首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Duolong porphyry Cu–Au deposit (5.4 Mt at 0.72% Cu, 41 t at 0.23 g/t Au) was recently discovered in the southern Qiangtang terrane, central Tibet. Here, new whole‐rock elemental and Sr–Nd–Pb isotope and zircon Hf isotopic data of syn‐ and post‐ore volcanic rocks and barren and ore‐bearing granodiorite porphyries are presented for a reconstruction of magmas associated with Cu–Au mineralization. LA–ICP–MS zircon U–Pb dating yields mean ages of 117.0 ± 2.0 and 120.9 ± 1.7 Ma for ore‐bearing granodiorite porphyry and 105.2 ± 1.3 Ma for post‐ore basaltic andesite. All the samples show high‐K calc‐alkaline compositions, with enrichment of light rare earth elements (LREE) and large ion lithophile elements (LILE: Cs and Rb) and depletion of high field strength elements (HFSE: Nb and Ti), consistent with the geochemical characteristics of arc‐type magmas. Syn‐ and post‐ore volcanic rocks show initial Sr ratios of 0.7045–0.7055, εNd(t) values of −0.8 to 3.6, (206Pb/204Pb)t ratios of 18.408–18.642, (207Pb/204Pb)t of 15.584–15.672 and positive zircon εHf(t) values of 1.3–10.5, likely suggesting they dominantly were derived from metasomatized mantle wedge and contaminated by southern Qiangtang crust. Compared to mafic volcanic rocks, barren and ore‐bearing granodiorite porphyries have relatively high initial Sr isotopic ratios (0.7054–0.7072), low εNd(t) values (−1.7 to −4.0), similar Pb and enriched zircon Hf isotopic compositions [εHf(t) of 1.5–9.7], possibly suggesting more contribution from southern Qiangtang crust. Duolong volcanic rocks and granodiorite porphyries likely formed in a continental arc setting during northward subduction of the Bangong–Nujiang ocean and evolved at the base of the lower crust by MASH (melting, assimilation, storage and homogenization) processes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
The North Lhasa terrane in Tibet is generally interpreted to be paleotectonically unrelated to the East African Orogen (EAO) and is instead thought to have derived from northeastern India or northwestern Australia. In this study, we present petrogenetic and geochronological results pertaining to the analysis of gabbros (ca. 652 Ma), diorites (ca. 658 and 646 Ma), and tonalites (ca. 652 Ma) from the North Lhasa terrane. The gabbros are calc-alkaline and exhibit arc-like geochemical features. Low positive zircon εHf(t) values (+1.0 to +3.8), high zircon δ18O (6.25‰ to 7.94‰), and low negative whole-rock εNd(t) values (−3.5 to −1.4) indicate that the gabbros were derived from the lithospheric mantle, with geochemical modification by a subduction component. The diorite suite is characterized by a wide range of whole-rock chemistries (e.g., SiO2 = 51.33–61.98 wt%) and Hf–O–Sr isotopic compositions (εHf(t) = −10.8 to −0.1; δ18O = 5.17‰ to 7.11‰; ISr = 0.706 to 0.710), and negative whole-rock εNd(t) values (−7.0 to −4.7). These diorites are geochemically similar to OIB and are interpreted to be products of the partial melting of a relatively deep mantle source (>85 km) prior to extensive modification by continental crustal material. The tonalites are adakitic and have moderate Mg# values (47–54), low compatible element abundances, positive zircon εHf(t) values (+3.4 to +6.2), high ISr values (0.714 to 0.715), and small negative whole-rock εNd(t) values (−1.6 to −0.4). These tonalites most likely formed by the melting of thickened Mesoproterozoic continental crust. The generation of these ca. 650 Ma magmatic rocks was related to slab break-off in a collision zone. By integrating the findings of previous studies with the data of the present study, we suggest that the North Lhasa terrane was most likely located in the northern segment of the EAO in paleotectonic reconstructions of the Gondwana supercontinent.  相似文献   

3.
We performed geochronological and geochemical analyses of the A-type granite in the Hongol area, central Inner Mongolia, to determine its age, petrogenesis and tectonic setting, which are significant for clarifying the Late Paleozoic tectonic evolution of the Xing'an Mongolian Orogenic Belt(XMOB). The rock type of the A-type granite in the Hongol area is alkali-feldspar granite, and it constitutes a western part of the Baiyinwula-Dongujimqin A-type granite belt. Zircon U-Pb geochronology yields ~(206)Pb/~(238)U ages ranging from 293 to 286 Ma for the alkali-feldspar granite, indicating this granitic pluton formed in the Early Permian. The alkali-feldspar granite is high in silica(SiO_2=75.13 wt%-80.17 wt%), aluminum(Al_2 O_3=10.59 wt%-13.17 wt%) and alkali(Na_2 O+K_2 O=7.33 wt%-9.11 wt%), and low in MgO(0.08 wt%-0.39 wt%) and CaO(0.19 wt%-0.70 wt%). It is obviously enriched in LILEs such as Rb, Th and K,depleted in HFSEs such as Nb, Ti, La and Ce, with pronounced negative anomalies of Nb, Ti, P, Eu, Sr and Ba. Its Sr-Nd-Pb isotopic compositions show positive ε_(Nd)(t)(+0.72-+3.08), low T_(DM2)(805-997 Ma),and high radioactive Pb with(~(206)Pb/~(204)Pb)_i of 18.710-19.304,(~(207)Pb/~(204)Pb)_i of 15.557-15.604 and(~(208)Pb/~(204)Pb)_i of 37.887-38.330. Petrological characteristics and geochemical data suggest that the alkalifeldspar granite in the Hongol area belongs to aluminous A-type granite. This A-type granite formed in a post-collisional extensional setting and was generated by the partial melting of felsic rocks in the middlelower crust resulting from post-collisional slab breakoff. It is suggested that the Paleo-Asian Ocean was closed before the Permian in central Inner Mongolia.  相似文献   

