首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为研究引发冲击地压的能量在煤岩系统中的分布规律,理论分析了二元、三元组合模型峰前能量分布计算公式,并对自主构建的不同比例的二元、三元组合体开展了轴向加载试验。试验结果表明:随着煤岩高度比增大,组合体峰前总能量也逐渐增大,但增幅逐渐减小;相同煤岩高度比的组合体,岩石组分越硬,组合体峰前总能量越小;无论何种组合体,煤组分能量占比最大,均大于50%;随着煤岩高度比的增大,煤组分能量占比逐渐增大,岩石组分能量占比逐渐减小;煤岩高度比相同的组合体,岩石组分越硬,煤组分能量占比越大。组合体峰前能量主要分布在煤组分中,其次为粗砂岩,细砂岩积聚能量最少。由此表明:煤岩系统中的能量主要分布在软弱煤岩层中,岩层弹性模量越大,积聚能量越少。据此提出了直接释能和间接释能两种冲击地压防控理念,对现场冲击地压的防治具有指导意义。  相似文献   

2.
为研究引发冲击地压的能量在煤岩系统中的分布规律,理论分析了二元、三元组合模型峰前能量分布计算公式,并对自主构建的不同比例的二元、三元组合体开展了轴向加载实验。实验结果表明:随着煤岩高度比增大,组合体峰前总能量也逐渐增大,但增幅逐渐减小;相同煤岩高度比的组合体,岩石组分越硬,组合体峰前总能量越小;无论何种组合体,煤组分能量占比最大,均大于50%;随着煤岩高度比的增大,煤组分能量占比逐渐增大,岩石组分能量占比逐渐减小;煤岩高度比相同的组合体,岩石组分越硬,煤组分能量占比越大。组合体峰前能量主要分布在煤组分中,其次为粗砂岩,细砂岩积聚能量最少。由此表明:煤岩系统中的能量主要分布在软弱煤岩层中,岩层弹性模量越大,积聚能量越少。据此提出了直接释能和间接释能两种冲击地压防控理念,对现场冲击地压的防治具有指导意义。  相似文献   

3.
冲击地压一定是在能量驱使下发生的,为探索引发冲击地压的能量在煤岩系统中的积聚层位,构建了煤岩组合体力学模型,推导了煤岩组合体峰前能量分布公式,对细砂岩−煤(fine sandstone-coal,简称FC)、粗砂岩−煤(gritstone-coal,简称GC)、细砂岩−煤−粗砂岩(fine sandstone-coal-gritstone,简称FCG)3种组合体开展5种加载速率下的能量积聚规律试验,分析了组合体破坏特征、力学特性及能量积聚规律。试验表明:(1)在0.001 mm/s加载速率下,组合体峰前能量主要以原生裂纹的扩展、贯通的形式缓慢耗散,属于塑性完全破坏;在0.1 mm/s加载速率下,组合体峰前能量主要以局部弹射破坏的形式快速释放,属于脆性不完全破坏。(2)组合体的抗压强度、弹性模量、峰前能量、冲击能量指数与加载速率呈对数关系。随着加载速率增大,组合体抗压强度、弹性模量、冲击能量指数增幅逐渐减小,峰前能量增长率呈现低-高-低的趋势。(3)随着加载速率增加,煤组分储能增多,能量占比增大。在0.001~0.010 mm/s加载速率下,煤组分积聚能量增加较快;在0.010~0.100 mm/s加载速率下,煤组分积聚能量增加较慢。(4)相同加载速率下,煤组分能量占比顺序:FC组合体>FCG组合体>GC组合体。(5)组合体中煤组分能量占比均大于50%,煤组分是能量积聚的主要载体。相同应力条件下,软弱岩层能量积聚能力强于坚硬岩层,更易积聚能量。研究结果可为确定冲击地压能量积聚层位和释能减冲工作提供参考。  相似文献   

4.
煤岩复合承载结构所处的应力边界条件不同,冲击地压在巷道中的显现特征和前兆规律亦不相同。采用高频振动采集及孔内成像三轴动静载试验系统,开展了高静载和动静载耦合作用下煤岩组合体真三轴单面临空试验,分析了煤岩组合体界面处力学特征和强度条件,探究了不同应力边界下煤岩组合体的破坏形态、动力显现特征和声发射信号的演变规律。研究结果表明:(1)受煤岩变形相互制约的影响,交界面处砂岩强度被"弱化"。当界面处煤体裂隙尖端的应力大于"弱化"后砂岩强度时,裂隙将穿过煤岩界面发育至砂岩中,砂岩呈现出屈曲层裂、劈裂成板的破坏形态。(2)高静载作用下,煤岩组合体变形破坏特征和声发射信号具有明显的前兆规律,组合体发生承载失效前煤体局部颗粒弹射动能增大、弹射颗粒块度降低,声发射信号由"高频低能"向"高频高能"转变,组合体的破坏形态以剪切-张拉复合破坏为主。(3)受冲击动载影响,顶底板砂岩夹持作用减弱,煤体裂纹尖端应力得不到有效积聚,裂纹扩展到煤岩交界面时被阻隔,组合体以煤样的张拉破坏为主,声发射信号呈现出"高频高能"的特点,但大多集中在冲击破坏之后,导致组合体动力破坏难以预测。(4)与纯静载作用相比,虽然动静载耦合作...  相似文献   

