首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 750 毫秒
1.
将无能源磁摩擦控制装置应用于结构被动智能控制。分析了无能源磁摩擦控制装置的恢复力特性及影响参数,建立了被动连续变刚度体系的理论模型,推导了受控结构系统的一般方程,进行了模型结构的被动智能控制仿真分析。从理论上验证了无能源磁摩擦控制装置用于结构被动智能控制具有良好的控制效果。  相似文献   

2.
电磁摩擦控制装置性能试验研究   总被引:4,自引:2,他引:4  
本文提出了利用电磁铁的磁力效应设计电磁摩擦控制装置的思想,制作了电磁摩擦控制装置模型。通过该装置模型的性能试验研究,获得了其滞回性能曲线。由于可通过改变通电电流使摩擦力由恒定转为连续可变,电磁摩擦控制装置具有明显的自适应性。  相似文献   

3.
无能源磁摩擦控制装置性能试验研究   总被引:6,自引:2,他引:6  
本文提出了一种智能型无能源磁摩擦控制装置的设计思想,制作了无能源磁摩擦控制装置模型-永磁铁摩擦耗能装置模型。通过该装置的性能试验研究,获得了无能源磁摩擦控制装置的滞回性能曲线。由于可通过改变有效磁极面积使摩擦力由恒定转为连续可变,即该装置的摩擦力随位移的变化可连续、可逆、迅速地改变,因此该装置具有明显的自适应性。  相似文献   

4.
摩擦消能支撑装置非线性刚度分析   总被引:2,自引:0,他引:2  
多层建筑结构中设置摩擦消能支撑是以“柔性消能”减小地震反应,实现结构被动控制的有效途径之一,本文通过分析和计算I0型,IIb型两种摩擦消能支撑装置在各种形状态下的单元刚度矩阵[KNL(t)],为摩消能减震结构体系在地震作用下的非线性进程分析提供了消能支撑单元的精确理论模型。  相似文献   

5.
混合水箱装置对高层建筑结构地震反应控制效果的研究   总被引:5,自引:0,他引:5  
提出了一种用于结构地震反应控制的混合水箱装置的设想,通过优化计算进行了装置的参数选取,并探讨了该装置的频率设计方法,算例的弹塑性时程分析结果表明,混合水箱装置增加了液体的质量,具有相对较宽的工作效率,是一种适应性较强的被动控制装置。  相似文献   

6.
摩擦阻尼器是一种构造简单的耗能减振装置,已应用于国内外多座新建建筑的抗震设计和已建建筑的抗震加固.半主动磨擦阻尼器则通过调整阻尼器的起滑力来改善被动摩擦阻尼器的耗能减振性能。本文研究了被动及半主动摩擦阻尼器对于高耸塔架结构地震反应的减振效果。为满足摩擦阻尼器对高耸塔架结构风振控制的特殊需要,本文建立了合肥电视塔的空间桁架有限元模型和串联多自由度体系模型,并在形成控制力变换矩阵和计算摩擦阻尼器两端的相对位移的过程中综合地运用了这两种力学模型。在半主动摩擦阻尼器的控制策略方面,本文提出了一种基于次优控制理论的半主动控制策略.本文研究表明,摩擦阻尼器可以抑制高耸塔架结构的地震反应.而半主动摩擦阻尼辞的耗能减振效果明显优于被动摩擦阻尼器.  相似文献   

7.
两个控制装置的模拟地震振动台试验研究   总被引:2,自引:1,他引:1  
本文作者设计制造了一种高效被动阻尼控制(HEDC)装置和一种半主动控制装置-主动变刚度,阻尼(AVS.D)控制装置,并对其控制机理和控制效果进行了模拟地震振动台试验研究,试验结果表明,HEDC控制效果是令人满意的,而AVS.D控制则可以获得更好的效果,尽管它仅需很少的能量输入,试验结果表明,在AVS.D控制中,装置的电磁阀处于开启状态工作的时间较长,即在大部分时间里AVS.D控制系统是通过阻尼而不足刚度来控制受控结构,这在一定程度上降低了控制时滞的影响。  相似文献   

8.
形状记忆合金在结构振动控制中的应用   总被引:12,自引:0,他引:12  
形状记忆合金是一种在结构振动控制领域具有广阔应用前景的智能材料,本文结合形状记忆合金的形状记忆效应,超弹性效应和高阻尼特性等特点,分别从结构的被动控制,主动控制及智能控制三个方面系统总结了形状记忆合金的研究现状,最后指出了需进一步研究的方向。  相似文献   