4.
Early Miocene (ca.?21–18 Ma) volcanism in the Karacada? area comprises three groups of volcanic rocks: (1) calcalkaline suite (andesitic to rhyolitic lavas and their pyroclastics), (2) mildly-alkaline suite (alkali basalt, hawaiite, mugearite, benmoreite and trachydacite), and (3) a single trachyandesitic flow unit. Field observations, 40Ar/39Ar ages and geochemical data show that there was a progressive temporal transition from group 1 to 3 in a post-collisional tectonic setting. The calcalkaline suite rocks with medium-K in composition resemble those of subduction-related lavas, whereas the mildly-alkaline suite rocks having a sodic tendency (Na2O/K2O=1.5–3.2) resemble those of within-plate lavas. Incompatible element and Sr-Nd isotopic characteristics of the suites suggest that the lithospheric mantle beneath the Karacada? area was heterogeneously enriched by two processes before collision: (1) enrichment by subduction-related processes, which is important in the genesis of the calcalkaline volcanism, (2) enrichment by small degree melts from the astenosphere, which dominates the mildly alkaline volcanism. Perturbation of the enriched lithosphere by either delamination following collision and uplift or removal of the subducted slab following subduction and collision (i.e., slab breakoff) is the likely mechanism for the initiation of the post-collision volcanism.  相似文献   

5.
The 40Ar–39Ar dating reveals three episodes of basaltic volcanism in eastern Guangdong of SE China since the late Eocene (i.e., 35.5, ~20 and 6.6 Ma). The Miocene alkali olivine basalts (~20 and 6.6 Ma) have OIB-like trace element characteristics, which is coupled with low (87Sr/86Sr)i, high εNd(t), and high εHf(t). In contrast, the late Eocene basalts (35.5 Ma) have overall characteristics of “Island Arc” basalts with strong negative Ta–Nb–Ti anomalies in the primitive mantle-normalized multi-element diagram with high (87Sr/86Sr)i, negative εNd(t), and relatively low εHf(t). All basalts have unexpectedly high 207Pb/204Pb and 208Pb/204Pb, delineating a DUPAL signature in the sources. The late Eocene Arc-like basalts may reflect contributions of relict ancient metasomatized mantle lithosphere that melted as the result of extension-induced asthenospheric upwelling and heating, whereas the Miocene OIB-like basalts may represent partial melting of the asthenospheric mantle beneath the thickened lithosphere. We propose that the Cenozoic basaltic volcanism in eastern Guangdong records an overall lithospheric thickening process beneath SE China, that is, a continental rift system from its maximum extension in the late Eocene to its waning in the Miocene. This interpretation is consistent with the evolution of the South China Sea, whose origin is most consistent with the development of a passive continental margin. The seafloor spreading of the South China Sea during ~ 32–16 Ma may not result from the effect of the “Hainan” mantle plume, but rather played a positive role in allowing the mantle plume to express on the surface.  相似文献   

6.
ABSTRACT

The Makran complex in southeast Iran provides a spectacular subduction-related accretionary complex to understand the mechanism of oceanic accretion and the evolution of subduction zones. In this paper, we present new major and trace element data as well as isotopic compositions of mafic volcanic blocks from the Makran ophiolitic mélange complex (OMC). Our aim is to assess the genesis of these rocks and discuss their implications on the evolution of Neotethys Ocean. These volcanic blocks are composed mainly of basalts with minor trachytes. The Makran lavas are occasionally interlayered with tuff layers. Zircons from these tuffs give U-Pb ages of 95 Ma, which is well in accordance with the reposted microfossil data for the interlayered pelagic limestones with pillow lavas. Makran basalts can be geochemically subdivided into four groups; normal to transitional MORB, enriched-MORB, Plume-type MORB and alkaline (-OIB-like) basalts. The OIB-like pillow lavas are represented by high values of Th/Tb (6.3–7.4) which are higher than other basalts (group 1 = 0.3–0.8; groups 2 = 0.7–1.6; group 3 = 1.58–1.36).143Nd/144Nd(t) ratios for basalts ranges from 0.51247 to 0.51292, whereas 87Sr/86Sr(t) isotopic composition of the OMC lavas varies from 0.704433 to 0.709466. The Pb isotopic composition of the lavas are quite high, ranging from 15.49–15.66 for 207Pb/204Pb(t), 18.09–19.12 for 206Pb/204Pb(t) and 37.80–39.23 for 208Pb/204Pb(t). The chemistry of these rocks suggests that they were formed most likely in an oceanic setting with clear plume-ridge interaction. These rocks can form from partial melting of a highly heterogeneous mantle source, which is extensively metasomatized with deep mantle OIB-type components. We suggest these rocks have been generated in an oceanic ridge with plume-ridge interaction, similar to the Iceland-Reykjanes Ridge, before being fragmented and accreted into the Makran accretionary complex.  相似文献   

