首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Abstract

Alternative approaches to estimating monthly and annual potential evapotranspiration (PE) are explored in cases where daily climate data are not routinely recorded. A database consisting of data from 222 weather stations, representing a wide variety of climatic conditions, is used to draw general conclusions. In addition, two PE formulae with different data requirements are used: the standard FAO-56 Penman-Monteith equation, and a simple temperature-based equation. First, we tested the degree of bias introduced by using climate data averaged over long time periods instead of daily data. Second, we explored the sensitivity of PE estimation with respect to variations in sampling frequency of climate variables. The results show that using mean weather data has only a limited effect on monthly and annual PE estimates. Conversely, imperfect sampling of weather data may bias monthly and to a lesser extent annual PE estimates if the sampling period exceeds 5 and 10 days, respectively. Finally, we tested the impact of erroneous weather data on the simulations of annual actual evapotranspiration obtained with the Budyko model. The impact on the Budyko model outputs depends more on the dryness index of a given location than on annual PE; for regions under water stress, the errors in estimation of actual evapotranspiration are very limited, compared to humid regions where available energy is the dominating factor and the propagation of PE errors is important.

Citation Oudin, L., Moulin, L., Bendjoudi, H. & Ribstein, P. (2010) Estimating potential evapotranspiration without continuous daily data: possible errors and impact on water balance simulations. Hydrol. Sci. J. 55(2), 209–222.  相似文献   

3.
As a critical water discharge term in basin‐scale water balance, accurate estimation of evapotranspiration (ET) is therefore important for sustainable water resources management. The understanding of the relationship between ET and groundwater storage change can improve our knowledge on the hydrological cycle in such regions with intensive agricultural land usage. Since the 1960s, the North China Plain (NCP) has experienced groundwater depletion because of overexploitation of groundwater for agriculture and urban development. Using meteorological data from 23 stations, the complementary relationship areal evapotranspiration model is evaluated against estimates of ET derived from regional water balance in the NCP during the period 1993–2008. The discrepancies between calculated ET and that derived by basin water balance indicate seasonal and interannual variations in model parameters. The monthly actual ET variations during the period from 1960 to 2008 are investigated by the calibrated model and then are used to derive groundwater storage change. The estimated actual ET is positively correlated with precipitation, and the general higher ET than precipitation indicates the contributions of groundwater irrigation to the total water supply. The long term decreasing trend in the actual ET can be explained by declining in precipitation, sunshine duration and wind speed. Over the past ~50 years, the calculated average annual water storage change, represented by the difference between actual ET and precipitation, was approximately 36 mm, or 4.8 km3; and the cumulative groundwater storage depletion was approximately 1700 mm, or 220 km3 in the NCP. The significantly groundwater storage depletion conversely affects the seasonal and interannual variations of ET. Irrigation especially during spring cause a marked increase in seasonal ET, whereas the rapid increasing of agricultural coverage over the NCP reduces the annual ET and is the primary control factor of the strong linear relationship between actual and potential ET. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Evapotranspiration is difficult to quantify because of the many factors and complex processes that influence it. Several empirical methods have been developed over the years to estimate potential evapotranspiration based on easily available parameters. Directly measured data of actual evapotranspiration have been rather sparse in the past and still need to be improved in particular regions like western Siberia. The transition zone between the warm temperate and cold temperate continental climates is very sensitive to climate change, and water stress is an increasingly important issue in these regions with a highly dynamic agricultural activity. So there is a growing need to estimate actual evapotranspiration. Widely usable approximations are needed. In this study, the values of potential evapotranspiration computed with the original version, and eight modifications of the Penman formulation were compared and related to the actual evapotranspiration measured by eddy covariance over a grassland area in western Siberia. The original 1948 and 1963 Penman formulations are best for estimating potential evapotranspiration in the transition zone between the forest steppes and the pre‐taiga. A nearly linear relationship between the potential and actual evapotranspiration was found. A simple modification of the Penman equation (i.e. the multiplication of the result by a factor of 0.47) is suggested for approximating the actual evapotranspiration based on standard meteorological data for the region. The original Penman formulation is most robust and will provide the widest applicability in the future under changing climate and environmental conditions. In this context, it is further recommended not to neglect the ventilation term of the Penman equation, which is often assumed to be negligibly small. A detailed correlation analysis showed that under dry soil conditions, the vegetation largely contributed to the actual evapotranspiration and, in contrast to widely held expectations, that the Penman equation is best adapted to vegetated surfaces. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
ABSTRACT

