropical waves extend as an equatorially trapped Kelvin wave, being deflected off the western boundary. The succession of warm and cold waters transferred by baroclinic waves during a cycle leaves the tropical ocean by radiation and contributes to western boundary currents. The main manifestation of the basin modes concerns the variability of the NECC, of the branch of the South Equatorial Current (SEC) along the equator, of the western boundary currents as well as the formation of remote resonances, as will be presented in a future work. Remote resonances occur at midlatitudes, the role of which is suspected of being crucial in the functioning of subtropical gyres and in climate variability.  相似文献   

20.
Whatever its origin is, a floating particle at the sea surface is advected by ocean currents. Surface currents could be derived from in situ observations or combined with satellite data. For a better resolution in time and space, we use satellite-derived sea-surface height and wind stress fields with a 1/3° grid from 1993 to 2001 to determine the surface circulation of the South Pacific Ocean. Surface currents are then used to compute the Lagrangian trajectories of floating debris. Results show an accumulation of the debris in the eastern-centre region of the South Pacific subtropical gyre ([120°W; 80°W]–[20°S; 40°S]), resulting from a three-step process: in the first two years, mostly forced by Ekman drift, the debris drift towards the tropical convergence zone (30°S). Then they are advected eastward mostly forced by geostrophic currents. They finally reach the eastern-centre region of the South Pacific subtropical gyre from where they could not escape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号