7.
The North Qilian orogenic belt (NQOB) has been defined as a subduction-collision zone between the Alxa Block and the Qilian Block during the Early Paleozoic. To constrain the post-collisional tectonic evolution of the NQOB, analyses of zircon U-Pb-Hf isotopes, whole-rock major, trace element and Sr-Nd-Pb isotope compositions of the newly discovered Early Devonian lamprophyres and diorites dikes from the Longshoushan area in southwestern margin of the Alxa Block were conducted. Zircon U-Pb dating yields emplacement ages of 400 ± 4 Ma and 403 ± 6 Ma for two lamprophyre dikes and 391 ± 3 Ma for two diorite dikes. The lamprophyres dikes are shoshonitic-high-K (calc-alkaline) in nature, and are characterized by SiO2 contents of 53.6–56.3 wt %, (87Sr/86Sr)i ratios of 0.7064 to 0.7072, εNd(t) values of 0.1–1.0, and zircon εHf(t) values of −8.0 to −2.9. The diorite dikes are high-K (calc-alkaline), and are characterized by MgO contents of 6.32–6.98 wt %, (87Sr/86Sr)i ratios of 0.7089–0.7137, εNd(t) values of −3.8 to −3.5, and zircon εHf(t) values of −9.9–0.4. Both the lamprophyre and diorite dikes show parallel enrichments in LREEs and LILEs and depletions in HREEs and HFSEs and have similar ratios of (206Pb/204Pb)i (17.587–18.133), (207Pb/204Pb)i (15.518–15.584) and (208Pb/204Pb)i (37.676–38.058). Geochemical and isotopic data suggest that the lamprophyre and diorite dikes were derived from low-degrees melts of amphibole- and phlogopite-bearing lherzolite and phlogopite-bearing lherzolite, respectively, in the spinel-garnet transition facies. Their parental magmas both experienced extensive fractional crystallization in a deep magma chamber and negligible crustal contamination during their ascent. Regarding the Palaeozoic tectonic development of the North Qilian orogenic belt, we propose that the Early Devonian lamprophyres and diorites possibly are related to North Qilian orogen unrooting and collapse and marking the end of the North Qilian orogenic events.  相似文献   

8.
The Tongyu copper deposit, located in the western part of the North Qinling Orogen, China, is one of several volcanic-hosted massive sulphide(VHMS) deposits with industrial value and is also a typical example of mineralization related to the subduction and metallogenesis during the Caledonian orogeny. We conducted systematic lead-sulphur isotope geochemical analyses of the Tongyu deposit to understand the possible ore-forming material sources and tectonic settings. Twenty-six sulphide samples yielded clustered δ~(34)S_(CDT) values of 1.13‰-3.36‰, average 2.22‰, and show a tower-type distribution,implying that the sulphur of the Tongyu copper deposit mainly originated from a mantle source. The Pb isotope compositions of sulphides(~(206)Pb/~(204)Pb = 17.59225-18.56354, average 18.32020; ~(207)Pb/~(204)Pb =15.51770-15.69381, average 15.66217; ~(208)Pb/~(204)Pb= 37.99969-39.06953, average 38.52722) are close to the values of the volcanic host rocks(~(206)Pb/~(204)Pb= 18.10678-18.26293, average 18.21158; ~(207)Pb/~(204)Pb =15.63196-15.68188, average 15.65345; ~(208)Pb/~(204)Pb= 38.43676-38.56360, average 38.49171), thus consistent with the Pb in ores and volcanic host rocks having been derived from a common source that was island-arc Pb related to oceanic crust subduction. The northward subduction of the Palaeo-Qinling oceanic crust triggered dehydration of the slab, which generated a large amount of high-oxygen-fugacity aqueous hydrothermal fluid. The fluid rose into the mantle wedge, activated and extracted metallogenic material and promoted partial melting of the mantle wedge. The magma and ore-forming fluid welled up and precipitated, finally forming the Tongyu VHMS copper deposit.  相似文献   

9.
《地学前缘(英文版)》2020,11(6):2157-2168
Mount Cameroon volcano has erupted several times in the 20th Century with documented eruptions in 1909, 1922, 1954, 1959, 1982, 1999 and 2000. Evidence of historic volcanism is represented by several older lava flows and lahar deposits around the flanks of the volcano. This study aims to assess the evolution of Mount Cameroon volcanism through its eruptive history via interpretation of mineralogical, whole rock geochemical and Pb, Sr, Nd isotope data generated from historic and recent lava flows. In this study, samples were collected from the 1959, 1982, 1999 and 2000 eruptions and from several historic eruption sites with unknown eruption dates.Evaluation of major and trace element data demonstrates that Mount Cameroon is geotectonically associated with within-plate Ocean Island Basalt Settings. More than 90% of the studied historic lavas (n ​= ​29) classify as tephrites and basanites whereas the modern lavas (n ​= ​38) are predominantly trachybasalts, demonstrating evolution from primitive to evolved lavas over time typically in response to fractional crystallization. Petrographically, the lavas are porphyritic with main mineral phases being olivine, clinopyroxene, plagioclase feldspars and Fe–Ti–Cr oxides. The 1982 lavas are predominantly aphyric and dominated by lath-shaped flow-aligned plagioclase in the groundmass. Olivine chemistry shows variable forsterite compositions from Fo60–89. Clinopyroxenes vary from diopside through augite to titanaugite with chemical composition ranges from Wo45En32Fs7 to Wo51En47Fs17. Plagioclase feldspars vary from labradorite (An56–70) to bytownite (An80–87). For the Fe–Ti–Cr oxides, calculated ulvöspinel component shows a wide variation from ulv38–87. CIPW-normative classification on the Di-Ol-Hy-Qz-Ne system shows that all Mount Cameroon lavas are nepheline-normative (Ne ranges from 4.20 wt.% to 11.45 ​wt.%).Radiogenic isotope data demonstrate that Mount Cameroon lavas are HIMU (or high μ ​= ​238U/204Pb), characterized by 206Pb/204Pb ​= ​20.19–20.46, 207Pb/204Pb ​= ​15.63–15.69, 208Pb/204Pb ​= ​40.01–40.30, 87Sr/86Sr ​= ​0.70322–0.70339 (εSr ​= ​−21.37 to −18.96) and 143Nd/144Nd ​= ​0.51276–0.51285 (εNd ​= ​+2.29 to +4.05). The historic lavas show stronger HIMU signature relative to the modern lavas, suggesting evolution towards less HIMU signatures over time. This study has revealed that Mount Cameroon volcanism has evolved from primitive magmas characterized by stronger HIMU signatures with high 206/204Pb and 208/204Pb isotopes, low SiO2 and high Mg, Ni, Cr content towards lower HIMU signatures with relatively higher SiO2, lower Mg, Cr and Ni compositions. The geochemical and isotopic changes, which account for the evolution of magmatism on Mount Cameroon occur over long periods of time because all the modern lavas erupted within the last 100 years are isotopically homogeneous, with very limited variation in SiO2 compositions.  相似文献   