The Hargreaves method provides reference evapotranspiration (ETo) estimates when only air temperature data are available, although it requires previous local calibration for an acceptable performance. This method was evaluated using the data from 71 meteorological stations in the Seolma-cheon basin (8.48 km2), South Korea, comparing daily estimates against those from the Penman‐Monteith (PM) method, which was used as the standard. To estimate reference ETo more exactly, considering the climatological characteristics in South Korea, parameter regionalization of the Hargreaves equation is carried out. First, the modified Hargreaves equation is presented after an analysis of the relationship between solar radiation and temperature. Second, parameter (KET) optimization of the regional calibration of the Hargreaves equation (RCH) is performed using the PM method and the modified equation at 71 meteorological stations. Next, an application was carried out to evaluate the evapotranspiration methods (PM, original Hargreaves and RCH) in the SWAT (Soil and Water Assessment Tool) model by comparing these with the measured actual evapotranspiration (AET) in the basin. The SWAT model was calibrated using 3 years (2007–2009) of daily streamflow at the watershed outlet and 3 years (2007–2009) of daily AET measured at a mixed forest. The model was validated with 3 years (2010‐2012) of streamflow and AET. RCH will contribute to a better understanding of evapotranspiration of an ungauged watershed in areas where meteorological information is scarce.
EDITOR D. Koutsoyiannis ASSOCIATE EDITOR Not assigned  相似文献   

6.
Z. X. Xu  J. Y. Li 《水文研究》2003,17(8):1509-1523
In large river basins, there may be considerable variations in both climate and land use across the region. The evapotranspiration that occurs over a basin may be drastically different from one part of the region to another. The potential influence of these variations in evapotranspiration estimated for the catchment is weakened by using a spatially based distributed hydrological model in such a study. Areal evapotranspiration is estimated by means of approaches requiring only meteorological data: the combination equation (CE) model and the complementary relationship approach—the complementary relationship areal evapotranspiration (CRAE) and advection–aridity (AA) models. The capability of three models to estimate the evapotranspiration of catchments with complex topography and land‐use classification is investigated, and the models are applied to two catchments with different characteristics and scales for several representative years. Daily, monthly, and annual evapotranspiration are estimated with different accuracy. The result shows that the modified CE model may underestimate the evapotranspiration in some cases. The CRAE and AA models seem to be two kinds of effective alternatives for estimating catchment evapotranspiration. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
Hydrological modelling of mesoscale catchments is often adversely affected by a lack of adequate information about specific site conditions. In particular, digital land cover data are available from data sets which were acquired on a European or a national scale. These data sets do not only exhibit a restricted spatial resolution but also a differentiation of crops and impervious areas which is not appropriate to the needs of mesoscale hydrological models. In this paper, the impact of remote sensing data on the reliability of a water balance model is investigated and compared to model results determined on the basis of CORINE (Coordination of Information on the Environment) Land Cover as a reference. The aim is to quantify the improved model performance achieved by an enhanced land cover representation and corresponding model modifications. Making use of medium resolution satellite imagery from SPOT, LANDSAT ETM+ and ASTER, detailed information on land cover, especially agricultural crops and impervious surfaces, was extracted over a 5-year period (2000–2004). Crop-specific evapotranspiration coefficients were derived by using remote sensing data to replace grass reference evapotranspiration necessitated by the use of CORINE land cover for rural areas. For regions classified as settlement or industrial areas, degrees of imperviousness were derived. The data were incorporated into the hydrological model GROWA (large-scale water balance model), which uses an empirical approach combining distributed meteorological data with distributed site parameters to calculate the annual runoff components. Using satellite imagery in combination with runoff data from gauging stations for the years 2000–2004, the actual evapotranspiration calculation in GROWA was methodologically extended by including empirical crop coefficients for actual evapotranspiration calculations. While GROWA originally treated agricultural areas as homogeneous, now a consideration and differentiation of the main crops is possible. The accuracy was determined by runoff measurements from gauging stations. Differences in water balances resulting from the use of remote sensing data as opposed to CORINE were analysed in this study using a representative subcatchment. Resulting Nash–Sutcliff model efficiencies improved from 0.372 to 0.775 and indicate that the enhanced model can produce thematically more accurate and spatially more detailed local water balances. However, the proposed model enhancements by satellite imagery have not exhausted the full potential of water balance modelling, for which a higher temporal resolution is required.  相似文献   

