首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 141 毫秒
1.
琼北射气岩浆喷发力学机制探讨   总被引:5,自引:0,他引:5       下载免费PDF全文
孙谦  樊祺诚 《地震地质》2005,27(1):63-72
琼北第四纪火山区分布着为数众多、大小不一的射气岩浆喷发成因的低平火山口。上升的岩浆遇到地下水会发生射气岩浆喷发,形成地表出露的低平火山口,并伴随出现基浪堆积物。根据低平火山口的半径、爆炸发生时上覆地层的厚度、岩浆与地下水接触面的半径等参数,运用弹性力学基本原理建立了简单的喷发模型,初步模拟爆破冲击力与上述各参数之间的关系和变化规律,并计算出上覆地层中任一点的应力状态,初次探讨了射气岩浆喷发的力学机制  相似文献   

2.
琼北地区的火山活动以裂隙喷溢为主,晚更新世道堂期的射气岩浆喷发形成了众多的低平火山口,全新世雷虎岭期火山口主要分布于石山、永兴一带,沿NW向长流-仙沟断裂带分布。近2年在石山一带的射气岩浆喷发物中揭露出多条大规模的断裂,这些断裂带的单个断面虽然类似于地震活断层,但它们缺少断错地貌和断层方向的稳定性,一些断层组合成弧形。尽管这些断裂断面清晰,断距达4m,仍被认为是伴随火山喷发活动后期塌陷而形成的次级断层。此外,位于非火山岩分布区跨长流-仙沟断裂带的钻孔联合剖面探测表明,该断裂带在晚更新世晚期以来不活动。长流-仙沟断裂带晚更新世晚期以来的活动主要表现在作为深部岩浆的上涌通道。  相似文献   

3.
琼北马鞍岭地区第四纪火山活动期次划分   总被引:10,自引:4,他引:6       下载免费PDF全文
琼北马鞍岭地区第四纪火山活动具有多期性。据火山作用方式、火山形貌及风化程度、火山喷发产物与沉积地层以及火山机构之间的相互叠置关系 ,结合同位素年龄 ,可分为德义岭、道堂、杨花、雷虎岭、昌道和马鞍岭等 6期 ,其中德义岭期为中更新世 ,道堂和杨花期为晚更新世 ,雷虎岭、昌道和马鞍岭期属全新世。不同期次具有不同的火山活动方式、喷发强度及火山结构类型。德义岭期火山活动以溢流为主 ,火山锥为低缓的熔岩穹丘。杨花期为射气岩浆爆发作用形成的低平火山。雷虎岭与马鞍岭期主要形成由碎屑锥和熔岩流组成的夏威夷式火山 ,熔岩流构造类型以结壳熔岩为主  相似文献   

4.
张雯倩  李霓 《地震地质》2021,43(1):105-122
高温岩浆在上升过程中遇到地下水或地表水发生水岩相互作用,产生大量水蒸汽导致的爆炸式喷发作用,可称为射汽岩浆喷发作用,是一种较为特殊的火山活动,主要产物为低平火山口和基浪堆积物。国内外许多火山学家对射汽岩浆喷发作用的喷发过程和产物开展了岩相学、沉积学、火山物理学和地球化学综合研究,通过实验、计算机模拟等方法探究了射汽岩浆喷发过程的影响因素。文中介绍了国内外研究人员的相关研究成果,以便更好地了解射汽岩浆喷发这种特殊的火山作用形式,以期能将其应用于现代火山灾害预防和监测工作中,保护人们的生命和财产安全。  相似文献   

5.
广西涠洲岛火山喷发特征   总被引:2,自引:0,他引:2  
通过对涠洲岛南湾火山火山口的地质地貌、射气喷发基浪堆积、岩浆爆破喷发产物及海蚀火山地貌的研究,表明南湾火山是一巨型射气岩浆喷发火山,火山口位于南湾海中。推测涠洲岛的火山活动始于晚第三纪,更新世南湾火山喷发形成涠洲岛的现代地貌。  相似文献   