10.
The ca. 3.07 Ga volcanic rocks of the Dominion Group, South Africa, represent the oldest example of intracontinental, rift-related volcanism on the Archaean Kaapvaal craton. The volcanic assemblage comprises a >2 km-thick succession of mafic-intermediate lavas interlayered with felsic lavas and pyroclastic rocks. Textural and geological features indicate emplacement in a subaerial environment probably in an incipient intracontinental rift. We report SHRIMP UPb zircon ages, elemental and Nd-isotope bulk-rock analyses of drill core samples and interpret their petrogenesis in the context of a Mesoarchaean continental setting. The UPb zircon ages of four felsic samples from different stratigraphic levels yielded the same dates, resulting in a pooled 207Pb/206Pb age of 3074 ± 5 Ma. Primitive mantle-normalised incompatible trace element concentrations show enriched patterns with fractionated rare earth elements over high field-strength elements and negative anomalies of Nb and Ta relative to La.Initial εNd values for mafic and felsic rocks from −1.0 to −0.2 indicate melting of sources comprising time-integrated incompatible element-enriched mantle. The combined trace element and SmNd isotopic data suggest that the enrichment of incompatible elements and the low εNd values in the most primitive basalt samples (Mg# of 65–67) can be explained with contamination of asthenosphere-derived melts with crustal material or melting of an incompatible element-enriched upper mantle. The chemical compositions of the Dominion Group and Pongola Supergroup represent a significant petrogenetic departure from earlier Archaean (>3.6–3.1 Ga) magmatism as recorded in the Kaapvaal craton, which was dominated by komatiite-basalt volcanism and tonalite-trondhjemite-granodiorite intrusions. This change reflects the transition from a “greenstone belt type” tectonic setting to a failed intracontinental rift setting shortly after stabilisation of the Kaapvaal craton.  相似文献   

11.
《Chemical Geology》2002,182(2-4):139-178
The Kohistan–Ladakh Terrane in the NW Himalaya is a remnant of a Cretaceous arc sequence obducted onto the Indian margin. This paper presents a geochemical study (major and trace elements and Sr, Nd, Pb isotopes) of the Mid-Cretaceous lavas of the Ladakh side of the arc sequence, which were erupted in response to northward subduction of Neo-Tethys oceanic crust.Lavas from the western Ladakh in Pakistan can be divided into three groups which, from north to south, are: (1) the Northern Group of back-arc tholeiites [0.5<(La/Yb)N<1.4; 0.3<(Nb/La)N<1.4; 4<εNd<8; 38.66<208Pb/204Pb<38.80], (2) the Southern Group of arc tholeiites [1.8<(La/Yb)N<3.9; 0.1<(Nb/La)N<0.6; 5<εNd<6; 38.40<208Pb/204Pb<38.66], and (3) the Katzarah Formation of tholeiitic Nb-rich lavas [3.4<(La/Yb)N<9.8; 1.4<(Nb/La)N<2.1; 3<εNd<5], including radiogenic Pb lavas [39.31<208Pb/204Pb<39.51] and less radiogenic lavas [38.31<208Pb/204Pb<38.55]. Magmas from the eastern Ladakh in India show a simple series of more evolved arc volcanics from basalts to rhyolites [basalts and basaltic andesites: 2.5<(La/Yb)N<5.7; 0.4<(Nb/La)N<0.5; 1.8<εNd<5.5; 38.70<208Pb/204Pb<38.80]. Isotope and trace element data of western Ladakh lavas are compatible with high-degree melting (14–21%) of a fertile MORB-mantle source. An adakitic lava [(La/Yb)N=55.8; (Nb/La)N=0.3; εNd=1.7; 208Pb/204Pb=39.00] and a Mg-poor Nb-rich basalt [(La/Yb)N=4.6; (Nb/La)N=1.3; εNd=−2; 208Pb/204Pb=39.07] are spatially associated with the tholeiitic arc lavas. Isotope compositions of all the lavas, and in particular the radiogenic Nb-rich and adakitic lavas suggest three-component mixing between depleted mantle similar to the Indian MORB mantle, and enriched components similar to the volcanogenic or pelagic sediments. The geochemical diversity of magma types is attributed to contribution of melts from the subducted crust and associated sediments, and their subsequent interaction with the mantle. Such melt–mantle interactions can also be inferred from relicts of sub-arc mantle found in Indian Ladakh. These results lead to a geodynamic reconstruction of the Kohistan–Ladakh arc as a single entity in the Mid-Cretaceous, emplaced south of the Asian margin. Slab melting imply subduction of young oceanic crust, as already proposed for the Oman ophiolite farther west. The fast northward drift of the Indian Plate could have triggered wide-scale inversion of the divergent tectonic regime responsible for the opening of the Neo-Tethys Ocean. Our results suggest breaking of the young oceanic crust initiated at the ridge rather than at passive plate boundaries.  相似文献   