8.
Estimation of daily evapotranspiration (ET) over cloudy regions highly desires models which rely on meteorological data only. Notwithstanding, the conventional crop coefficient (Kc) method requires detailed knowledge of geo/biophysical properties of the coupled land-vegetation system, precipitation, and soil moisture. Six Eddy Covariance (EC) towers in Iowa, California and New Hampshire of the USA (covering corn, soybeans, prairie, and deciduous forest) were selected. Investigation on 6 years (2007–2012) 15-min micrometeorological records of these sites revealed that there is an indubitable strong interaction between relative humidity (RH), reference ET (ETo), and actual ET at different timescales. This allowed to bypass the need for the non-meteorological inputs and express Kc as a second-order polynomial function of RH and ETo, the ambient regression evapotranspiration model (AREM). The coefficients of the empirical function are crop-specific and may require calibration over different soil types. The mean absolute percentage error (MAPE) of the regression against daily EC observations was 17% during the growing season, and 32% throughout the year with root mean square error (RMSE) of 0.74 mm day−1 and coefficient of determination of 0.71. The model was fully operational (MAPE of 34% and RMSE of 0.82 mm day−1) over the four Iowan sites based on inputs from local weather stations and NLDAS-2 forcing data of NASA. AREM was capable of capturing the dynamics of ET at 15-min and daily timescales irrespective of varying complexities associated with biophysical, geophysical and climatological states.  相似文献   

9.
To understand regional status and differences is groundwork for researching environmental change, such as regional response to global change, land use/land-cover change, land desertification, and sand/dust storms. At present, geographers are search- ing for driving forces of environmental change and making efforts to reflect human actions on these changes[1―4]. To recognize regional difference, most researches focus on single factor, such as temperature, precipitation, soil and vegetation. Ho…  相似文献   

10.
Current efforts to assess changes to the wetland hydrology caused by growing anthropogenic pressures in the Athabasca Oil Sands Region (AOSR) require well-founded spatial and temporal estimates of actual evapotranspiration (ET), which is the dominant component of the water budget in this region. This study assessed growing season (May–September) and peak growing season (July) ET variability at a treed moderate-rich fen and treed poor fen (in 2013–2018), open poor fen (in 2011–2014), and saline fen (in 2015–2018) using eddy covariance technique and a set of complementary environmental data. Seasonal fluctuations in ET were positively related to net radiation, air temperature and vapour pressure deficit and followed trends typical for the Boreal Plains (BP) and AOSR with highest rates in June–July. However, no strong effect of water table position on ET was found. Strong surface control on ET is evident from lower ET values than potential evapotranspiration (PET); the lowest ET/PET was observed at saline fen, followed by open fen, moderately treed fen, and heavily treed fen, suggesting a strong influence of vegetation on water loss. In most years PET exceeded precipitation (P), and positive relations between P/PET and ET were observed with the highest July ET rates occurring under P/PET ~1. However, during months with P/PET > 1, increased P/PET was associated with decreased July ET. With respect to 30-year mean values of air temperature and P in the area, both dry and wet, cool and warm growing seasons (GS) were observed. No clear trends between ET values and GS wetness/coldness were found, but all wet GS were characterized by peak growing seasons with high daily ET variability.  相似文献   

11.
Abstract

The actual evapotranspiration and runoff trends of five major basins in China from 1956 to 2000 are investigated by combining the Budyko hypothesis and a stochastic soil moisture model. Based on the equations of Choudhury and Porporato, the actual evapotranspiration trends and the runoff trends are attributed to changes in precipitation, potential evapotranspiration, rainfall depth and water storage capacity which depends on the soil water holding capacity and the root depth. It was found that the rainfall depth increased significantly in China during the past 50 years, especially in southern basins. Contributions from changes in the water storage capacity were significant in basins where land surface characteristics have changed substantially due to human activities. It was also observed that the actual evapotranspiration trends are more sensitive to precipitation trends in water-limited basins, but more sensitive to potential evapotranspiration trends in energy-limited basins.
Editor D. Koutsoyiannis; Associate editor A. Porporato  相似文献   

12.
Regional evapotranspiration is an important component of the hydrological cycle. However, reliable estimates of regional evapotranspiration are extremely difficult to obtain. In this study, the evapotranspiration simulated by three complementary relationship approaches, namely the Advection–Aridity (AA) model, the Complementary Relationship Areal Evapotranspiration (CRAE) model and the Granger (G) model, is evaluated with the observations over the Yellow River basin during 1981–2000. The simulations on overall annual evapotranspiration are reasonably good, with mean annual errors less than 10% except in extreme dry years. The AA model gives the best estimation for the monthly evapotranspiration, and the CRAE and GM models slightly overestimate in winter. In addition, the AA model presents the same closure error of water balance over the Yellow River basin as model G, which was less than that by the CRAE model. In rather dry and rather wet cases (with higher or lower available energy), all three models perform less well. Empirical parameters of these models need to be recalibrated before they can be applied to other regions. The distribution of evapotranspiration over the Yellow River basin is also discussed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
The complementary relationship between actual and potential evaporation provides evaporation (i.e. evapotranspiration) estimates from minimal data. Some versions that require a land surface temperature instead of a humidity measurement could potentially be used with routine remotely sensed surface temperature data. A comparison of alternative complementary approaches, including those that require land surface temperatures, was made at small (10–30 min) time scales with point measurements spatially, using data from the FIFE, CASES, SGP, and Sahel field experiments. The advection-aridity version and a related version based on the Penman and the Priestley–Taylor equations performed the best overall. One of the four versions that incorporated land surface temperature performed fairly well. The complementary approach appears to remain viable, especially in remote sensing applications with sparse data.  相似文献   

