首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 999 毫秒
1.
在计算面波频散问题的广义反射-透射系数方法基础上研究了含有低速层的均匀平层固体地球模型的面波的频散曲线以及简正振型的计算问题. 当不存在低速层时,仅利用陈晓非1993年提出的单一的久期函数对求解这两个问题已经足够. 但是当模型中存在低速层时,该单一久期函数在数值求解较低阶模式很困难. 本文提出用久期函数族代替该单一久期函数、对不同的简正振型模式采用对应的久期函数来求解的方法,从而更加容易有效地求解较低阶的模式,完善了利用广义反射-透射系数方法求解面波频散问题的理论和算法.  相似文献   

2.
声波测井中的广义反射、透射系数方法   总被引:1,自引:0,他引:1       下载免费PDF全文
本文将广义反射、透射系数矩阵方法推广用于研究声法测井中的声波传播问题.结果表明,测井中的声场解可以表示成无数条广义声线的叠加.任意一条广义声线的积分表达式,则可根据每一条声线段的性质,由各反射界面上的广义反射、透射系数直接给出.这种表示方法特别适用于研究和识别声波记录图中各种“震相”的性质.当计算全波声场时,由于本文将声场计算中的被积函数形式上分解成一系列(2×2)子矩阵的乘积,并给出了相应的迭代公式,从而可以用较快的速度进行计算.  相似文献   

3.
本文讨论了计算近场综合地震图时使用的广义反射、透射系数矩阵和离散波数方法,并对不同深度点源的情况给出了新的算法及相应的计算实例。用本文提供的新算法,与原算法相比,可以减少60%的计算时间。在需要计算大量点源格林函数时,该方法是很有实用价值的。  相似文献   

4.
本文根据弹性力学理论计算出波在多层弹性介质上的反射和透射系数,给出计算反射和透射系数的源程序和框图,并对波在多层弹性介质中的特性进行了一些研究。  相似文献   

5.
层状介质的声波波动方程反演   总被引:4,自引:3,他引:1  
基于广义反射透射系数矩阵正演方法 ,讨论了层状介质的声波波动方程反问题 .推导出波数频率域中的雅可比矩阵的解析表达式 ,其计算在正演过程中求出 .采用最小二方法可得到层介质参数 .数值结果表明反演方法的正确有效性 .  相似文献   

6.
广义反射-透射系数算法的无量纲化   总被引:1,自引:0,他引:1  
水平层状介质中瑞利波频散曲线的计算一直是受关注的问题.陈晓非提出的广义反射-透射系数方法虽然具备很好的精确性和稳定性,但是算法中起决定作用的矩阵E存在有量纲元素,并且不同元素之间的数量级差异很大.本文作者通过把广义反射-透射系数算法无量纲化,得到了简洁的瑞利波频散函数的公式体系.分别计算了改进后算法和原算法中矩阵E的最大模元素与最小模元素的比值ε,发现前者的矩阵E中最大模元素与最小模元素最多只相差1个数量级,而后者的矩阵E中最大模元素与最小模元素之间最大达11个数量级的差异,尽管后者可以通过选取变量的单位减小ε的值,但新算法精度更高,从而完善了利用广义反射-透射系数方法求解瑞利波频散曲线问题的理论和算法.  相似文献   

7.
用三维超声模拟研究来自垂向低速薄层反射以及在该薄层中透射的瑞雷波。基于格林函数的近似法计算了瑞雷波的反射和透射系数。非刚性接触的边界条件用于低速层模拟,得到的理论与实验的反射和透射系数的绝对值相当吻合。实验与理论研究结果的某些不一致,特别是相移,可以用理论模型与超声模拟研究的低速层不相适应来解释。  相似文献   

8.
单程波近似实际上是一种多次前向散射和单次后向散射近似.利用单程波近似来描述波传播可以极大地节省地震数值模拟的计算时间和内存,实现地震波长距离传播模拟和三维地震模拟快速计算.本文基于单程波近似和波动积分方程的分离变量逼近,从广义Lippmann-Schwinger波动积分方程推导出耦合反射/透射系数的单程波传播算子.该算子由两部分构成:分离变量Fourier单程波传播算子和薄板间的反射/透射系数表达.前者将常规的Fourier分裂步单程波传播算子(SSF)推广适应横向强速度变化介质和大角度传播波场.后者是利用垂直波数来表示反射/透射系数,自然耦合到波场传播的计算过程中,其为地质界面倾角的隐式表达,精确描述振幅随入射角的变化,能适应任意复杂的模型.通过两个数值算例和一个实际地质模型的计算,本文将该方法和边界元法进行了比较,结果表明:在算例给出的介质横向速度变化情况下,本文提出的方法在相位和振幅方面与全波数值方法基本吻合.  相似文献   

9.
海底强地面运动计算   总被引:2,自引:0,他引:2  
本文将计算综合地震图的广义反射、透射系数矩阵和离散波数方法进行了推广,使之适合于计算海底地面运动的位错点源格林函数。通过对数值例子的分析表明,理论模拟方法可以用于研究海水层和沉积层性质对海底运动的影响,以根据陆地上的资料来定性地获得海底强地面运动的信息。  相似文献   