6.
根据琼北全新世火山区内火山作用产物的成因类型与喷发物理过程的野外考察结果 ,结合航片解译资料 ,确定了该区火山作用的发育特征、形成期次与规模 ,并以此作为进一步评价火山灾害的基础 ;根据锥体形成后物理降解作用与时间的关系 ,讨论了琼北全新世火山区众多锥体结构参数之间的关系。研究结果为 :琼北全新世火山区分为 4个火山系统 ,即西北部的马鞍岭台地火山系统、东南部的雷虎岭盾片状火山系统、夹于二者之间的浩昌单成因火山系统和NW向裂隙式喷发系统。工作区内琼北新生代火山共计 5 9个 ,火山结构类型可分为火山锥、熔岩穹、熔岩湖与低平火山口等。在火山锥中 ,依据锥体组成与结构的差异又可进一步分为岩渣锥、溅落锥和混合锥等碎屑锥。琼北近代火山锥体高度多 <4 0m ,绝大多数锥体的底部直径 <5 0 0m。锥体底部直径和火口坑深度之间具有明显的正相关关系。由锥体底部直径与火口缘直径的差值与锥体高度投点图可以明显地区分出早期的低平火山口和晚期的不同类型锥体  相似文献   

7.
琼北火山群形成的动力学机制及地震现象的新认识   总被引:4,自引:1,他引:3       下载免费PDF全文
分析世界火山分布图发现琼北火山群分布在一南北向的火山带上,应用有限元方法模拟计算了双俯冲作用下海南岛所在雷琼\|越东火山带的形成机制,结合海南岛精确定位的地震数据和形变观测结果,认为琼北地区可能存在岩墙侵入或张性断裂膨胀,并根据地震数据模拟分析了岩墙侵入对区域应力场及形变的影响.琼北地区精确地震(2000~2006)定位结果表明地震主要集中在一个垂直面上,并且地震带两端有分叉现象.通过地震时空分布特征推测存在岩墙侵入,并通过数值模拟很好地解释了琼北地区地震的分布特征(狗骨头状)以及地表垂向形变东升西降的特征.  相似文献   

8.
锡林浩特-阿巴嘎火山群内的玛珥式火山   总被引:4,自引:0,他引:4  
锡林浩特-阿巴嘎火山群位于内蒙古自治区锡林郭勒盟,处于大兴安岭-大同新生代火山喷发带中段。火山群内发育300余座不同类型的第四纪玄武质火山,其中玛珥式火山属首次发现,以阿巴嘎旗东南部的浩特乌拉、西北部的车勒乌拉和额斯格乌拉玛珥式火山最具代表性,其火山规模较大,锥体直径一般为3~4km,大者约6.5km。火山结构较完整,具有相似的双轮山地貌景观和明显的阶段性喷发过程,喷发阶段早期为强烈的射汽-岩浆爆发,晚期均转变为弱岩浆爆发,最后为玄武质熔岩流的溢出。这种喷发序列反映了岩浆与水相互作用以及岩浆上升速度和溢出率变化的过程。火山喷发形成的基浪堆积物覆盖在中更新统河谷砂砾石之上,其中近火口溅落堆积物中上新世砂泥岩"包体"的热释光年龄为(0.112±0.0096)Ma,表明玛珥式火山喷发时代属晚更新世早期。  相似文献   

9.
琼北地区是我国华南少数几个高烈度区之一。据历史地震记载,曾在1605年发生过7.5级的琼山大地震,但近300年来只有几次5级地震的记录,现代仪器记录的地震也很少。过去在这个地区进行的工作较少,也没有进行深入研究。因而使1977年编制的该区地震烈度区划图,也受到了很大限制。琼北地震烈度复核工作是国家地震局应海  相似文献   

