首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Solute and runoff fluxes from two adjacent alpine streams (one glacial and one non‐glacial) were investigated to determine how the inorganic solute chemistry of runoff responded to seasonal and interannual changes in runoff sources and volume, and to differences in physical catchment properties. Intercatchment differences in solute composition were primarily controlled by differences in catchment geology and the presence of soils, whereas differences in total solute fluxes were largely dependent on specific discharge. The glacial stream catchment had higher chemical denudation rates due to the high rates of flushing (higher specific discharge). The non‐glacial Bow River had higher overall concentrations of solutes despite the greater prevalence of more resistant lithologies in this catchment. This is likely the result of both longer average water–rock contact times, and a greater supply of protons from organic soils and/or pyrite oxidation. Increases in snowpack depth/snowmelt runoff reduced the retention of nitrate in the Bow River catchment (i.e. increased nitrate export), probably by reducing net biological uptake, or by reducing the proportion of runoff that had contact with biologically active soil horizons that tend to remove nitrate. The two streams exhibited opposite solute flux responses to climate perturbations over three melt seasons (1998, 1999, and 2000). The 1998 El Niño event resulted in an unusually thin winter snowpack, and increased runoff and solute fluxes from the glacial catchment, but decreased fluxes from the Bow River catchment. Solute fluxes in the Bow River increased proportionally to discharge, indicating that increased snowmelt runoff in this catchment resulted in a proportional increase in weathering rates. In contrast, the proportional variation in solute flux in the glacial stream was only ∼70–80% of the variation in water flux. This suggests that increased ablation of glacier ice and the development of subglacial channels during the 1998 El Niño year apparently reduced the average water–rock contact time in the glacial catchment relative to seasons when the subglacial drainage system was primarily distributed in character. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
The Holocene volumetric sediment budget is estimated for coarse textured sediments (sand and gravel) in a large, formerly glaciated valley in southwest British Columbia. Erosion is estimated by compiling volumetric loss estimated in digital elevation models (DEMs) of gullied topography and by applying a non‐linear diffusion model on planar, undissected hillslopes. Estimates of steepland yield are based on estimates of post‐glacial deposition volumes in fans, cones and deltas at the outlets of low‐order tributary catchments. Erosion of post‐glacial fans and tributary valley fills is estimated by reconstructing formerly continuous surfaces. Results are classed by catchment order and compared across scales of contributing area, revealing declining specific sediment yield (in m3 km?2 a?1) with catchment area for the smaller tributaries (<10 km2) and increasing specific sediment yield for larger tributaries and Chilliwack Valley itself. Approximately 60% of mobilized sediment is redeposited in first‐ to third‐order catchments, with lesser proportions stored at the outlets of higher order catchments. A simple network routing model emphasizes the significant sediment flux contributions from colluvium, drift blankets and gullies in steeper terrain. As this material is deposited at junctions within the lower drainage network, an increasing proportion of material is derived from remnant valley fills and para‐glacial fans in the major valleys. Yield from lower‐order, steepland catchments tends to remain in storage, indefinitely sequestered on footslopes. These observations have implications for modelling the post‐glacial sediment balance amongst catchments of varying size. After 104 years, the system remains in disequilibrium. The critical linkage lies between low‐order, hillslope catchments (相似文献   

3.
Snow and glaciers are known to be important sources for freshwater; nevertheless, our understanding of the hydrological functioning of glacial catchments remains limited when compared with lower altitude catchments. In this study, a temperate glacial region located in the southeast margin of the Tibetan Plateau is selected to analyse the characteristics of δ18O and δD in different water sources and the contribution of glacier–snow meltwater to streamflow. The results indicate that the δ18O of river water ranges from ?16.2‰ to ?10.2‰ with a mean of ?14.1‰ and that the δD values range from ?117.0‰ to ?68.0‰ with a mean of ?103.1‰. These values are more negative than those of glacier–snow meltwater but less negative than those of precipitation. The d ‐excess values are found to decrease from meltwater to river to lake/reservoir water as a result of evaporation. On the basis of hydrograph separation, glacier–snow meltwater accounts for 51.5% of river water in the Baishui catchment in the melting season. In the Yanggong catchment, snow meltwater contributes 47.9% to river water in the premonsoon period, and glacier meltwater contributes only 6.8% in the monsoon period. The uncertainty in hydrograph separation is sensitive to the variation of tracer concentrations of streamflow components. The input of meltwater to a water system varies with local climate and glacier changes. The results confirm that hydrograph separation using water isotopes is valuable for evaluating the recharge sources of rivers, especially in ungauged glacial regions. This study provides insights into the hydrological processes of glacial catchments on the Tibetan Plateau, which is important for water resource management.  相似文献   

4.