5.
肖晓春  樊玉峰  吴迪  丁鑫  王磊  赵宝友 《岩土力学》2019,40(11):4203-4212
为揭示组合煤岩失稳破坏过程中的能量耗散规律,通过组合煤岩单轴压缩试验,从能量角度对组合煤岩失稳特征进行了分析。引入分形理论,研究了声发射信号与煤岩破坏程度之间的关系,以及不同组合结构对组合煤岩破坏过程的能量耗散的影响,提出一种利用煤岩结构力学特性判定冲击危险的方法。结果表明:随组合煤岩顶板岩石高度增加,试样整体强度和弹性模量增加,峰后应变软化过程缩短;岩石高度的增加,岩石与煤的弹性模量差值的减小均会导致冲击危险增加;通过对组合煤岩中岩石和煤的高度及其力学性质分析,提出了组合煤岩冲击倾向性判定指数,利用冲击倾向性判定指数对组合煤岩冲击危险进行评价,其准确度和实用性优于传统模糊判定的“四指标”方法,为深入开展煤岩组合结构冲击倾向评价提供了试验和理论支持。  相似文献   

6.
为预测煤巷冲击地压灾害,将强冲击倾向煤视作理想弹脆性材料,建立圆形煤巷力学模型,分析煤巷围岩的应力和变形能密度分布特征,进而建立煤巷冲击地压预测模型,利用该模型预测冲击地压灾害风险。研究结果表明:弹脆性煤巷围岩的切向应力和变形能密度在弹性区与破坏区界面处发生跃升;煤体强度损伤度和地应力增大,煤巷破坏区半径增大,煤巷围岩切向应力和变形能密度跃升高度增大;切向应力跃升为煤巷失稳破坏提供了力源,变形能密度跃升为冲击地压发生提供了能量源;切向应力和变形能密度跃升高度越大,煤巷越容易失稳和冲击;基于切向应力和变形能密度跃升,建立了煤巷冲击地压解析预测模型,预测结果与现场冲击地压实际情况一致,从而为脆性煤巷冲击地压预测提供了一种新的方法。  相似文献   

7.
孤岛综放工作面强烈的动压显现使得其发生冲击地压的可能性大大增加,通过运用微地震和电磁辐射综合监测手段分析孤岛综放工作面两次强动压显现事件,获得了工作面煤体发生冲击地压前后能量积聚与释放规律及相应微震和电磁辐射监测数据变化规律,认为工作面煤体发生冲击地压前一般存在一个短暂的能量积聚期,在能量积聚期内微震系统监测到的微震事件的次数和总能量均较少,同时能量积聚期内煤体电磁辐射强度值和脉冲数均持续升高。将工作面微震事件的沉默期以及煤体电磁辐射强度值、脉冲数的持续升高期作为冲击地压的综合前兆信息,并将其转换为量化的预警参数和指标,建立了工作面冲击地压多参数预警方法。现场实践表明,危险识别与灾害预警效果良好。  相似文献   

8.
为了研究煤岩和砂岩在加载过程中的损伤对岩石力学性质的影响,分别对煤岩和砂岩做单轴和三轴全应力应变加卸载实验。进而构建岩石的损伤本构方程,实验结果表明:随着岩石损伤的增大,岩石的卸载弹性模量逐渐减小,塑性应变逐渐增加,表明岩石损伤属于弹塑性损伤;同时随着围压的增大,岩石的弹性模量随损伤的增加而下降的速率减小,表明岩石损伤主要引起岩石塑性应变的增加,岩石损伤破坏逐渐由脆性破坏向塑性破坏转变。假设岩石损伤速率符合威布尔统计分布规律,在此基础上构建煤岩损伤演化方程,通过实验和相关分析构建煤和砂岩弹塑性损伤本构方程。最后用构建的本构方程对实验曲线进行拟合,验证了弹塑性损伤本构方程的正确性。   相似文献   

