首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Plasma inhomogeneities extending along geomagnetic field lines in the ionosphere and magnetosphere can have a vortex structure. Electromagnetic waves can propagate in plasma inhomogeneities in the waveguide channel mode. It has been indicated that energy and particle fluxes related to the development of small-scale electrostatic turbulence in a magnetized plasma with an unstable electron component promotes an increase in plasma density gradients in the walls of waveguide channels and an enhancement in plasma vortices. At low L shells in the region of the geomagnetic equator, the development of plasma electrostatic instability and the damping of drifting plasma vortices in the inhomogeneous geomagnetic field in the topside ionosphere can be the main mechanism by which large-scale (∼1000 km) regions with a decreased plasma density are formed.  相似文献   

2.
The measurements of the broadband wave radiation in the topside ionosphere in the region of the geomagnetic equator (the APEX satellite experiment) are presented. The region of unstable plasma with increased density was observed in the nightside topside ionosphere. This region could be formed by heating of the ionosphere from below. An asymmetric distribution of the frequency band width and electrostatic radiation intensity relative to the geomagnetic equator was registered. It has been indicated that a substantial effect of the geomagnetic equator on plasma diffusion from the heating region could be related to the generation, propagation, and damping of electrostatic oscillations and large-scale (as compared to the Larmor ion radius) plasma vortices. The anisotropy in the temperature of the plasma electron component can increase in the regions where the transverse electric field of disturbances damps. The intensity of the electromagnetic radiation, caused by the external sources, apparently, of an artificial origin at frequencies higher than the local plasma frequency, decreases to the radiation detection threshold level in the region of increased plasma density.  相似文献   

3.
The density and temperature of the plasma electron component and wave emission intensity in the topside ionosphere were measured by the INTERCOSMOS-19 satellite. In the subauroral ionosphere, a decrease in the plasma density correlates with an increase in the plasma electron component temperature. In this case, the additional increase in the electron component temperature was measured in regions with increased plasma density gradients during the substorm recovery phase. In a linear approximation, the electromagnetic wave growth increments are small on electron fluxes precipitating in the auroral zone. It has been indicated that Bernstein electromagnetic waves propagating in the subauroral topside ionosphere can intensify in regions with increased plasma density gradients on electron fluxes orthogonal to the geomagnetic field, which are formed when plasma is heated by decaying electrostatic oscillations of the plasma electron component. This can be one of the most important factors responsible for the intensification of auroral kilometric radiation.  相似文献   

4.
The measurements of the broadband wave radiation in the region of the geomagnetic equator in the topside ionosphere are presented (the APEX satellite experiment). It has been indicated that the electromagnetic radiation, observed in a plasma density pit, could be related to the formation of a large-scale plasma cavern in the vicinity of the geomagnetic equatorial surface. A large-scale plasma density pit could be formed in the region of heating during damping of plasma vortical structures and electrostatic oscillations, propagating across geomagnetic field lines and crossing the geomagnetic equatorial surface. Brightness of the electromagnetic radiation, observed at frequencies higher than the plasma eigenfrequencies and local plasma and/or upper hybrid frequencies, decreases with increasing eigenfrequencies.  相似文献   

5.
A vortex structure renders additional stability to plasma irregularities stretched along magnetic field lines. Plasma irregularities extended over several tens of kilometers are registered with rocket and satellite equipment in the topside ionosphere. The registered scale of irregularities depends on the spatial and time resolution of the equipment used. Irregular structures were registered in the ionosphere during experiments with barium clouds and jets, when a plasma irregularity separated into strata extended over several meters and several kilometers across the geomagnetic field. It has been indicated that plasma vortices can be generated in an unstable plasma in a situation when its quasi-neutrality is disturbed. Local geomagnetic field disturbances will be caused by the appearance of a proper vortex magnetic field. Plasma vortices can interact in an inhomogeneous plasma with an unstable electron component. Such interactions are related to the transformation of the phase volume of free electrostatic oscillations in the frequency-wave vector space.  相似文献   

6.
Plasma vortices in the ionosphere and atmosphere   总被引:1,自引:0,他引:1  
Vortices observed in ionized clouds of thunderstorm fronts have the nature of plasma vortices. In this work, the need to account for the electrostatic instability of plasma in the origination, intensification, and decay of plasma vortices in the atmosphere is shown. Moisture condensation results in mass-energy transfer under the inhomogeneous spatial distribution of aerosols. If a phase volume of natural oscillations is transformed in the frequency-wave vector space in inhomogeneous plasma, the damping of plasma oscillations promotes an increase in the pressure gradients normal to the geomagnetic field. Excitation of the gradient instabilities is probable in atmospheric plasma formations.  相似文献   

7.
Electric fields in the near-Earth space was studied in the experiments with artificial plasma clouds and jets in the ionosphere and magnetosphere. The development of a nonmonotonous plasma density stratification of an artificial plasma formation, with the scale of strata across the geomagnetic field reaching several meters and tens of meters, was observed. It has been indicated that the electrodynamics of plasma clouds and jets, decomposing into strata, depends on the excitation and decay of fast oscillations of the electronic plasma component against a background of slow oscillations of the ionic component at frequencies of magnetized plasma electrostatic oscillations (electrostatic Bernstein modes of the plasma electronic and ionic components and ion acoustic oscillations).  相似文献   