14.
Ozgur Kisi 《水文研究》2007,21(14):1925-1934
Evapotranspiration is one of the basic components of the hydrologic cycle and essential for estimating irrigation water requirements. This paper investigates the modelling of evapotranspiration using the feed‐forward artificial neural network (ANN) technique with the Levenberg–Marquardt (LM) training algorithm. The LM algorithm has never been used in evapotranspiration estimation before. The LM is used for the optimization of network weights, since this algorithm is more powerful and faster than the conventional gradient descent. Various combinations of daily climatic data, i.e. wind speed, air temperature, relative humidity and solar radiation, from three stations in Los Angeles, USA, are used as inputs to the ANN so as to evaluate the degree of effect of each of these variables on evapotranspiration. A comparison is made between the estimates provided by the ANN and those of the following empirical models: Penman, Hargreaves, Turc. Mean square error, mean absolute error and determination coefficient statistics are used as comparing criteria for the evaluation of the models' performances. Based on the comparisons, it was found that the neural computing technique could be employed successfully in modelling evapotranspiration process from the available climatic data. The results also indicate that the Hargreaves method provides better performance than the Penman and Turc methods in estimation of the evapotranspiration. The accuracy of the ANN technique in evapotranspiration estimation using nearby station data was also investigated. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Spatially distributed hydrometeorological and plant information within the mountainous tropical Panama Canal watershed is used to estimate parameters of the Penman–Monteith evapotranspiration formulation. Hydrometeorological data from a few surface climate stations located at low elevations in the watershed are complemented by (a) typical wet‐ and dry‐season fields of temperature, wind, water vapour and pressure produced by a mesoscale atmospheric model with a 3 × 3 km2 spatial and hourly temporal resolution, and (b) leaf area index fields estimated over the watershed during a few years using satellite data with two different spatial and temporal resolutions. The mesoscale model estimates of spatially distributed surface hydrometeorological variables provide the basis for the extrapolation of the surface climate station data to produce input for the Penman–Monteith equation. The satellite information and existing digital spatial databases of land use and land cover form the basis for the estimation of Penman–Monteith spatially distributed parameter values. Spatially distributed 3 × 3 km2 potential evapotranspiration estimates are obtained for the 3300 km2 Panama Canal watershed. Estimates for Gatun Lake within the watershed are found to reproduce well the monthly and annual lake evaporation obtained from submerged pans. Sensitivity analysis results of potential evapotranspiration estimates with respect to cloud cover, dew formation, leaf area index distribution and mesoscale model estimates of surface climate are presented and discussed. The main conclusion is that even the limited spatially distributed hydrometeorological and plant information used in this study contributes significantly toward explaining the substantial spatial variability of potential evapotranspiration in the watershed. These results also allow the determination of key locations within the watershed where additional surface stations may be profitably placed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
ABSTRACT

From data obtained at stations set up in Chad, the Central African Republic and Congo-Brazzaville, stretching from the desert to the equatorial zone, it has been possible to compare measurements of evapotranspiration and of evaporation with results obtained by using the energy-balance method. Several difficulties arise in these comparisons since the scale of the measurements (small evaporating surfaces) is generally different from that of the climatic characteristics on which evaporation is dependent.

After proposing a model to resolve this problem and fitting the empirical coefficients of Penman's formula, the author has applied this formula to some results derived for stations in Congo-Brazzaville; the potential evapotranspiration calculated in this way is in good agreement with water balance data.

At these stations the evapotranspiration energy may be a constant percentage of global short-wave radiation.

Finally, the energy-balance method has been used at Brazzaville to measure the actual evapotranspiration over grass during the dry season. The result is that actual and potential evapotranspiration were found to be closely related.