12.
The Himalayan mineral field includes over 50 quartz-vein type Sb-Au deposits, and placer Au deposits. The poorly documented Laqiong deposit is a typical example of quartz-vein type Sb-Au mineralisation in Tethys Himalayan sequence. The orebody are controlled by shallow north-dipping normal faults and north–south trending faults. Magmatic zircons extracted from muscovitic leucocratic granite from the southern part of the Laqiong mine area yield a Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry U-Pb age of 14 ± 1 Ma (n = 12, MSWD = 0.9) that is similar to the 40Ar/39Ar age of ca. 14 Ma from hydrothermal sericite in auriferous sulphide-quartz veins. The εHf(t) values for the magmatic zircon rims range from −5.4 to −1.9, corresponding to two-stage Hf model ages of 1403–1214 Ma. Quartz from the mineralised veins has δ18OH2O-SMOW values varying from +4.97 to +9.59‰ and δDH2O-SMOW values ranging from −119.7 to −108.1‰. The δ13CV-PDB values for calcite from the ore Stage III range from −6.9 to −5.3‰, and calcite from Stage IV are −3.5 to −1.7‰. The δ18OV-SMOW values for calcite from Stage III are +20.3 to +20.6‰ and for Stage IV are −6.3 to −4.9‰. The stibnite and pyrite samples have 208Pb/204Pb ratios of 38.158 to 39.02, 207Pb/204Pb ratios of 15.554 to 15.698, and 206Pb/204Pb ratios of 17.819 to 18.681, and bulk and in-situ δ34SV-CDT values for stibnite, arsenopyrite and pyrite range from −1.1 to +2.3‰. The calcite from the orebodies are enriched in MREE and depleted in LREE and HREE. Fieldwork, petrological, and geochemical data collected during our study leads to the following salient findings: the mineralising fluid is a mix of magmatic and meteoric fluids; and the deposit is closely related to the emplacement of Miocene granites originating from a thickened continental crust.  相似文献   

13.
Zircon U–Pb ages, major and trace elements, and Sr, Nd and Hf isotope compositions of the Changboshan‐Xieniqishan (CX) intrusion from the Great Xing'an Range (GXAR), northeastern China, were studied to investigate its derivation, evolution and geodynamic significance. Laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS) zircon U–Pb dating yields an emplacement age of 161 ± 2 Ma for the CX intrusion. Bulk‐rock analyses show that this intrusion is characterized by high SiO2, Na2O and K2O, but low MgO, CaO and P2O5. They are enriched in large‐ion lithophile elements and light rare earth elements, with marked Eu anomalies (mostly from 0.36 to 0.65), and depleted in heavy rare earth elements and high field strength elements. Most samples have relatively low (87Sr/86Sr)i values (0.70423–0.70457), with εNd(t) fluctuating between −0.4 and 2.3. The εHf(t) for zircons varies from 5.4 to 8.7. Sr–Nd isotope modelling results, in combination with young Nd and Hf model ages (760–986 and 549–728 Ma, respectively) and the presence of relict zircons, indicate that the CX intrusion may originate from the partial melting of juvenile crust, with minor contamination of recycled crustal components, and then underwent extensive fractional crystallization of K‐feldspar, plagioclase, biotite, sphene, apatite, zircon and allanite. Considering the widespread presence of granitoids with coeval volcanic rocks, we contend that the CX intrusion formed in an extensional environment related to the upwelling of asthenospheric mantle induced by the subduction of the Palaeo‐Pacific plate, rather than a lithospheric delamination model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
《Resource Geology》2018,68(3):227-243
As a newly discovered medium‐sized deposit (proven Pb + Zn resources of 0.23 Mt, 9.43% Pb and 8.73% Zn), the Dongzhongla skarn Pb–Zn deposit is located in the northern margin of the eastern Gangdese, central Lhasa block. Based on the geological conditions in this deposit of ore‐forming fluids, H, O, C, S, Pb, Sr, and noble gas isotopic compositions were analyzed. Results show that δ18OSMOW of quartz and calcite ranged from −9.85 to 4.17‰, and δDSMOW ranged from −124.7 to −99.6‰ (where SMOW is the standard mean ocean water), indicating magma fluids mixed with meteoric water in ore‐forming fluids. The δ13CPDB and δ18OSMOW values of calcite range from −1.4 to −1.1‰ and from 5.3 to 15.90‰, respectively, show compositions consistent with the carbonate limestone in the surrounding rocks, implying that the carbon was primarily sourced from the dissolution of carbonate strata in the Luobadui Formation. The ore δ34S composition varied in a narrow range of 2.8 to 5.7‰, mostly between 4‰ and 5‰. The total sulfur isotopic value δ34S was 4.7‰ with characteristics of magmatic sulfur. The 3He/4He values of pyrite and galena ranged from 0.101 to 5.7 Ra, lower than those of mantle‐derived fluids (6 ± 1 Ra), but higher than those of the crust (0.01–0.05 Ra), and therefore classified as a crust–mantle mixed source. The Pb isotopic composition for 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb values of the ores were in the ranges of 18.628–18.746, 15.698–15.802, and 39.077–39.430, respectively, consistent with the Pb isotopic composition of magmatic rocks in the deposit, classified as upper‐crust lead. The ore lead was likely sourced partially from the crustal basement of the Lhasa Terrane. The initial (87Sr/86Sr)i value from five sulfide samples ranged from 0.71732 to 0.72767, and associated ore‐forming fluids were mainly sourced from the partial melting of the upper‐crust materials. Pb isotopic compositions of ore sulfides from the Dongzhongla deposit are similar to that of the Yuiguila and Mengya'a deposit, indicating that they have similar sources of metal‐rich ore‐forming solution. According to basic skarn mineralogy, the economic metals, and the origin of the ore‐forming fluids, the Dongzhongla deposit was classified as a skarn‐type Pb–Zn deposit.  相似文献   