9.
通过对唐口煤矿地应力、3上煤层及顶板岩层冲击地压测试结果分析,认为3上煤层属强冲击倾向性煤层,3上煤层顶板属弱冲击倾向性岩层;在采深1000m条件下,随着地应力的增大,煤、岩层的冲击倾向性将会增大。因3上煤层为易碎煤,厚度较大,顶板弹性能易突然全部释放,形成冲击地压;3上煤顶板主要为中砂岩、细砂岩及泥岩,质地坚硬,在煤层开采过程中,煤壁附近出易现高应力集中带,在顶板中聚集的弹性能在自重力和采掘干扰下会突然释放,形成冲击地压。在生产过程中采取钻屑法、沿采煤工作面轨道顺槽安装顶板离层报警系统、合理开拓避免应力集中和叠加、对煤层进行注水,降低煤体弹性和强度、提高支护结构的承载能力等一系列措施,较好地预防了冲击地压的发生。  相似文献   

10.
煤岩组合体在静力压缩下的宏观变形受界面效应影响,与煤、岩单体存在显著差异。在岩石单体材料的有效介质模型基础上进行改进,考虑了煤岩组合体的构成特征,提出一种适用于不同类型的煤岩组合体的裂前宏观弹性模型。模型参数基于轴向裂纹应变确定,均可从试验曲线获得,方法简单方便。通过现有文献的数据验证,表明了模型的合理性、有效性和普适性。对模型参数进行讨论,结果表明:(1)在煤岩组合体的裂前阶段,煤岩组合体裂纹差异可以忽略;(2)模型通过对煤岩组合体基质进行解耦,反映了界面效应对煤岩组合体弹性性能的影响;(3)模型中岩体基质的有效占比随着煤体比例的提高显著下降;(4)存在岩体与煤体弹性模量的最佳比值,使岩体基质的有效占比最大。模型可为矿井支护方案设计与材料选择提供一种新的思路。  相似文献   

11.
不同倾角组合煤岩体的强度与破坏机制研究   总被引:1,自引:0,他引:1  
郭东明  左建平  张毅  杨仁树 《岩土力学》2011,32(5):1333-1339
对4种不同倾角组合煤岩体进行了试验和数值模拟研究,获得了单轴和三轴压缩条件下组合煤岩体的宏观破坏机制,并分析了煤岩组合体中煤、岩不同倾角交界面对煤岩组合体整体变形破坏的影响。研究表明,单轴荷载条件下煤岩组合体的破坏强度随着组合倾角的增加而出现先微小减小,而后迅速减小;同种倾角条件下,煤岩组合体的破坏强度随着围压的升高而逐渐升高,并且煤岩组合体的倾角越小,破坏强度升高的速率越慢,而倾角越大,升高的速率越快,可见围压对于大倾角裂隙的抑制作用更明显。通过三轴试验获得了煤岩组合体整体结构的黏聚力和内摩擦角,其中组合体黏聚力随着倾角的增加而逐渐减小,但内摩擦角变化规律不明显。通过扩展有限元对试验结果进行了模拟验证,发现随着倾角由0°增加到60°,外力功、屈服应力和弹性应变能都在下降,当倾角超过45°~50°后,外力功和屈服应力将与弹性应变能出现背离,这是煤岩组合体的变形破坏机制由剪切变形机制逐渐转化为界面滑移破坏机制重要标志。  相似文献   

12.
水对岩石具有软化、溶蚀和水楔作用,为研究不同含水率作用下岩石的能量机制,利用MTS815岩石力学试验系统开展了5种含水率状态下砂岩的常规三轴压缩试验。结果表明:随含水率的增大,岩石吸收总能量的增速和总量减少;弹性能增速在储能阶段随含水率的增加而减小,但弹性能的释放速率则大致相当,岩石的储能极限随含水率的增大而减小;岩石变形破坏所耗散量随含水率的增加而较小,但不同含水率作用下岩石的峰前和峰后能量耗散速率则大致相当;岩石的耗散能比例可以反应内部的损伤状态,耗散能比例随时间变化呈现出先增大后减小,然后再稳定增长,最后急剧变大的规律;随着含水率的增大,声发射能率的集中程度和强度逐渐减小,声发射累计能量随含水率的增大而减小,表明随着含水率的增加,岩石的储能能力和应变能释放能力降低,岩石的脆性破坏特征减弱,塑性增强。  相似文献   