Glacier recessions caused by climate change may uncover pro‐glacial lakes that form important sedimentation basins regulating the downstream sediment delivery. The impact of modern pro‐glacial lakes on fluvial sediment transport from three different Norwegian glaciers: Nigardsbreen, Engabreen and Tunsbergdalsbreen, and their long‐term development has been studied. All of these lakes developed in modern times in overdeepened bedrock basins. The recession of Nigardsbreen uncovered a 1.8 km long and on average 15 m deep pro‐glacial lake basin during 1937 to 1968. Since then the glacier front has been situated entirely on land, and the sediment input and output of the lake has been measured. The suspended sediment transport into and out of the lake averaged 11 730 t yr?1 and 2340 t yr?1 respectively. Thus, 20% remained in suspension at the outlet. The measured mean annual bedload supplied to the lake was 11 800 t yr?1, giving a total transport of 23 530 t yr?1 which corresponds to a specific sediment yield of 561 t km?2 yr?1. A 1.9 km long and up to 90 m deep pro‐glacial lake basin downstream from Engabreen glacier was uncovered during 1890 to 1944. The average suspended sediment load delivered from the glacier during the years 1970–1981 amounted to 12 375 t yr?1and the transport out of the lake was 2021 t yr?1, giving an average of 16% remaining in suspension. The mean annual bedload was 8000 t yr?1, thus the total transport was 20 375 t yr?1, giving a specific sediment yield of 566 t km?2 yr?1. For Tunsbergdalsbreen glacier, measurements in the early 1970s indicated that the suspended sediment transport was on average 44 000 t yr?1. From 1987 to 1993 the recession of the glacier uncovered a small pro‐glacial lake, 0.3 km long and around 9 m deep. Downstream from this, the suspended sediment load measured in 2009 was 28 000 t yr?1, indicating that as much as 64% remained in suspension. Flow velocity, grain size of sediment, and morphology of the lake are important factors controlling the sedimentation rate in the pro‐glacial lakes. A survey of the sub‐glacial morphology of Tunsbergdalsbreen revealed that there are several overdeepened basins beneath the glacier. The largest is 4 km long and 100 m deep. When the glacier melts back they will become lakes and act as sedimentation basins. Despite an expected increase in sediment yield from the glacier, little sediment will pass these lakes and downstream sediment delivery will be reduced markedly. Beneath Nigardsbreen there was only a small depression that may form a lake and the sediment delivery will not be significantly affected. © 2014 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

5.
This paper adopts standard tests developed in temperate catchment research to determine the total phosphorus (TP) and the algal available (base‐extractable) phosphorus (NaOH–P) content of a wide range of glaciofluvial sediments from the Northern Hemisphere. We find that the TP content of these sediments is broadly similar to the P content of major rock types in Earth's crust (230–670 µgP/g) and so the TP yields of glacier basins may be high owing to the efficacy of suspended sediment evacuation by glacial meltwaters. We show that this is best achieved where subglacial drainage systems are present. The NaOH–P pool of the sediments is found to be low (1–23 µgP/g) relative to the TP pool and also to the NaOH–P pool of suspended sediments in temperate, non‐glacierized catchments. This most probably reflects the restricted duration of intimate contact between dilute meltwaters and glacial suspended sediments during the ablation season. Thus, despite the high surface‐area:volume ratio of glacial suspended sediments, the potential for P adsorption to mineral surfaces following release by dissolution is also low. Further, sorption experiments and sequential extraction tests conducted using glacial suspended sediments from two Svalbard catchments indicate that the generation of reactive secondary minerals (e.g. Fe‐ and other hydroxides) with a strong capacity to scavenge P from solution (and thereby promote the continued dissolution of P) may also be limited by the short residence times. Most P is therefore associated with poorly weathered, calcite/apatite‐rich mineral phases. However, we use examples from the Svalbard glacier basins (Austre Brøggerbreen and Midre Lovénbreen) to show that the high sediment yields of glaciers may result in appreciable NaOH–P loading of ice‐marginal receiving waters. Again, the importance of subglacial drainage is highlighted, as it produces a major, episodic release of NaOH–P at Midre Lovénbreen that results in a yield (8·2 kg NaOH–P/km2/year) more than one order of magnitude greater than that at Austre Brøggerbreen (where subglacial drainage is absent and the yield is 0·48 kg NaOH‐P/km2/year). Therefore, as since both detrimental and beneficial effects of sediment‐bound P loading in ice marginal receiving waters are possible (i.e. either reduced primary productivity owing to increased turbidity or P fertilization following desorption) there is a pressing need to assess the ambient P status of such environments and also the capacity for ice‐marginal ecosystems to adapt to such inputs. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Glacier forefields are landscapes in transition from glacial to non‐glacial conditions; this implies intense geomorphic, hydrological and ecological dynamics with important on‐ and off‐site effects. This special issue collects 13 papers covering recent research in both (sub‐)polar and alpine pro‐glacial environments that focus on (i) pro‐glacial sediment sources, (ii) pro‐glacial rivers, (iii) pro‐glacial lakes, (iv) ground water and ice, and (v) the development of soil and vegetation in its interplay with morphodynamics. Advances in mapping, surveying and geophysical techniques form the basis for research perspectives related to the historical evolution of pro‐glacial areas, the understanding of complex interactions of multiple processes, and the effects of continued glacier recession. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The sediment yields of Alpine catchments are commonly determined from streamload measurements made some distance downstream from glaciers. However, this approach indiscriminately integrates erosion processes occurring in both the glacial and proglacial areas. A specific method is required to ascertain the respective inputs from (i) subglacial and supraglacial sediments, (ii) proglacial hillslopes and (iii) proglacial alluvial areas or sandurs. This issue is addressed here by combining high‐resolution monitoring (2 min) of suspended sediment concentrations at different locations within a catchment with discharge gauging and precipitation data. This methodological framework is applied to two proglacial streams draining the Bossons glacier (Mont Blanc massif, France): the Bossons and Crosette streams. For the Bossons stream, discharge and suspended load data were acquired from June to October 2013 at 1.15 and 1.5 km from the glacial terminus, respectively upstream and downstream from a small valley sandur. These hydro‐sedimentary data are compared with the Crosette stream dataset acquired at the outlet of the Bossons glacier subglacial drainage system. A fourfold analysis focusing on seasonal changes in streamload and discharge, multilinear regression modelling, evaluation of the sandur flux balance and probabilistic uncertainty assessment is used to determine the catchment sediment budget and to explain the proglacial sediment dynamics. The seasonal fluctuation of the sediment signal observed is related to the gradual closing of the subglacial drainage network and to the role of the proglacial area in the sediment cascade: the proglacial hillslopes appear to be disconnected from the main channel and the valley sandur acts as a hydrodynamic sediment buffer both daily and seasonally. Our findings show that an understanding of proglacial sediment dynamics can help in evaluating paraglacial adjustment and subglacial erosion processes. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
Seasonal suspended sediment transfer in glaciated catchments is responsive to meteorological, geomorphological, and glacio-fluvial conditions, and thus is a useful indicator of environmental system dynamics. Knowledge of multifaceted fluvial sediment-transfer processes is limited in the Alaskan Arctic – a region sensitive to contemporary environmental change. For two glaciated sub-catchments at Lake Peters, northeast Brooks Range, Alaska, we conducted a two-year endeavour to monitor the hydrology and meteorology, and used the data to derive multiple-regression models of suspended sediment load. Statistical selection of the best models shows that incorporating meteorological or temporal explanatory variables improves performances of turbidity- and discharge-based sediment models. The resulting modelled specific suspended sediment yields to Lake Peters are: 33 (20–60) t km−2 yr−1 in 2015, and 79 (50–140) t km−2 yr−1 in 2016 (95% confidence band estimates). In contrast to previous studies in Arctic Alaska, fluvial suspended sediment transfer to Lake Peters was primarily influenced by rainfall, and secondarily influenced by temperature-driven melt processes associated with clockwise diurnal hysteresis. Despite different sub-catchment glacier coverage, specific yields were the same order of magnitude from the two primary inflows to Lake Peters, which are Carnivore Creek (128 km2; 10% glacier coverage) and Chamberlin Creek (8 km2; 23% glacier coverage). Seasonal to longer-term sediment exhaustion and/or contrasting glacier dynamics may explain the lower than expected relative specific sediment yield from the more heavily glacierized Chamberlin Creek catchment. Absolute suspended sediment yield (t yr−1) from Carnivore Creek to Lake Peters was 27 times greater than from Chamberlin Creek, which we attribute to catchment size and sediment supply differences. Our results provide a foundational understanding of the current sediment transfer regime and are useful for predicting changes in fluvial sediment transport in glaciated Alaskan Arctic catchments.  相似文献   

9.