10.
镜泊湖全新世火山喷发特征   总被引:4,自引:0,他引:4  
陈洪洲  马宝君  高峰 《中国地震》2005,21(3):360-368
本文概述镜泊湖全新世火山机构,并对其喷发类型、喷发方式及火山碎屑基浪堆积等特征进行讨论,指出镜泊湖全新世火山属于单成因火山;从喷发方式上看,它不属于中心式喷发,而是裂隙式喷发;火山碎屑基浪堆积的发现,否定了以往人们将火山渣层中花岗岩碎屑的成因认定是外动力地质作用的结果,指出它是玄武质岩浆遇水爆炸的产物,火山渣与花岗岩碎屑层之间不存在所谓“沉积间断”。这对恢复镜泊湖全新世火山活动历史,确定火山口周围环境有重要意义。  相似文献   

11.
涠洲岛是北部湾内的一座火山岛,火山活动初步可以分为早-中更新世和晚更新世2期。晚期南湾火山是典型的射气岩浆喷发成因的火山,文中报道了南湾火山的上、下2层火山碎屑岩中砂岩捕虏体的光释光(OSL)测年结果,提出南湾火山喷发时代为距今约3万年左右的晚更新世末期  相似文献   

12.
The La Breña — El Jagüey Maar Complex, of probable Holocene age, is one of the youngest eruptive centers in the Durango Volcanic Field (DVF), a Quaternary lava plain that covers 2100 km2 and includes about 100 cinder and lava cones. The volcanic complex consists of two intersecting maars — La Breña and El Jagüey — at least two pre-maar scoria cones and associated lavas, and a series of nested post-maar lava and scoria cones that erupted within La Breña Maar and flooded its floor with lava to form one or more lava lakes. We believe that El Jagüey Maar formed first, but pyroclastic deposits associated with its formation are exposed at only a few places in the lower maar walls. A perennial lake in the bottom of El Jagüey marks the top of an aquifer about 60 m below the lava plain. Interaction of the rising basanitic magmas with this aquifer was probably responsible for the hydromagmatic eruptions at the maar complex. In the southeastern quadrant of La Breña and in most parts of El Jagüey, the upper maar walls expose a thick pyroclastic sequence of tuffs, tuff breccias, and breccias that is dominated by thinly layered sandwave and plane-parallel surge beds and contains minor interlayered scoria-fall horizons. We conclude that these deposits in the upper walls of both maars erupted during the formation of La Breña, based on: (1) thickness variations in a prominent scoria-fall marker bed interlayered with the surge deposits; (2) inferred transport directions for ballistic clasts, channels, and dune-like bedforms; and (3) lateral facies changes in the surge deposits. Some of the surge clouds from La Breña apparently travelled down the inner southwestern wall of El Jagüey, fanned out across its floor, and climbed up the opposite walls before emerging onto the surrounding lava plain. These clouds deposited steep, inward-dipping surge deposits along the lower walls of El Jagüey. Following this hydromagmatic phase, which was responsible for the formation of the maars, a series of strombolian eruptions took place from vents within La Breña. At many places along the maar rims these eruptions completely buried the surge beds under a thick sequence of post-maar scoriae and ashes. The outer flanks of the maar complex and the surrounding lava plain are also blanketed by post-maar ashes. The final phase of activity involved effusive eruptions of post-maar lavas from vents on the floor of La Breña. The evolutionary sequence from hydromagmatic eruptions during formation of the maars, through strombolian eruptions of the post-maar scoriae and ashes, and finally to the post-maar lavas appears to reflect the declining influence of magma-groundwater interactions with time. Basanitic magmas from all eruptive stages carried spinel-lherzolite and feldspathic-granulite xenoliths to the surface. The La Breña — El Jagüey Maar Complex contains the only known hydromagmatic vents in the DVF and the largest spinel-lherzolite xenoliths, which range up to 30 cm diameter. These two observations indicate an unusually rapid ascent rate for these basanitic magmas compared to those from other DVF vents.  相似文献   