10.
区域地震范围的宽频带理论地震图算法研究   总被引:1,自引:2,他引:1       下载免费PDF全文
本文研究一种计算区域地震范围宽频带理论地震图的快速算法.对于层状地球介质模型,使用广义反射、透射系数矩阵和离散波数积分方法计算理论地震图.为了减少计算时间,改进了Filon波数积分方法,并用它来计算波数积分.数值模拟表明,在计算震中距为300km的理论地震图时,计算速度提高了1倍.  相似文献   

11.
地震波在各向异性介质中以一个准P波(qP)和两个准S波(qS1和qS2)的形式传播.研究三种波的相速度、群速度以及偏振方向等传播性质能够为各向异性介质中的正反演问题提供有效支撑.具有比横向各向同性(TI)介质更一般对称性的正交各向异性介质通常需要9个独立参数对其进行描述,这使得对传播特征的计算更为复杂.当两个准S波速度相近时具有耦合性,从而令慢度的计算产生奇异性.因此,奇异点(慢度面的鞍点和交叉点)附近的反射与透射(R/T)系数的求解不稳定,会导致波场振幅不准确.本文首次通过结合耦合S波射线理论和基于迭代的各向异性相速度与偏振矢量的高阶近似解,得到了适用于正交各向异性介质以qP波入射所产生的二阶R/T系数的计算方法.与基于一阶近似的结果相比,基于二阶近似的方法提高了qP波R/T系数的精度,能得到一阶耦合近似无法表达的准确的qP-qS转换波的R/T系数解,且方法适用于较强的各向异性介质.  相似文献   

12.
针对波速分层的区域岩体,在异向波速模型的基础上,对垂向上的应力波按岩体波速值大小作分段区别,推导震源应力波走时关系式,建立分层速度定位目标函数,基于此提出一种由参数准备、层速度反演、微震定位三个模块组成的分层速度定位模型SV,并采用遗传算法进行优化求解.然后,对分层速度定位模型在已构建微震监测系统的白鹤滩水电站左岸岩质边坡进行验证.微震事件重定位结果表明,分层速度定位模型定位微震事件的最大、最小和平均偏离层内错动带程度指标较单一速度模型分别降低了57.17%、36.51%和57.35%,证明了定位模型在波速分层的区域岩体微震定位应用中比单一速度定位模型更加合理可靠.  相似文献   

13.
用Pg波走时重建华北地区结晶基底速度及时间项图像   总被引:3,自引:0,他引:3  
应用层析成象以投影方法,对华北地区28条深地震剖剖面地震测深剖面Pg波走时进行处理,作出该区结晶基底速度及时间项成像。并作了方法的数值模型合成数据的敏感性分析,证明所采用有效性及成象结果的可靠性。计算中应用LSQR算法求解大型稀疏超定方程。并采用只存储矩阵非零元素技术,使存储量减小到原矩阵百分之一,同时零元素不参数加计算,提高了运算速度。华北地区结昌基底速度为5.9-6.35km/s,时间最大为2  相似文献   

14.
A New Theory of Love Waves in Multi-layered Media with Irregular Interfaces   总被引:3,自引:0,他引:3  
In this article, we have derived a new and more general formulation of Love waves in arbitrarily irregular multi-layered media by using the global generalized reflection/transmission (abbreviated to R/T thereafter) matrices method developed earlier by Chen [17~20]. From the basic principle that the modal solutions are the non-trivial solutions of the free elastodynamic equation under appropriate boundary conditions, we naturally derived the characteristic frequencies and the corresponding distorted modes of Love wave in irregular multi-layered media. Moreover, we have derived the corresponding excitation formulation of Love waves in such laterally heterogeneous media by using the general solution of elastodynamic equation [17~20]. Similar to the result for laterally homogeneous layered structure, the Love waves radiated from a point source in irregular multi-layered media can be expressed as a superposition of distorted modes. Since the structure model used here is quite arbitrary, it can be used for so  相似文献   

15.
16.
Joint inversion of multimode surface waves for estimating the shear (S)-wave velocity has received much attention in recent years. In this paper, we first analyze sensitivity of phase velocities of multimodes of surface waves for a six-layer earth model, and then we invert surface-wave dispersion curves of the theoretical model and a real-world example. Sensitivity analysis shows that fundamental mode data are more sensitive to the S-wave velocities of shallow layers and are concentrated on a very narrow frequency band, while higher mode data are more sensitive to the parameters of relatively deeper layers and are distributed over a wider frequency band. These properties provide a foundation of using a multimode joint inversion to define S-wave velocities. Inversion results of both synthetic data and a real-world example demonstrate that joint inversion with the damped least-square method and the singular-value decomposition technique to invert high-frequency surface waves with fundamental and higher mode data simultaneously can effectively reduce the ambiguity and improve the accuracy of S-wave velocities.  相似文献   