13.
深部煤层冲击地压诱发瓦斯涌出、突出事故频繁发生,对井下安全生产带来了巨大威胁,厘清瓦斯对煤岩力学性质、冲击倾向性演化规律是建立有效防治手段的基础。运用物理试验方法,基于自主研发的可视化煤岩流?固耦合试验系统,研究瓦斯压力影响的煤岩吸附、力学性质及碎块分布规律,分析瓦斯影响的煤岩冲击能指数演化特征与机制。结果表明:具有强冲击倾向性煤岩的瓦斯等温吸附曲线符合Langmuir模型,随瓦斯压力升高,煤岩软化特性越发明显,弹性模量、软化模量均呈阶段性降低,瓦斯对二者在煤岩峰值前后具有不同的影响效果且存在临界压力,试样破坏形式呈“脆性张拉→剪切→张拉+塑性流动”过渡,冲击能指数与试样碎块尺度均呈先减小后增大的“V”形变化特征,破碎后具有更多盈余能;含瓦斯煤岩小尺度碎块是灾害发生的客观条件,瓦斯膨胀能为煤体动态失稳提供了额外的能量,增大了冲击地压发生过程的强动力性和破坏性,这种煤岩基质骨架与瓦斯运移的固?流耦合降低了冲击地压发生的临界指标且具有更高的致灾潜能。研究成果与启示为进一步判定深部高瓦斯煤层灾变倾向并建立行之有效的防治手段提供了试验基础和研究思路。   相似文献   

14.
《岩土力学》2017,(6):1620-1628
针对深部煤层冲击倾向指标评价冲击危险出现的差异现象,开展了煤、岩石和组合试样冲击倾向指标试验研究,对组合煤岩试样破裂过程的电荷信号进行监测。试验结果表明:顶、底板岩石对煤体的冲击倾向有显著影响,岩石厚度越大,冲击倾向指标越高;组合试样破裂过程的力-电荷变化具有一致性,冲击倾向性强的组合试样,其应力强化直至破坏阶段的电荷信号幅值相差显著。由此提出了组合煤岩峰后电荷变化率冲击倾向判据。回采面的电荷监测表明,冲击危险发生过程获得的电荷变异系数迅速升高和衰减以及试验获取的峰后电荷变化率的量化分析结果相一致,从而验证了峰后电荷变化率作为冲击倾向判据的正确性,为形成深部开采条件下组合煤岩冲击危险及发生几率的电荷预测方法提供了试验指导,为煤岩体失稳破坏预测、矿井动力显现预警提供了试验依据。  相似文献   

15.
长壁孤岛工作面冲击失稳能量场演化规律   总被引:1,自引:0,他引:1  
王宏伟  姜耀东  高仁杰  刘帅 《岩土力学》2013,34(Z1):479-485
煤矿冲击地压一直是困扰中国煤矿安全的主要问题,而煤矿开采过程中跳采形成的孤岛工作面由于容易产生应力集中,来压强度提高,极容易发生冲击地压。基于唐山矿T2193下孤岛工作面的地质条件,从数值分析的角度研究了煤岩体材料的非均匀性,揭示了孤岛工作面顶板周期来压时煤岩体能量释放的动态特征,分析了工作面前方能量释放激增机制。数值模拟结果显示,长壁工作面回采过程中直接顶的不断垮落造成了老顶悬空距离的不断增大,工作面周期来压时,积聚于老顶岩层内的弹性应变能将瞬间释放,容易引发工作面及巷道的冲击失稳。孤岛工作面由于其特有的矿压显现特征,老顶周期破断时所释放的弹性应变能将更加剧烈,冲击地压势必愈加强烈。孤岛工作面顶底板和煤层的能量释放激增可以作为判断煤岩体冲击失稳的前兆信息。孤岛工作面前方发生冲击破坏的主要原因是由于工作面回采过程中围岩所积聚的大量弹性能在顶板断裂时所伴随的巨大能量释放而造成的。  相似文献   

16.
李杨杨  张士川  高立群  孔德志  孔贺 《岩土力学》2016,37(11):3283-3290
针对阳城煤矿不等长工作面台阶区域发生冲击地压灾害问题,基于工作面特殊布置方式及覆岩赋存特征,采用理论分析、数值模拟和现场实测等方法,分析了台阶区域覆岩结构运动特征和围岩应力演化规律,研究了台阶区域冲击地压诱发机制。研究结果表明:1304工作面台阶区域覆岩经历了“OX-S-C”型较为复杂的结构演变,覆岩空间结构由OX向S型转换时,顶板岩层大面积破断下沉,在台阶区域形成多个悬臂梁结构,越往高位,悬臂梁长度越大;受覆岩运动和采动应力场叠加影响,煤岩体形成高应力集中区,在顶板岩层动载冲击作用下,煤岩体弹性应变能突然释放,诱发冲击地压。采用COMSOL软件对不同卸压钻孔参数下煤体应变能分布特征进行模拟研究,优化了台阶区域卸压钻孔参数。根据模拟结果,随着钻孔孔径、孔深增大及间距减小钻孔卸压效果越明显,考虑工程实际,确定孔径为150 mm、孔深为30 m、间距为1 m为合理有效的卸压钻孔参数,并应用于1302工作面台阶区域的冲击地压防治,取得了较好的防冲效果。  相似文献   