13.
During ten days of phreatomagmatic activity in early April 1977, two maars formed 13 km behind the Aleutian arc near Peulik volcano on the Alaska Peninsula. They have been named “Ukinrek Maars”, meaning “two holes in the ground” in Yupik Eskimo. The western maar formed at the northwestern end of a low ridge within the first three days and is up to 170 m in diameter and 35 m in depth. The eastern maar formed during the next seven days 600 m east of West Maar at a lower elevation in a shallow saddle on the same ridge and is more circular, up to 300 m in diameter and 70 m in depth. The maars formed in terrain that was heavily glaciated in Pleistocene times. The groundwater contained in the underlying till and silicic volcanics from nearby Peulik volcano controlled the dominantly phreatomagmatic course of the eruption.During the eruptions, steam and ash clouds reached maximum heights of about 6 km and a thin blanket of fine ash was deposited north and east of the vents up to a distance of at least 160 km. Magma started to pool on the floor of East Maar after four days of intense phreatomagmatic activity.The new melt is a weakly undersaturated alkali olivine basalt (Ne = 1.2%) showing some transitional character toward high-alumina basalts. The chemistry, an anomaly in the tholeitic basalt-andesite-dominated Aleutian arc, suggests that the new melt is primitive, generated at a depth of 80 km or greater by a low degree of partial melting of garnet peridotite mantle with little subsequent fractionization during transport.The Pacific plate subduction zone lies at a depth of 150 km beneath the maars. Their position appears to be tectonically controlled by a major regional fault, the Bruin Bay fault, and its intersection with cross-arc structural features. We favor a model for the emplacement of the Ukinrek Maars that does not link the Ukinrek conduit to the plumbing system of nearby Peulik volcano. The Ukinrek eruptions probably represent a genetically distinct magma pulse originating at asthenospheric depths beneath the continental lithosphere.  相似文献   

14.
The Fekete-hegy volcanic complex is located in the centre of the Bakony Balaton Highland Volcanic Field, in the Pannonian Basin, which formed from the late Miocene to Pliocene period. The eruption of at least four very closely clustered maar volcanoes into two clearly distinct types of prevolcanic rocks allows the observation and comparison of hard-substrate and soft-substrate maars in one volcanic complex. The analyses of bedding features, determination of the proportion of accidental lithic clasts, granulometry and age determination helped to identify and distinguish the two types of maar volcanoes. Ascending magma interacted with meteoric water in karst aquifers in Mesozoic carbonates, as well as in porous media aquifers in Neogene unconsolidated, wet, siliciclastic sediments. The divided basement setting is reflected by distinct bedding characteristics and morphological features of the individual volcanic edifices as well as a distinct composition of pyroclastic rocks. Country rocks in hard-substrate maars have a steep angle of repose, leading to the formation of steep sided cone-shaped diatremes. Enlargement and filling of these diatreme is mainly a result of shattering material by FCI related shock waves and wall-rock collapse during downward penetration of the explosion locus. Country rocks in soft-substrate maars have much shallower angles of repose, leading to the formation of broad, bowl shaped structures or irregular depressions. Enlargement and filling of these diatremes is mainly the result of substrate collapse, for example due to liquefaction of unconsolidated material by FCI-related shock waves, and its emplacement by gravity flows. The Fekete-hegy is an important example illustrating that the substrate of a volcanic edifice has to be taken into account as an important interface, which can have major control on phreatomagmatic eruptions and the resulting characteristics of the volcanic complex.  相似文献   

15.
The initial phase of the eruption forming Ukinrek Maars during March and April 1977 were explosions from the site of West Maar. These were mainly phreatomagmatic and initially transitional to strombolian. Activity at West Maar ceased after three days upon the initiation of the East Maar. The crater quickly grew by strong phreatomagmatic explosions. During the first phases of phreatomagmatic activity at East Maar, large exotic blocks derived from a subsurface till were ejected. Ballistic studies indicate muzzle velocities for these blocks of 80–90 m s−1.Phreatomagmatic explosions ejected both juvenile and non-juvenile material which formed a low rim of ejecta (< 26 mhigh) around the crater and a localized, coarse, wellsorted (σφ = 1−1.5) juvenile and lithic fall deposit. Other fine ash beds, interstratified with the coarse beds, are more poorly sorted (σφ = 2−3) and are interpreted as fallout of wet, cohesive ash from probably milder phases of activity in the crater. Minor base surge activity damaged trees and deposited fine ash, including layers plastered on vertical surfaces. Viscous basalt lava appeared in the center of the East Maar crater almost immediately and a lava dome gradually grew in the crater despite phreatomagmatic eruptions adjacent to it.The development of these maars appears to be mainly controlled by gradual collapse of crater and conduit walls, and blasting-out of the slumped debris by phreatomagmatic explosions when rising magma contacted groundwater beneath the regional water table and a local perched aquifer.Ballistic analysis on the ejected blocks indicates a maximum muzzle velocity of 100–150 m s-1, values similar to those obtained from other ballistic studies on maar ejecta.  相似文献   