Recent understanding of chemical weathering in glacierized catchments has been focused on mid-latitude, Alpine catchments; comparable studies from the high latitudes are currently lacking. This paper attempts to address this deficiency by examining solute provenance, transport and denudation in a glacierized catchment at 78°N in the Svalbard High Arctic archipelago. Representative samples of snow, glacier ice, winter proglacial icing and glacier meltwater were obtained from the catchment during spring and summer 1993 and analysed for major ion chemistry. Seasonal variations in the composition of glacier meltwater occur and are influenced by proglacial solute acquisition from the icing at the very start of the melt season, and subsequently by a period of discharge of concentrated snowmelt caused by snowpack elution; weathering within the ice-marginal channels that drain the glacier, particularly carbonation reactions, continues to furnish solute to meltwater when suspended sediment concentrations increase later in the melt season. Partitioning the solute flux into its various components (sea-salt, crustal, aerosol and atmospheric sources) shows that c. 25% of the total flux is sea salt derived, consistent with the maritime location of the glacier, and c. 71% is crustally derived. Estimated chemical denudation, 160 meq m−2 a−1 sea salt-corrected cation equivalent weathering rate, is somewhat low compared with other studied glacierized catchments (estimates in the range 450–1000 meq m−2 a−1), which is probably attributable to the relatively short melt season and low specific runoff in the High Arctic. A positive relationship was identified between discharge and CO2 drawdown owing to carbonation reactions in turbid meltwater. © 1997 John Wiley & Sons, Ltd.  相似文献   

10.
Sediment transport during flood events often reveals hysteretic patterns because flow discharge can peak before (counterclockwise hysteresis) or after (clockwise hysteresis) the peak of bedload. Hysteresis in sediment transport has been used in the literature to infer the degree of sediment availability. Counterclockwise and clockwise hysteresis have been in fact interpreted as limited and unlimited sediment supply conditions, respectively. Hysteresis has been mainly explored for the case of suspended sediment transport, but it was rarely reported for bedload transport in mountain streams. This work focuses on the temporal variability of bedload transport in an alpine catchment (Saldur basin, 18.6 km2, Italian Alps) where bedload transport was monitored by means of an acoustic pipe sensor which detects the acoustic vibrations induced by particles hitting a 0.5m‐long steel pipe. Runoff dynamics are dominated by snowmelt in late spring/early summer, mostly by glacier melt in late summer/early autumn, and by a combination of the snow and glacier melt in mid‐summer. The results indicate that hysteretic patterns during daily discharge fluctuations are predominantly clockwise during the snowmelt period, likely due to the ready availability of unpacked sediments within the channel or through bank erosion in the lower part of the basin. On the contrary, counterclockwise hysteresis tend to be more frequent during late glacier melting period, possibly due to the time lag needed for sediment provided by the glacial and peri‐glacial area to be transported to the monitoring section. However, intense rainfall events occurring during the glacier melt period generated predominantly clockwise hysteresis, thus indicating the activation of different sediment sources. These results indicate that runoff generation processes play a crucial role on sediment supply and temporal availability in mountain streams. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Glacial lake outburst floods are among the most serious natural hazards in the Himalayas. Such floods are of high scientific and political importance because they exert trans‐boundary impacts on bordering countries. The preparation of an updated inventory of glacial lakes and the analysis of their evolution are an important first step in assessment of hazards from glacial lake outbursts. Here, we report the spatiotemporal developments of the glacial lakes in the Poiqu River basin, a trans‐boundary basin in the Central Himalayas, from 1976 to 2010 based on multi‐temporal Landsat images. Studied glacial lakes are classified as glacier‐fed lakes and non‐glacier‐fed lakes according to their hydrologic connection to glacial watersheds. A total of 119 glacial lakes larger than 0.01 km2 with an overall surface area of 20.22 km2 (±10.8%) were mapped in 2010, with glacier‐fed lakes being predominant in both number (69, 58.0%) and area (16.22 km2, 80.2%). We found that lakes connected to glacial watersheds (glacier‐fed lakes) significantly expanded (122.1%) from 1976 to 2010, whereas lakes not connected to glacial watersheds (non‐glacier‐fed lakes) remained stable (+2.8%) during the same period. This contrast can be attributed to the impact of glaciers. Retreating glaciers not only supply meltwater to lakes but also leave space for them to expand. Compared with other regions of the Hindu Kush Himalayas (HKH), the lake area per glacier area in the Poiqu River basin was the highest. This observation might be attributed to the different climate regimes and glacier status along the HKH. The results presented in this study confirm the significant role of glacier retreat on the evolution of glacial lakes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Hugh G. Smith 《水文研究》2008,22(16):3135-3148