9.
基于瞬时最优算法的磁流变阻尼隔震结构半主动控制   总被引:1,自引:0,他引:1  
采用瞬时最优控制算法,对附加了磁流变阻尼器的多自由度隔震结构进行了半主动控制的数值模拟。首先,将被动隔震装置——叠层钢板橡胶垫与磁流变阻尼器相结合,形成磁流变智能隔震系统。其次,根据瞬时最优控制算法的基本原理,针对磁流变阻尼器的特点,建立与之相适应的半主动控制算法。最后,以六层隔震结构为例,进行数值分析。比较了被动与半主动控制的结构反应,并得到较好的控制效果。  相似文献   

10.
多结构联系体系的高效阻尼控制及其仿真分析   总被引:3,自引:0,他引:3  
本文提出了一种用于多结构体系的,具有位移放大功能的高效被动阻尼控制装置,分析了该装置的工作原理,建立了基于这种装置的多结构被阻尼控制体系的运动方程,并对该装置的控制效果进行了仿真计算和分析,结果表明,该控制装置能充分利用体系中各了结构之间的相互作用,可以取得十分明显的减震控制效果。  相似文献   

11.
Passive supplemental damping in a seismically isolated structure provides the necessary energy dissipation to limit the isolation system displacement. However, damper forces can become quite large as the passive damping level is increased, resulting in the requirement to transfer large forces at the damper connections to the structure which may be particularly difficult to accommodate in retrofit applications. One method to limit the level of damping force while simultaneously controlling the isolation system displacement is to utilize an intelligent hybrid isolation system containing semi-active dampers in which the damping coeffic ient can be modulated. The effectiveness of such a hybrid seismic isolation system for earthquake hazard mitigation is investigated in this paper. The system is examined through an analytical and computational study of the seismic response of a bridge structure containing a hybrid isolation system consisting of elastomeric bearings and semi-active dampers. Control algorithms for operation of the semi-active dampers are developed based on fuzzy logic control theory. Practical limits on the response of the isolation system are considered and utilized in the evaluation of the control algorithms. The results of the study show that both passive and semi-active hybrid seismic isolation systems consisting of combined base isolation bearings and supplemental energy dissipation devices can be beneficial in reducing the seismic response of structures. These hybrid systems may prevent or significantly reduce structural damage during a seismic event. Furthermore, it is shown that intelligent semi-active seismic isolation systems are capable of controlling the peak deck displacement of bridges, and thus reducing the required length of expansion joints, while simultaneously limiting peak damper forces. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
A design strategy for control of buildings experiencing inelastic deformations during seismic response is formulated. The strategy is using weakened, and/or softened, elements in a structural system while adding passive energy dissipation devices (e.g. viscous fluid devices, etc.) in order to control simultaneously accelerations and deformations response during seismic events. A design methodology is developed to determine the locations and the magnitude of weakening and/or softening of structural elements and the added damping while insuring structural stability. A two‐stage design procedure is suggested: (i) first using a nonlinear active control algorithm, to determine the new structural parameters while insuring stability, then (ii) determine the properties of equivalent structural parameters of passive system, which can be implemented by removing or weakening some structural elements, or connections, and by addition of energy dissipation systems. Passive dampers and weakened elements are designed using an optimization algorithm to obtain a response as close as possible to an actively controlled system. A case study of a five‐story building subjected to El Centro ground motion, as well as to an ensemble of simulated ground motions, is presented to illustrate the procedure. The results show that following the design strategy, a control of both peak inter‐story drifts and total accelerations can be obtained. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Abstrect The recent developments of theoretical research, model tests and engineering applications of structural control in mainland China are reviewed in this paper. It includes seismic isolation, passive energy dissipation, active and semi-active control, smart materials and smart structural systems. It can be seen that passive control methods, such as seismic isolation and energy dissipation methods, have developed into the mature stage in China. At the same time, great progress has been made in active and semi-active control, and smart actuators or smart dampers and smart structural systems. Finally, some future research initiatives for structural control in civil engineering are suggested. Supported by : National Natural Science Foundation of China (Grant No. 50025821)  相似文献   

14.
China is a country where 100% of the territory is located in a seismic zone. Most of the strong earthquakes are over prediction. Most fatalities are caused by structural collapse. Earthquakes not only cause severe damage to structures, but can also damage non-structural elements on and inside of facilities. This can halt city life, and disrupt hospitals, airports, bridges, power plants, and other infrastructure. Designers need to use new techniques to protect structures and facilities inside. Isolation, energy dissipation and, control systems are more and more widely used in recent years in China. Currently, there are nearly 6,500 structures with isolation and about 3,000 structures with passive energy dissipation or hybrid control in China. The mitigation techniques are applied to structures like residential buildings, large or complex structures, bridges, underwater tunnels, historical or cultural relic sites, and industrial facilities, and are used for retrofitting of existed structures. This paper introduces design rules and some new and innovative devices for seismic isolation, energy dissipation and hybrid control for civil and industrial structures. This paper also discusses the development trends for seismic resistance, seismic isolation, passive and active control techniques for the future in China and in the world.  相似文献   