16.
Maar–diatreme volcanoes represent the second most common volcano type on continents and islands. This study presents a first review of syn- and posteruptive volcanic and related hazards and intends to stimulate future research in this field. Maar–diatreme volcanoes are phreatomagmatic monogenetic volcanoes. They may erupt explosively for days to 15 years. Above the preeruptive surface a relatively flat tephra ring forms. Below the preeruptive surface the maar crater is incised because of formation and downward penetration of a cone-shaped diatreme and its root zone. During activity both the maar-crater and the diatreme grow in depth and diameter. Inside the diatreme, which may penetrate downwards for up to 2.5 km, fragmented country rocks and juvenile pyroclasts accumulate in primary pyroclastic deposits but to a large extent also as reworked deposits. Ejection of large volumes of country rocks results in a mass deficiency in the root zone of the diatreme and causes the diatreme fill to subside, thus the diatreme represents a kind of growing sinkhole. Due to the subsidence of the diatreme underneath, the maar-crater is a subsidence crater and also grows in depth and diameter with ongoing activity. As long as phreatomagmatic eruptions continue the tephra ring grows in thickness and outer slope angle.Syneruptive hazards of maar–diatreme volcanoes are earthquakes, eruption clouds, tephra fall, base surges, ballistic blocks and bombs, lahars, volcanic gases, cutting of the growing maar crater into the preeruptive ground, formation of a tephra ring, fragmentation of country rocks, thus destruction of area and ground, changes in groundwater table, and potential renewal of eruptions. The main hazards mostly affect an area 3 to possibly 5 km in radius. Distal effects are comparable to those of small eruption clouds from polygenetic volcanoes. Syneruptive effects on infrastructure, people, animals, vegetation, agricultural land, and drainage are pointed out. Posteruptive hazards concern erosion and formation of lahars. Inside the crater a lake usually forms and diverse types of sediments accumulate in the crater. Volcanic gases may be released in the crater. Compaction and other diagenetic processes within the diatreme fill result in its subsidence. This posteruptive subsidence of the diatreme fill and thus crater floor is relatively large initially but will decrease with time. It may last millions of years. Various studies and monitoring are suggested for syn- and posteruptive activities of maar–diatreme volcanoes erupting in the future. The recently formed maar–diatreme volcanoes should be investigated repeatedly to understand more about their syneruptive behaviour and hazards and also their posteruptive topographic, limnic, and biologic evolution, and potential posteruptive hazards. For future maar–diatreme eruptions a hazard map with four principal hazard zones is suggested with the two innermost ones having a joint radius of up to 5 km. Areas that are potentially endangered by maar–diatreme eruptions in the future are pointed out.  相似文献   

17.
Many volcanic forms resulting from phreatomagmatic eruptions of differentiated magmas have been studied in the Massif Central (France), in the Phlegrean Fields (Italy), and on Saõ Miguel island (Azores). They show a continuous series between explosion crater maar type — and the hyaoloclastic tuff-cone. An essential feature of this morphological series is the preponderance of tuff-rings resulting from subaerial eruptions. Subaerial tuff-rings of basic compositions are less common than maars. A thermodynamic approach shows that the quantity of heat supplied by the different kinds of magmas and the water / magma ratio are the essential parameters controlling the activity, and the resulting morohology of these volcanoes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号