8.
The intensity of the wave emission in the 0.1–10 MHz band measured in the ionosphere (the APEX satellite experiment) has been presented. A jump of the plasma density and an increase in the emission intensity at a plasma frequency have been registered at altitudes of ~1300 km in the topside auroral ionosphere. The emission intensity in the whistler-mode band nonmonotonically increased along the satellite trajectory near the plasma jump wall. It has been indicated that waveguides could be formed near the wall during damping of electrostatic oscillations generated by precipitating electron fluxes. A spatially nonmonotonous separation of waveguides from the plasma inhomogeneity stretched along geomagnetic field lines is possible in this case.  相似文献   

9.
The profiles of the plasma density in the topside ionosphere, according to the data of sounding on board the Intercosmos-19 satellite, are presented. It is shown that the large-scale fluctuations of the plasma density can be related to the propagation and attenuation of the atmospheric waves (e.g., acoustic gravity waves) in the dynamo region of the ionosphere. In the topside ionosphere, suprathermal particle fluxes can be formed and the plasma density can be modulated at an attenuation of small-scale electrostatic fluctuations of the plasma electron component in plasma pits. Plasma vortices can be formed when polarization fluxes of charged particles escape from regions of heating. The vortex field imparts stability to the inhomogeneous plasma structure, necessary for experimental detection of this structure.  相似文献   

10.
The data of measurements of broadband wave radiation in the main ionospheric trough in the subauroral zone of the topside ionosphere in the region of the day-night terminator (APEX satellite experiment) are presented. It is shown that the observed attenuation of electrostatic radiation in a broad frequency band and fluctuations (variations) in the cutoff frequency of the electrostatic mode spectrum at the level of the local plasma or upper hybrid frequency are related to plasma heating by damping electrostatic oscillations in the ionospheric trough. Waveguide channels for propagation of electromagnetic whistler-mode waves observed on the satellite can be generated during the propagation of a gravity-thermal disturbance from the terminator.  相似文献   

11.
It is shown that ionosphere heating by DC electric field leads to instability of acoustic-gravity waves and to the formation of solitary internal gravity vortex structures. These dipole type vortices with characteristic transverse size of the order of several kilometers are propagated in the lower ionosphere with subsonic velocity. The threshold values of the electric field needed to suppress the wave damping caused by the interaction of induced current with the geomagnetic field and to provide the vortex generation are found. The considered physical mechanism is applicable to the generation of internal gravity vortices and related ionospheric disturbances when the ionosphere is influenced by the electric field of seismic origin exceeding the threshold value.  相似文献   

12.
The measurements on board the Cosmos-1809 satellite of various parameters of the topside ionosphere plasma during more than ten typhoons in various regions are analyzed. It is shown that specific zones of increased pressure of the electron gas, electric field, and intense ion oscillations are formed during the intensification stage. In some cases the “typhoon eye” is formed over the tropical depression zone in the ionosphere, that is, the region with sharply decreased plasma density and pressure is observed a day and more prior to the moment when it happens in the atmosphere.  相似文献   

13.
本文利用DMSP F13和F15卫星观测数据,对2001—2005年58个磁暴(-472 nT≤Min.Dst≤-71 nT)期间高纬顶部电离层离子整体上行特征进行了统计研究.观测表明,磁暴期间,顶部电离层离子上行主要发生在极尖区和夜间极光椭圆区.在北半球,磁正午前,高速的离子上行(≥500 m·s-1)多集中在65° MLat以上;午后,高速离子上行区向低纬度扩展,上行速度要略高于午前;在南半球,磁午夜前,DMSP卫星在考察区域内几乎所有的纬度上都观测到了高速上行的离子;午夜后,各纬度上观测到上行离子的速度明显降低.离子上行期间,DMSP卫星在极区顶部电离层高度上也频繁地观测到电子/离子增温,且电子增温发生的频率要远高于离子增温.O+密度变化分析显示,DMSP卫星磁暴期间观测到的上行离子更多地源于顶部电离层高度.这些结果表明电子增温在驱动暴时电离层离子整体上行过程中起着重要作用.  相似文献   

14.
O+ field-aligned diffusive velocities and fluxes in the topside ionosphere have been calculated from electron density profiles retrieved from CHAMP radio occultation (RO) measurements. The velocities and fluxes from January 2002 to December 2003 at low- and mid-latitudes have been statistically analyzed. The results show that daytime diffusive fluxes changed gradually from downward to upward as altitude increases. The largest values of the upward diffusive fluxes and velocities occurred at around ±25° geomagnetic latitude. During solstices the plasma fluxes in the winter hemisphere were larger than those in the summer hemisphere.  相似文献   