15.
An extensive experimental program of shaking table tests on reduced‐scale structural models was carried out within the activities of the MANSIDE project, for the development of new seismic isolation and energy dissipation devices based on shape memory alloys (SMAs). The aim of the experimental program was to compare the behaviour of structures endowed with innovative SMA‐based devices to the behaviour of conventional structures and of structures endowed with currently used passive control systems. This paper presents a comprehensive overview of the main results of the shaking table tests carried out on the models with and without special braces. Two different types of energy dissipating and re‐centring braces have been considered to enhance the seismic performances of the tested model. They are based on the hysteretic properties of steel elements and on the superelastic properties of SMAs, respectively. The addition of passive control braces in the reinforced concrete frame resulted in significant benefits on the overall seismic behaviour. The seismic intensity producing structural collapse was considerably raised, interstorey drifts and shear forces in columns were drastically reduced. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Though rocking shallow foundations could be designed to possess many desirable characteristics such as energy dissipation, isolation, and self-centering, current seismic design codes often avoid nonlinear behavior of soil and energy dissipation beneath foundations. This paper compares the effectiveness of energy dissipation in foundation soil (during rocking) with the effectiveness of structural energy dissipation devices during seismic loading. Numerical simulations were carried out to systematically study the seismic energy dissipation in structural elements and passive controlled energy dissipation devices inserted into the structure. The numerical model was validated using shaking table experimental results on model frame structures with and without energy dissipation devices. The energy dissipation in the structure, drift ratio, and the force and displacement demands on the structure are compared with energy dissipation characteristics of rocking shallow foundations as observed in centrifuge experiments, where shallow foundations were allowed to rock on dry sandy soil stratum during dynamic loading. For the structures with energy dissipating devices, about 70–90% of the seismic input energy is dissipated by energy dissipating devices, while foundation rocking dissipates about 30–90% of the total seismic input energy in foundation soil (depending on the static factor of safety). Results indicate that, if properly designed (with reliable capacity and tolerable settlements), adverse effects of foundation rocking can be minimized, while taking advantage of the favorable features of foundation rocking and hence they can be used as efficient and economical seismic energy dissipation mechanisms in buildings and bridges.  相似文献   

17.
可控消能减震原理及结构分析   总被引:3,自引:0,他引:3  
本文介绍一种新的减震结构体系及其分析方法。这种结构体系的减震系统由控制装置及耗能装置组成,控制装置根据结构反馈的相关信号,在回头点处启动耗能装置,耗散大量地震能量,属于半主动控制范畴。试验及理论分析表明,这种结构体系的减震效果良好,能够将结构的地震位移反应降低50%以上。本文介绍了这种结构体系的减震工作原理、数学模型、理论分析方法及算例,并给出了相应的结论。  相似文献   

18.
This study assesses analytically the effectiveness, feasibility and limitations of elastic and hysteretic damping augmentation devices, such as elastomeric and lead–rubber bearings, with respect to the dynamic and seismic performance of cable-stayed bridges. This type of bridge, which has relatively greater flexibility, is more susceptible to undesirable vibrations due to service and environmental loadings than are conventional bridges. Therefore, damping is a very important property. Supplementary damping devices based on the plastic deformation of lead and steel are proposed at critical zones, such as the deck–abutment and deck–tower connections, to concentrate hysteretic behaviour in these specially designed energy absorbers. Inelastic behaviour in primary structural elements of the bridge can therefore be avoided, assuring the serviceability of these cable-supported bridges. Analytically, three-dimensional modelling is developed for the bridge and the damping devices, including the bridge geometrical large-displacement non-linearity and the local material and geometric non-linearities of the energy dissipation devices. The effects of various modelling and design parameters of the bridge response are also studied, including the properties, modelling accuracy and location of the devices along the bridge superstructure. It is shown that an optimum model of the seismic performance of the bridges with these passive control devices can be obtained by balancing the reduction in forces along the bridge against tolerable displacements. Appropriate locations and hysteretic energy dissipation properties of the devices can achieve a significant reduction in seismic-induced forces, as compared to the case with no dampers added, and relatively better control of displacements. In addition, proper selection of the location of the passive control systems can help redistribute forces along the structure which may provide solutions for retrofitting some existing bridges. However, caution should be exercised in simulating the device response for a reliable bridge structural performance. Moreover, while seismic response of the bridge can be significantly improved with added dampers, their degree of effectiveness also depends on the energy absorption characteristics of the dampers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号