15.
To better understand the origin of voluminous silicic rocks in a convergent continental margin, we conducted an integrated study in which we have obtained geochronological, mineralogical, and isotopic (including whole-rock Sr–Nd–Pb, in-situ zircon Hf) data of the Heri batholith in West Qinling on the NE Tibetan Plateau. The batholith is composed of metaluminous to weakly peraluminous granodiorites (235–233 Ma) and porphyritic granodiorites (230–223 Ma) with an I-type affinity. Both lithologies share similar major, trace elemental and SrNd isotopic compositions. Detailed elemental data demonstrate that these granodioritic rocks underwent fractional crystallization of hornblende and apatite, with plagioclase (i.e. sieve-textured plagioclase cores) accumulation to some extent. Except for porphyritic granodiorites, the Pb isotopes for other analyzed samples are characterized by high radiogenicity and uniformity ((206Pb/204Pb)t: 17.263–18.472, (206Pb/204Pb)t: 15.571–15.591, and (206Pb/204Pb)t: 38.032–38.304), together with limited variations in initial Sr ((87Sr/86Sr)t: 0.707251–0.708103) and Nd (εNd(t) = −7.1 to −6.3) isotopes with two-stage model ages (TDM2) of 1.58–1.52 Ga. These factors collectively point to a derivation from the Mesoproterozoic basement rocks at the lower crustal level, or a comprehensive mixing of different-age components that generated an average crustal residence age. The SrNd isotopic compositions of the porphyritic granodiorites are strikingly similar to those of granodiorites. Compared with the experimental melt compositions of amphibolites, the Heri granitoids are probably derived from an amphibolitic source under fluid-absent conditions due to the incongruent breakdown of amphibole and biotite. Based on the temporal–spatial distribution of granitic intrusions in West Qinling and the regional tectonic evolution, our interpretation is that the Heri batholith was formed during the initial collision between the North China Craton (NCC) and the South China Craton (SCC), which was accompanied by the closure of the Paleotethyan Ocean. Considering both previously published data and our new data, we propose that the Heri granitoids were mainly generated by the partial melting of lower crustal amphibolites, with minor mantle-derived melts.  相似文献   

16.
The Zhifang Mo deposit is located in the northeastern Qinling Orogen along the southern margin of the North China Craton. The deposit represents a quartz-vein system hosted in the Mesoproterozoic Xiong'er Group volcanic rocks. We identify three hydrothermal stages (early, middle and late), characterized by veinlets of quartz–pyrite, quartz–molybdenite–pyrite–chalcopyrite–galena–sphalerite, and quartz–carbonate assemblages, respectively. Five molybdenite samples from the Zhifang deposit yield Re–Os ages ranging from 241.2 ± 1.6 Ma to 247.4 ± 2.5 Ma, with an isochron age of 246.0 ± 5.2 Ma (2σ, MSWD = 7.4), and a weighted mean age of 243.8 ± 2.8 Ma (2σ, MSWD = 5.5). The Re–Os age shows that the Mo mineralization occurred during the Indosinian Orogeny, and suggests that the mineralization is unrelated to the Yanshanian magmatism or the Paleo-Mesoproterozoic volcanic–hydrothermal event.This study also reports a new Sr–Nd–Pb isotope dataset from ore sulfides in an attempt to constrain the source of the ore-forming fluids. Ten sulfide samples from middle stage of the Zhifang Mo deposit yield ISr(t) ratios of 0.710286–0.711943, with an average of 0.711004; εNd(t) values between − 19.5 and − 14.8, with an average of − 16.7; and (206Pb/204Pb)i, (207Pb/204Pb)i and (208Pb/204Pb)i ratios of 17.126–17.535, 15.374–15.466 and 37.485–37.848, with averages of 17.380, 15.410 and 37.631, respectively. One pyrite from the early stage yield ISr(t) of 0.722711–0.722855, with an average of 0.722783, which is higher than those of the middle stage sulfides and suggests equilibration with wallrocks. The εNd(t) values are in the range of − 17.3 to − 16.6 with a mean at − 17.0; and (206Pb/204Pb)i, (207Pb/204Pb)i and (208Pb/204Pb)i ratios are 17.386, 15.405 and 37.622, respectively. The ore sulfides show higher Pb-isotope ratios, higher εNd(t) and lower ISr(t) values than the host rocks. The results suggest that the ore-forming fluids had lower ISr(t), and higher εNd(t) values than the ore sulfides, and were possibly sourced from the Dengfeng Complex. The southward subduction of the North China Craton beneath the Huaxiong Block during the Triassic was possibly responsible for the formation of the Waifangshan orogenic Mo system.  相似文献   