These results indicate the importance of solar readiation in the field of hydrometeorology.  相似文献   

17.
Spatial and temporal characteristics of actual evapotranspiration over the Haihe River basin in China during 1960–2002 are estimated using the complementary relationship and the Thornthwaite water balance (WB) approaches. Firstly, the long-term water balance equation is used to validate and select the most suitable long-term average annual actual evapotranspiration equations for nine subbasins. Then, the most suitable method, the Pike equation, is used to calibrate parameters of the complementary relationship models and the WB model at each station. The results show that the advection aridity (AA) model more closely estimates actual evapotranspiration than does the Granger and Gray (GG) model especially considering the annual and summer evapotranspiration when compared with the WB model estimates. The results from the AA model and the WB model are then used to analyze spatial and temporal changing characteristics of the actual evapotranspiration over the basin. The analysis shows that the annual actual evapotranspirations during 1960–2002 exhibit similar decreasing trends in most parts of the Haihe River basin for the AA and WB models. Decreasing trends in annual precipitation and potential evapotranspiration, which directly affect water supply and the energy available for actual evapotranspiration respectively, jointly lead to the decrease in actual evapotranspiration in the basin. A weakening of the water cycle seems to have appeared, and as a consequence, the water supply capacity has been on the decrease, aggravating water shortage and restricting sustainable social and economic development in the region.  相似文献   

18.
1961-2003年间鄱阳湖流域气候变化趋势及突变分析   总被引:21,自引:2,他引:19  
本文利用1961-2003年间鄱阳湖流域14个气象站的气温、降水量、蒸发量等观测数据和8个主要水文站的流量数据,研究该时段内鄱阳湖流域的气候变化趋势、突变及其空间分布的差异.研究表明,鄱阳潮流域气温和降水均在1990年发生突变,继而呈现显著的上升趋势;在季节变化上,冬季平均气温在1986年发生突变,增温显著;夏季降水量和夏季暴雨频率均在1992年发生突变增加,暴雨频率增加是夏季降水量增加的主要原因;蒸发皿蒸发量和参照蒸散量均呈现显著下降趋势,该变化在夏季尤为明显.上述变化趋势均以1990s最为显著,这与长江流域气候变化趋势基本一致.在空间分布上,饶河水系、信江水系和赣江下游等气候变化更为显著.笔者认为,鄱阳湖流域气候变化在长江流域中比较突出.该流域1990s暖湿气候在加强;气温的升高、降水量和暴雨频率的增加以及蒸发量的下降强化了五河流量的增加趋势,由此可大致判定鄱阳湖流域气候变化与洪涝灾害之间可能存在的关系,这可为理解气候变化在该流域的响应和预测该流域未来可能的洪涝灾害提供依据.  相似文献   

19.
Meteorological and environmental data measured in semiarid watersheds during the summer monsoon and winter periods were used to study the interrelationships among flux, meteorological and soil water variables, and to evaluate the effects of these variables on the daily estimation of actual evapotranspiration (AET). The relationship between AET and potential evapotranspiration (PET) as a function of soil water content, as suggested by Thornthwaite–Mather and by Morton, was studied to determine its applicability to the study area. Furthermore, multiple linear regression (MLR) analysis was employed to evaluate the order of importance of the meteorological and soil water factors involved. The results of MLR analysis showed that the combined effects of available energy, soil water content and wind speed were responsible for more than 70% of the observed variations in AET during the summer monsoon period. The analyses also indicate that the combined effects of available energy, vapour pressure deficit and wind speed were responsible for more than 70% of the observed variations in AET during the winter period. However, the test results of two different approaches, using the relationships between AET and PET as a function of soil water content, indicated some inadequacy. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
The Hargreaves–Samani (HS) evapotranspiration equation is very useful for the on‐site irrigation management in data‐short situations such as small and midsize farms and landscaped areas. Although much work has been performed to improve the precision of the evapotranspiration (ETo) estimates for use at new locations, the results have not been consistent and many have not been confirmed by other works. The purpose of this study was to review and to evaluate the seven most promising parameters used for the calibration of the HS evapotranspiration equation, using two different regions: California and Bolivia. The results of this study show that annual correlations between HS and Penman–Monteith can be misleading because the correlation is poor in the humid months and improves progressively along the dry season until the first rains. The average monthly wind speed can be used for both spatial and seasonal calibration of the HS equation, especially during the irrigation season. Elevation and precipitation can be used to calibrate the HS equation when no reference ETo values are available at nearby stations. The monthly value of KT calculated from solar radiation follows a parabolic function along the year and should not be used for improving the estimates of the HS equation because the clearness index produces better results than actual solar radiation measurements. The results also indicate that the use of distance to coast, temperature range and temperature parameter does not improve the precision of the HS equation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号