17.
为研究加载速率对砂岩抗拉强度的影响效应及影响机制,设计开展5种加载速率的劈裂试验,综合分析抗拉强度、破坏特征、能量参数和劈裂面微观形貌变化规律及相关性。结果表明,(1) 随着加载速率增大,砂岩劈裂抗拉强度逐渐增大,总体呈现先陡后缓的趋势,加载速率在0.01~0.10 kN/s范围内时抗拉强度增长迅速,0.10~1.00 kN/s范围内时抗拉强度增长趋势渐缓;(2) 随着加载速率的增大,岩样吸收的总能量增大,弹性应变能占总能量的比值逐渐增大,耗散能占总能量的比值逐渐减小,加载至破坏时裂纹扩展形成宏观劈裂面的时间呈数量级减小,达到峰值应力时弹性应变能的释放,导致岩样破坏的突发性增强,使得劈裂面形貌特征在宏观和微观上逐渐变得复杂,对应抗拉强度逐渐增大;(3) 在岩石劈裂试验过程中加载速率、能量参数、劈裂面形貌特征与抗拉强度密切相关,加载速率影响加载过程中能量的总量与分配,能量参数的变化直接影响岩样的破坏过程及劈裂面的形貌特征,最后宏观上表现为抗拉强度的差异。文中相关分析方法和思路可为类似试验提供较好的参考。  相似文献   

18.
高速冲击载荷作用下巷道动态破坏过程试验研究   总被引:3,自引:0,他引:3  
冲击地压瞬时释放大量积聚能量,造成巷道严重破坏,直接影响煤矿安全生产。利用爆炸加载相似模拟试验和数字散斑观测方法(DSCM),研究高速冲击载荷作用下巷道动态破坏过程。试验结果表明,高速冲击波以巷道方向传递为主,顶板处变形较大,顶板岩层与煤岩体交界处发生错动,上部岩层明显下沉,顶板岩层受拉剪破坏,裂缝逐渐发育延伸至巷道;冲击波重复作用致使顶板岩体破碎,进而造成巷道局部破坏或垮塌。数字散斑观测结果说明,在高速冲击载荷作用下,顶板产生下沉位移约为4 mm,进而冲击波向两帮传播,岩层破碎后沿表面剥离脱落,表现为散斑计算结果云图中出现白色空白区。  相似文献   

19.
利用MTS815程控伺服岩石力学试验系统,对千枚岩进行不同围压下的三轴压缩试验,研究围压对千枚岩变形破坏特征和能量演化特征的影响。结果表明:在低围压下,千枚岩破坏模式为张-剪复合型破坏,随着围压升高,破坏模式转变为剪切破坏;弹性应变能曲线和耗散能曲线的交点k为能量分界点,k之前表现为能量积聚,k之后表现为能量释放;总能量与轴向应变关系曲线在加载初期呈下凹曲线,能量增速升高,加载后期呈上凸曲线,能量增速降低;特征应力点的总能量和储能的弹性应变能均随围压的增大而增大;围压对岩石内部裂纹扩展和峰后能量释放均有阻碍作用。  相似文献   

20.
岩质边坡锁固段型岩桥的破坏和能量的累积与释放密切相关,利用MTS815伺服控制刚性力学试验机对花岗岩岩桥试样开展了常规三轴加荷试验和三轴加卸荷试验,采用基于轴向应力比的能量分析方法,可对不同工况下峰前加载各阶段能量变化趋势进行有效的对比分析。结果表明:应力峰值前能量特征变化主要分为压密阶段与弹性阶段,试样处于压密阶段,随着初始裂纹的闭合与摩擦,耗散能占比大幅增加;弹性阶段,荷载所做功大部分转化为弹性能储存在试样内部,弹性能占比大幅增加。由于预制裂隙存在,在临近破坏前没有出现明显的屈服阶段,岩桥试样表现为“突发式”的脆性破坏;初始围压的提升会使得应力峰值点的总能量、弹性能明显增大;花岗岩试样的岩桥越长,其吸收的总能量、弹性储能极限越大,应力峰值点的弹性能占总能量比值越高,岩桥长度变化则对耗散能没有明显影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号