15.
Calculations using the Sheffield University plasmasphere ionosphere model have shown that under certain conditions an additional layer can form in the low latitude topside ionosphere. This layer (the F3 layer) has subsequently been observed in ionograms recorded at Fortaleza in Brazil. It has not been observed in ionograms recorded at the neighbouring station São Luis. Model calculations have shown that the F3 layer is most likely to form in summer at Fortaleza due to a combination of the neutral wind and theE × B drift acting to raise the plasma. At the location of São Luis, almost on the geomagnetic equator, the neutral wind has a smaller vertical component so the F3 layer does not form.  相似文献   

16.
利用2005—2010年DEMETER卫星记录NWC发射站的19.8kHz电场功率谱数据,采用统计和线性拟合等方法,研究了NWC站发射的电磁波在顶部电离层及磁共轭区激发的电场效应及其在不同方位的衰减特性。结果发现:(1)在NWC发射站上空,卫星记录电场呈椭圆状扩散分布,电场最强中心点位置相对地面人工源位置有一定偏移;(2)研究区上空电场北部衰减梯度最小,东部衰减梯度最大;(3)在其磁共轭区,南部电场衰减梯度最小,北部衰减梯度最大。综合分析认为人工源(NWC)发射的VLF电磁波传播到电离层高度后,受地磁场影响,电磁波主要沿磁力线方向传播,空间电场最强中心点位置相对发射站的位置发生偏移,向磁赤道方向倾斜,而且偏于磁赤道方向的电场衰减梯度最小。  相似文献   

17.
The results of studying the ionospheric response to solar flares, obtained from the data of the GPS signal observations and incoherent scatter radars and as a result of the model calculations, are presented. It is shown that, according to the GPS data, a flare can cause a decrease in the electron content at altitudes of the topside ionosphere (h > 300 km). Similar effects of formation of a negative disturbance in the ionospheric F region were also observed during the solar flares of May 21 and 23, 1967, with the Arecibo incoherent scatter radar. The mechanism by which negative disturbances appear in the topside ionosphere during solar flares has been studied in this work based on the theoretical model of the ionosphere-plasmasphere coupling. It has been indicated that the formation of the electron density negative disturbance in the topside ionosphere is caused by an intense removal of O+ ions into the overlying plasmasphere under the action of an abrupt increase in the ion production rate and thermal expansion of the ionospheric plasma.  相似文献   

18.
The present article displays the results of theoretical investigation of the planetary ultra-low-frequency (ULF) electromagnetic wave structure, generation and propagation dynamics in the dissipative ionosphere. These waves are stipulated by a spatial inhomogeneous geomagnetic field. The waves propagate in different ionospheric layers along the parallels to the east as well as to the west and their frequencies vary in the range of (10–10−6) s−1 with a wavelength of order 103 km. The fast disturbances are associated with oscillations of the ionospheric electrons frozen in the geomagnetic field. The large-scale waves are weakly damped. They generate the geomagnetic field adding up to several tens of nanotesla (nT) near the Earth's surface. It is prescribed that the planetary ULF electromagnetic waves preceding their nonlinear interaction with the local shear winds can self-localize in the form of nonlinear long-living solitary vortices, moving along the latitude circles westward as well as eastward with a velocity different from the phase velocity of the corresponding linear waves. The vortex structures transfer the trapped particles of medium, as well as energy and heat. That is why such nonlinear vortex structures can be the structural elements of the ionospheric strong macro-turbulences.  相似文献   

19.
Summary Direct measurements of the thermal plasma parameters in the topside ionosphere reveal variations of the plasmasphere boundary in the dusk sector. The ACTIVE satellite's near-polar orbits at altitudes of 500 – 1800 km around winter solstice 1989 were used to study the bulge region of the plasmasphere during intervals with different levels of geomagnetic agitation. The narrow, sharply defined trough in electron concentration corresponding to the plasmapause under quiet conditions situated at L = 6 – 7 moved to lower L-values with increasing geomagnetic activity. This narrow trough can be found in all main ion constituents. During periods of moderate geomagnetic activity, following the onset of a weak magnetic storm, a portion of the plasmaspheric bulge region was separated from the main plasmaspheric body. This can be seen in the outer ionosphere as an inner narrow trough at lower L-value. Troughs in light ions need no longer coincide with this in electron concentration. He+ is the most sensitive constituent reflecting the dusk sector plasmaspheric situation at this altitude.Dedicated to the Memory of Professor Karel P  相似文献   

20.
The results of the Cosmos-900 satellite observ ations of plasma density inhomogeneities in the geomagnetic equator region and the longitudinal distributions of the equatorial spread-F, according to the Intercosmos-19 satellite data are presented. It is show n that the dependence of radiosignal propagation in the ionosphere on geophysical parameters is related to development of the electrostatic instability of the inhomo-geneous ionospheric plasma. The longitudinal dependence of the spread-F, can reflect the influence of the energetic sources, located outside the ionospheric layer that scatters a radio pulse, on the ionosphere. The manifestation of the longitudinal effect in the equatorial spread-F, in the Atlantic region can be explained by the influence of the cone instability on the plasma electrodynamics in the South Atlantic geomagnetic anomaly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号