17.
The Yangchang granite‐hosted Mo deposit is typical of the Xilamulun metallogenic belt, which is one of the important Mo–Pb–Zn–Ag producers in China. A combination of major and trace element, Sr, Nd and Pb isotope, and zircon U–Pb age data are reported for the Yangchang batholith to constrain its petrogenesis and Mo mineralization. Zircon LA‐ICPMS U–Pb dating yields mean ages of 138 ± 2 and 132 ± 2 Ma for monzogranite and granite porphyry, respectively. The monzogranites and granite porphyries are calc‐alkaline with K2O/Na2O ratios of 0.75–0.92 and 1.75–4.42, respectively. They are all enriched in large‐ion lithophile elements (LILEs) and depleted in high‐field‐strength elements (HFSEs) with negative Nb and Ta anomalies in primitive‐mantle‐normalized trace element diagrams. The monzogranites have relatively high Sr (380–499 ppm) and Y (14–18 ppm) concentrations, and the granite porphyries have lower Sr (31–71 ppm) and Y (5–11 ppm) concentrations than those of monzogranites. The monzogranites and granite porphyries have relatively low initial Sr isotope ratios of 0.704573–0.705627 and 0.704281, respectively, and similar 206Pb/204Pb ratios of 18.75–18.98 and 18.48–18.71, respectively. In contrast, the εNd(t) value (−3.7) of granite porphyry is lower than those of monzogranites (−1.5 to −2.7) with Nd model ages of about 1.0 Ga. These geochemical features suggest that the monzogranite and granite porphyries were derived from juvenile crustal rocks related to subduction of the Paleo‐Pacific plate under east China. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Precise in situ zircon U-Pb dating and Lu–Hf isotopic measurement using an LA-ICP-MS system, whole-rock major and trace element geochemistry and Sr–Nd isotope geochemistry were conducted on the volcanic host rocks of the Tongyu copper deposit on the basis of further understanding of its geological characteristics. Three zircon samples from the volcanic host rocks yielded 206Pb/238 U weighted average ages ranging from 436±4 Ma to 440±5 Ma, which are statistically indistinguishable and coeval with the ca. 440 Ma northward subduction event of the Paleo-Qinling oceanic slab. The volcanic host rocks were products of magmatic differentiation that evolved from basalt to andesite to dacite to rhyolite, forming an integrated tholeiitic island arc volcanic rock suite. The primitive mantle-normalized trace element patterns for most samples show characteristics of island arc volcanic rocks, such as relative enrichment of LILE(e.g. Th, U, Pb and La) and depletion of HFSE(e.g. Nb, Ta, Ti, Zr and Hf). Discrimination diagrams of Ta/Yb vs Th/Yb, Ta vs Th, Yb vs Th/Ta, Ta/Hf vs Th/Hf, Hf/3 vs Th vs Nb/16, La vs La/Nb and Nb vs Nb/Th all suggest that both the volcanic host rocks from the Tongyu copper deposit and the volcanic rocks from the regional Xieyuguan Group were formed in an island arc environment related to subduction of an oceanic slab. Values of ISr(0.703457 to 0.708218) and εNd(t)(-2 to 5.8) indicate that the source materials of volcanic rocks from the Tongyu copper deposit and the Xieyuguan Group originated from the metasomatised mantle wedge with possible crustal material assimilation. Most of the volcanic rock samples show good agreement with the values of typical island arc volcanic rocks in the ISr-εNd(t) diagram. The involvement of crustal-derived material in the magma of the volcanic rocks from the Tongyu copper deposit was also reflected in the zircon εHf(t) values, which range from-3.08 to 10.7, and the existence of inherited ancient xenocrystic zircon cores(2616±39 Ma and 1297±22 Ma). The mineralization of the Tongyu copper deposit shows syn-volcanic characteristics such as layered orebodies interbedded with the volcanic rock strata, thus, the zircon U-Pb age of the volcanic host rocks can approximately represent the mineralization age of the Tongyu copper deposit. Both the Meigou pluton and the volcanic host rocks were formed during the ca. 440 Ma northward subduction of the Paleo-Qinling Ocean when high oxygen fugacity aqueous hydrothermal fluid released by dehydration of the slab and the overlying sediments fluxed into the mantle wedge, triggered partial melting of the mantle wedge, and activated and extracted Cu and other ore-forming elements. The magma and ore-bearing fluid upwelled and erupted, and consequently formed the island arc volcanic rock suite and the Tongyu VHMS-type copper deposit.  相似文献   