Historically upland headwater catchments in south‐eastern Australia have undergone extensive gully erosion that has removed large amounts of sediment to lowlands. Recent research suggests these upland areas may continue to dominate fine sediment loads in lowland rivers. Improved understanding of sediment transfer through upland headwater catchments may have implications for interpreting downstream sediment supply. In this study a nested catchment design was utilized to examine suspended sediment yields and delivery from a small tributary sub‐catchment (1·64 km2) to the study catchment outlet (53·5 km2). Monitoring of suspended sediment concentration and discharge was undertaken for a period of nearly two years and used to estimate suspended sediment loads. Estimated total suspended sediment exports over the period of monitoring were 24·16 t from the sub‐catchment and 550·3 t from the catchment, which are generally less than previous reported small catchment yields in south‐eastern Australia. The extent of sediment delivery was examined using between‐site ratios of specific sediment yield per unit area and incised channel length. Sediment delivery was high under average rainfall conditions, but seasonally dependent. Both suspended sediment yields and the extent of delivery peaked over spring months, supplemented by remobilization of sediment stored during summer months in the main catchment channel. The findings of this study suggest much of the suspended sediment exported from small incised upland sub‐catchments (1–2 km2) may be delivered to downstream reaches under average rainfall conditions, which, in conjunction with the findings of previous research supports the potential importance of contributions from these areas to suspended sediment loads in lowland rivers during high flow periods. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Temporal variability in suspended sediment delivery processes was studied during three seasons in a 7·9 km2 catchment at Cape Bounty, Melville Island, Nunavut in the Canadian High Arctic. Discharge was controlled primarily by the magnitude of snowmelt, with limited inputs from ground ice melt and precipitation. Years with greater snowpack non‐linearly increased sediment yield and resulted in seasonal counter‐clockwise hysteresis, while a year with low snowpack resulted in reduced sediment yield and clockwise hysteresis, and indicates that sediment was increasingly available after the onset of streamflow. In addition to the event‐scale hysteresis observed during the nival discharge peak, diurnal clockwise hysteresis was observed during all three seasons and suggests daily exhaustion of sediment supplies. These results indicate that the channel snowpack plays a primary role over sediment accessibility during the nival discharge peak. Similarly, grain size analysis of suspended material in the river showed that the coarsest mean grain size was transported during the early phase of peak nival discharge and indicates that isolated sources of coarse material were being accessed by high velocity flow. Snowpack is present through the peak nival period and conditions sediment availability by isolating channel sediments from high‐energy flow. These results indicate sediment delivery characteristics in small High Arctic catchments reflect complex interactions with channel snowpack and disproportionate responses to flow conditions that differ from glacial and temperate settings. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Outburst floods from glacier‐dammed lakes are major events associated with glacier thinning and volume reduction. This paper investigates jökulhlaups emanating from the glacier‐dammed lake Øvre Messingmalmvatn at Rundvassbreen, an outlet glacier of the Blåmannsisen ice cap in northern Norway. Since 2001, the lake has several times been observed to drain suddenly, causing jökulhlaup outbursts into the pro‐glacial lake Rundvatnet. Varve analysis and lead‐210 (210Pb) dating were used to date sediment cores taken from Rundvatnet. It was found that sedimentation from jökulhlaups is recognizable in the lake as distinct sand layers embedded in the varved silt‐clay sequence which represents the normal lake sedimentation. Sand fractions were carried in suspension because of the extreme hydraulic conditions of jökulhlaups. The thickest sand layer was deposited during the 2001 jökulhlaup