17.
Lateral inhomogeneities generate fluctuations in the traveltime of seismic waves. By evaluation of these traveltime fluctuations from different source and receiver positions, lateral inhomogeneities can be located using a pseudo inverse matrix method (Aki, Christoffersson and Husebye 1977). The formulation of the problem is possible for transmitted waves as well as for reflected and refracted waves. In reflection seismics this method is of importance, if no reflections from the inhomogeneities themselves, but only reflections from lower boundaries can be observed. The basic assumptions for the mathematical formulation are (1) the average velocities and depths of the reflecting horizons are known already from standard processing methods, and (2) the traveltime residuals are due to lateral velocity changes between different reflectors or between reflectors and the surface. The area of the earth to be considered is divided into layers and the layers into rectangular blocks. The parallel displacement of a ray after passing a disturbed block is neglected, only the traveltime residual is taken into account. In this paper the method and its application to data obtained with two-dimensional models are described.  相似文献   

18.
Surface waves are often used to estimate a near‐surface shear‐velocity profile. The inverse problem is solved for the locally one‐dimensional problem of a set of homogeneous horizontal elastic layers. The result is a set of shear velocities, one for each layer. To obtain a P‐wave velocity profile, the P‐guided waves should be included in the inversion scheme. As an alternative to a multi‐layered model, we consider a simple smooth acoustic constant‐density velocity model, which has a negative constant vertical depth gradient of the squared P‐wave slowness and is bounded by a free surface at the top and a homogeneous half‐space at the bottom. The exact solution involves Airy functions and provides an analytical expression for the dispersion equation. If the ratio is sufficiently small, the dispersion curves can be picked from the seismic data and inverted for the continuous P‐wave velocity profile. The potential advantages of our model are its low computational cost and the fact that the result can serve as a smooth starting model for full‐waveform inversion. For the latter, a smooth initial model is often preferred over a rough one. We test the inversion approach on synthetic elastic data computed for a single‐layer P‐wave model and on field data, both with a small ratio. We find that a single‐layer model can recover either the shallow or deeper part of the profile but not both, when compared with the result of a multi‐layer inversion that we use as a reference. An extension of our analytic model to two layers above a homogeneous half‐space, each with a constant vertical gradient of the squared P‐wave slowness and connected in a continuous manner, improves the fit of the picked dispersion curves. The resulting profile resembles a smooth approximation of the multi‐layered one but contains, of course, less detail. As it turns out, our method does not degrade as gracefully as, for instance, diving‐wave tomography, and we can only hope to fit a subset of the dispersion curves. Therefore, the applicability of the method is limited to cases where the ratio is small and the profile is sufficiently simple. A further extension of the two‐layer model to more layers, each with a constant depth gradient of the squared slowness, might improve the fit of the modal structure but at an increased cost.  相似文献   

19.
Rayleigh wave dispersion data usually appear in the form of multimodal spectra for a layered model structure. The number of dispersion modal curves depends on the number of layers in the model. The measured dispersion velocities from the frequency–wavenumber (F–K) space, however, may not represent the true phase velocities of the fundamental-mode dispersion curve, but apparent phase velocities. The present study discusses how multimode curves are generated in the multichannel analysis of surface waves (MASW) method and the cause of the apparent velocity produced by the F–K method. Results from a field trial demonstrate that apparent phase velocities fail to reveal thin layers with low velocities. A better agreement of the inverted model with the geotechnical record is obtained by using the data points extracted from the fundamental-mode curve of the MASW spectral image.  相似文献   

20.
Group velocities of Rayleigh and Love waves along the paths across the Black Sea and partly Asia Minor and the Balkan Peninsula are used to estimate lateral variations of the crustal structure in the region. As a first step, lateral variations of group velocities for periods in the range 10–20 s are determined using a 2D tomography method. Since the paths are oriented predominantly in NE–SW or N–S direction, the resolution is estimated as a function of azimuth. The local dispersion curves are actually averaged over the extended areas stretched in the predominant direction of the paths. The size of the averaging area in the direction of the best resolution is approximately 200 km. As a second step, the local averaged dispersion curves are inverted to vertical sections of S-wave velocities. Since the dispersion curves in the 10–20 s period range are mostly affected by the upper crustal structure, the velocities are estimated to a depth of approximately 25 km. Velocity sections along 43° N latitude are determined separately from Rayleigh and Love wave data. It is shown that the crust under the sea contains a low-velocity sedimentary layer of 2–3 km thickness, localized in the eastern and western deeps, as found earlier from DSS data. Beneath the sedimentary layer, two layers are present with velocity values lying between those of granite and consolidated sediments. Velocities in these layers are slightly lower in the deeps, and the boundaries of the layers are lowered. S-wave velocities obtained from Love wave data are found to be larger than those from Rayleigh wave data, the difference being most pronounced in the basaltic layer. If this difference is attributed to anisotropy, the anisotropy coefficient = (SH - SV)/Smean is reasonable (2–3%) in the upper layers, and exceeds 9% in the basaltic layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号