19.
We report new Os-Pb-Hf isotope data for a suite of alkaline to basaltic (nephelinites, basanites, olivine tholeiites to quartz-tholeiites) lavas from the Miocene Vogelsberg (Germany), the largest of the rift-related continental volcanic complexes of the Central European Volcanic Province (CEVP). 187Os/188Os in primitive (high-MgO) alkaline lavas show a much wider range than has been observed in alkaline basalts and peridotite xenoliths from elsewhere in the CEVP, from ratios similar to those in modern MORB and OIB (0.1260-0.1451; 58.9-168 ppt Os) to more radiogenic ratios (0.1908 and 0.2197; 27.6-15.1 ppt Os). Radiogenic Os is associated with high εHf and εNd, low 87Sr/86Sr and does not correlate with Mg or incompatible trace elements (e.g. Ce/Pb), suggesting the presence of a radiogenic endmember in the mantle rather than crustal contamination as the source of radiogenic Os. This contrasts with another high-Mg alkaline lava characterized by highly radiogenic 187Os/188Os (0.4344, 10.3 ppt Os), lower εHf and εNd, higher 87Sr/86Sr, and Pb isotope signatures than the other alkaline lavas with similar trace element composition suggestive of contamination with crustal material. Hafnium (εHf: +8.9 to +5.0) and Pb isotope compositions (206Pb/204Pb: 19.10-19.61; 207Pb/204Pb: 15.56-15.60) of the alkaline rocks fall within the range of enriched MORB and some OIB. The Vogelsberg tholeiites show even more diverse 187Os/188Os, ranging from 0.1487 in Os-rich olivine tholeiite (31.7 ppt) to ratios as high as 0.7526 in other olivine-tholeiites and in quartz-tholeiites with lower Os concentrations (10.3-2.0 ppt). Low-187Os/188Os tholeiites show Pb-Hf isotope ratios (206Pb/204Pb:18.81; 207Pb/204Pb: 15.61; εHf: +2.7) that are distinct from those in alkaline lavas with similar 187Os/188Os and originate from a different mantle source. By contrast, the combination of radiogenic Os and low 206Pb/204Pb and εHf in the other tholeiites probably reflects crustal contamination.The association at Vogelsberg of primitive alkaline and tholeiitic lavas with a range of MORB- to OIB-like Os-Pb-Hf-Nd-Sr isotopic characteristics requires at least two asthenospheric magma sources. This is consistent with trace element modelling which suggests that the alkaline and tholeiitic parent magmas represent mixtures of melts from garnet and spinel peridotite sources (both with amphibole), implying an origin of the magmas in the garnet peridotite-spinel peridotite transition zone, probably at the asthenosphere-lithosphere interface. We propose that uncontaminated Vogelsberg lavas originated in ‘metasomatized’ mantle, involving a 3-stage model: (1) early carbonatite metasomatism several 10-100 Ma before the melting event (2) deposition of low-degree asthenospheric melts from carbonated peridotite at the lithosphere-asthenosphere thermal boundary produces hydrous amphibole-bearing veins or patches, and (3) remobilization of this modified lithospheric mantle into other asthenospheric melts passing through the same area later. In keeping with ‘metasomatized’ mantle models for other continental basalt provinces, we envisage that stage (2) is short-lived (few Ma), thus producing a prominent lithospheric trace element signature without changing the asthenospheric isotopic signatures. Models of this type can explain the peculiar mix of lithospheric (prominent depletions of Rb and K) and asthenospheric (OIB-like high 187Os/188Os, 143Nd/144Nd and 176Hf/177Hf) signatures observed in the Vogelsberg and many other continental basalt suites.  相似文献   

20.
The Indosinian post-collisional Wulong pluton intruded into the Mesoproterozoic Fuping Group, South Qinling, central China. In the southern part of the pluton, some mafic enclaves have sharp or gradational contact relationships with the host biotite granodiorite. Geochemistry, zircon LA-ICP MS (laser ablation inductively-coupled plasma mass spectrometry) U-Pb chronology and Sr- Nd-Pb isotope geochemistry of the pluton are reported in this paper. The biotite granodiorite shows close compositional similarities to high-silica adakite. Its chondrite-normalized REE patterns are characterized by strong HREE depletion (Yb = 0.33--0.96 10-6 and Y = 4.77-11.19 ×10^-6), enrichment of Ba (775-1386 x 10-6) and Sr (643-1115 × 10^-6) and high Sr/Y (57.83-159.99) and Y/Yb (10.99-14.32) ratios, as well as insignificant Eu anomalies (6Eu = 0.70-0.83), suggesting a feldspar-poor, garnet±amphibole-rich residual mineral assemblage. The mafic enclaves have higher MgO (4.15- 8.13%), Cr (14.79-371.31 × 10-6), Ni (20.00-224.24× 10^-6) and Nb/Ta (15.42-21.91) than the host granodiorite, implying that they are mantle-derived and might represent underplated mafic magma. Zircon LA-ICP MS dating of the granodiorite yields a ^206pb/^238U weighted mean age of 208±2 Ma (MSWD=0.50, 1σ), which is the age of emplacement of the host biotite granodiorite. This age indicates that the Wulong pluton formed during the late-orogenic or post-collisional stage (〈242±21 Ma) of the South Qinling belt. The host biotite granodiorite displays ^87Sr/^86Sr = 0.7059-0.7062, Isr = 0.7044-- 0.7050,^143Nd/^144Nd = 0.51236-0.51238, εNd(t)= -2.26 to -2.66 to ^206Pb/^204pb = 18.099-18.209, ^207pb/^204pb = 15.873-15.979 and ^208pb/^204pb = 38.973-39.430. Those ratios are similar to those of the Mesoproterozoic Yaolinghe Group in the South Qinling. Furthermore, its Nd isotopic model age (-1.02 Ga) is consistent with the age (-1.1 Ga) of the Yaolinghe Group. Based on the integrated geological and ge  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号