which lasted three days and had a total volume of 40 ×106 m3. Jökulhlaups were also recorded in 2005, 2007, 2009, and 2010; they each resulted in a sand layer. Annual sediment accumulation in Rundvatnet increased up to 10‐fold during the years with jökulhlaup outburst floods, from a normal value of 1–2 mm yr?1 to 8–10 mm yr?1. Five other jökulhlaups were identified from the 1910–1930 sedimentation interval, in addition to those observed in 2001–2010; there appear to have been none for 70 years during 1931–2000. Each jökulhlaup was preceded by a period when the glacier thinned to a critical volume and could no longer withstand the hydrostatic pressure of Øvre Messingmalmvatn; consequently a tunnel developed beneath the glacier, leading to a jökulhlaup. Statistical analyses of the correlations between the pro‐glacial sedimentation rate and temperature and precipitation suggested that although climate conditions are expected to influence sedimentation in the pro‐glacial catchment, a host of other interacting factors moderate the availability and delivery of sediment to the pro‐glacial system, making the processes responsible for changes in pro‐glacial sedimentation to remain uncertain. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Alpine glacial basins are a significant source and storage area for sediment exposed by glacial retreat. Recent research has indicated that short‐term storage and release of sediment in proglacial channels may control the pattern of suspended sediment transfer from these basins. Custom‐built continuously recording turbidimeters installed on a network of nine gauging sites were used to characterize spatial and temporal variability in suspended sediment transfer patterns for the entire proglacial area at Small River Glacier, British Columbia, Canada. Discharge and suspended sediment concentration were measured at 5 min intervals over the ablation season of 2000. Differences in suspended sediment transfer patterns were then extracted using multivariate statistics (principal component and cluster analysis). Results showed that each gauging station was dominated c. 80% of days by diurnal sediment transfer patterns and ‘low’ suspended sediment concentrations. ‘Irregular’ transfer patterns were generally associated with ‘high’ sediment concentrations during snowmelt and rainfall events, resulting in the transfer of up to 70% of the total seasonal suspended sediment load at some gauging stations. Suspended sediment enrichment of up to 600% from channel storage release and extrachannel inputs occurred between the glacial front and distal proglacial boundary. However, these patterns differed significantly between gauging stations as determined by the location of the gauging station within the catchment and meteorological conditions. Overall, the proglacial area was the source for up to 80% of the total suspended sediment yield transferred from the Small River Glacier basin. These results confirmed that sediment stored and released in the proglacial area, in particular from proglacial channels, was controlling suspended sediment transfer patterns. To characterize this control accurately requires multiple gauging stations with high frequency monitoring of suspended sediment concentration. Accurate characterization of this proglacial control on suspended sediment transfer may therefore aid interpretation of suspended sediment yield patterns from glacierized basins. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
This paper investigates suspended sediment transport and dynamics of two nested agricultural lowland Mediterranean catchments with a difference of two orders of magnitude in the surface area (i.e., 1 and 264 km2). The effects of the drainage catchment area over the specific suspended sediment yield are assessed by using the nested approach over various timeframes. A detailed analysis of the rainfall–runoff–sediment transport relationships during the 2‐year study period shows that the hydrological and sedimentological responses were extremely variable for both catchments. Very low or no correlations were observed between the rainfall intensity and the selected hydrological variables and sediment loads. However, remarkable or high correlations were obtained between the rainfall intensity and the maximum and average suspended sediment concentrations, indicating that rainfall per unit time has little control on the hydrological response, but that, simultaneously, its high‐erosive power triggers sediment production, increasing the sedimentary response of the catchments. This study also illustrates how sediment is mainly transported during floods, producing predominantly clockwise hysteretic loops. Moreover, the small headwater catchment exerts a reduced (or even negligible) effect over the hydro‐sedimentary response of the larger downstream catchment, caused by the reduced sediment availability in a landscape with an inherent disconnection of the sediment pathways.  相似文献   

17.
Glaciers are major agents of erosion that increase sediment load to the downstream fluvial system. The Castle Creek Glacier, British Columbia, Canada, has retreated ~1.0 km in the past 70 years. Suspended sediment concentration (SSC) and streamflow (Q) were monitored independently at five sites within its pro‐glacial zone over a 60 day period from July to September 2011, representing part of the ablation season. Meteorological data were collected from two automatic weather stations proximal to the glacier. The time‐series were divided into hydrologic days and the shape and magnitude of the SSC response to hydro‐meteorological conditions (‘cold and wet’, ‘hot and dry’, ‘warm and damp’, and ‘storm’) were categorized using principal component analysis (PCA) and cluster analysis (CA). Suspended sediment load (SSL) was computed and summarized for the categories. The distribution of monitoring sites and results of the multivariate statistical analyses describe the temporal and spatial variability of suspended sediment flux and the relative importance of glacial and para‐glacial sediment sources in the pro‐glacial zone. During the 2011 study period, ~ 60% of the total SSL was derived from the glacial stream and sediment deposits proximal to the terminus of the glacier; during ‘storm’ events, that contribution dropped to ~40% as the contribution from diffuse and point sources of sediment throughout the pro‐glacial zone and within the meltwater channels increased. While ‘storm’ events accounted for just 3% of the study period, SSL was ~600% higher than the average over the monitoring period, and ~20% of the total SSL was generated in that time. Determining how hydro‐meteorological conditions and sediment sources control sediment fluxes will assist attempts to predict how pro‐glacial zones respond to future climate changes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Fine sediment delivery to and storage in stream channel reaches can disrupt aquatic habitats, impact river hydromorphology, and transfer adsorbed nutrients and pollutants from catchment slopes to the fluvial system. This paper presents a modelling tool for simulating the time‐dependent response of the fine sediment system in catchments, using an integrated approach that incorporates both land phase and in‐stream processes of sediment generation, storage and transfer. The performance of the model is demonstrated by applying it to simulate in‐stream suspended sediment concentrations in two lowland catchments in southern England, the Enborne and the Lambourn, which exhibit contrasting hydrological and sediment responses due to differences in substrate permeability. The sediment model performs well in the Enborne catchment, where direct runoff events are frequent and peak suspended sediment concentrations can exceed 600 mg l?1. The general trends in the in‐stream concentrations in the Lambourn catchment are also reproduced by the model, although the observed concentrations are low (rarely exceeding 50 mg l?1) and the background variability in the concentrations is not fully characterized by the model. Direct runoff events are rare in this highly permeable catchment, resulting in a weak coupling between the sediment delivery system and the catchment hydrology. The generic performance of the model is also assessed using a generalized sensitivity analysis based on the parameter bounds identified in the catchment applications. Results indicate that the hydrological parameters contributing to the sediment response include those controlling (1) the partitioning of runoff between surface and soil zone flows and (2) the fractional loss of direct runoff volume prior to channel delivery. The principal sediment processes controlling model behaviour in the simulations are the transport capacity of direct runoff and the in‐stream generation, storage and release of the fine sediment fraction. The in‐stream processes appear to be important in maintaining the suspended sediment concentrations during low flows in the River Enborne and throughout much of the year in the River Lambourn. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
20.
青藏高原上分布着大量的大陆性冰川,其对区域及全球气候变化响应极其敏感.工业革命以来,随着全球升温速率加快(特别是北半球),青藏高原部分地区的冰川在近百年显著退缩.冰前湖沉积物是最直接的冰川变化记录载体之一,但其沉积速率如何响应冰川及气候变化,能否反演冰川进退过程却知之甚少.本文依据~(210)Pb和~(137)Cs限定藏南冰前湖枪勇错QY5沉积岩芯的年龄,计算出不同深度沉积物的沉积速率,且与前人(QY-3)的沉积速率进行对比,揭示了近百年来枪勇错流域冰川变化历史及其与气温之间的关系.结果表明,枪勇错QY5近百年来的平均沉积速率为0.21 cm/a,比湖心(QY-3)快2倍左右,但两者的变化基本同步,高沉积速率对应温度上升期,是冰川退缩的直接响应:(1)1900—1960年,枪勇错沉积速率整体增加且变幅较大,与1890—1950年之间西藏温度波动式升高相对应,反映枪勇冰川总体处于退缩状态;(2)1960—1985年,沉积速率低且变幅较小,同期气温下降,枪勇冰川退缩程度相对较低且保持平稳;(3)1985年以来,枪勇错沉积速率呈上升趋势,是全球增暖下冰川显著退缩的直接响应.在短时间尺度内冰前湖沉积速率所揭示的枪勇冰川变化主要受控于温度,降水量对冰川变化的影响较小,但冰川对温度变化的响应滞后5~10 a.由于全球变暖和冰川对温度响应的滞后,在未来几十年高原冰川的融化速率可能会加快,亚洲水塔将面临着新的挑战.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号