首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of fluctuating daily surface fluxes on the time-mean oceanic circulation is studied using an empirical flux model. The model produces fluctuating fluxes resulting from atmospheric variability and includes oceanic feedbacks on the fluxes. Numerical experiments were carried out by driving an ocean general circulation model with three different versions of the empirical model. It is found that fluctuating daily fluxes lead to an increase in the meridional overturning circulation (MOC) of the Atlantic of about 1 Sv and a decrease in the Antarctic circumpolar current (ACC) of about 32 Sv. The changes are approximately 7% of the MOC and 16% of the ACC obtained without fluctuating daily fluxes. The fluctuating fluxes change the intensity and the depth of vertical mixing. This, in turn, changes the density field and thus the circulation. Fluctuating buoyancy fluxes change the vertical mixing in a non-linear way: they tend to increase the convective mixing in mostly stable regions and to decrease the convective mixing in mostly unstable regions. The ACC changes are related to the enhanced mixing in the subtropical and the mid-latitude Southern Ocean and reduced mixing in the high-latitude Southern Ocean. The enhanced mixing is related to an increase in the frequency and the depth of convective events. As these events bring more dense water downward, the mixing changes lead to a reduction in meridional gradient of the depth-integrated density in the Southern Ocean and hence the strength of the ACC. The MOC changes are related to more subtle density changes. It is found that the vertical mixing in a latitudinal strip in the northern North Atlantic is more strongly enhanced due to fluctuating fluxes than the mixing in a latitudinal strip in the South Atlantic. This leads to an increase in the density difference between the two strips, which can be responsible for the increase in the Atlantic MOC.  相似文献   

2.
A global ocean general circulation model (L30T63) is employed to study the uptake and distribution of anthropogenic CO2 in the ocean. A subgrid-scale mixing scheme called GM90 is used in the model. There are two main GM90 parameters including isopycnal diffusivity and skew (thickness) diffusivity. Sensitivities of the ocean circulation and the redistribution of dissolved anthropogenic CO2 to these two parameters are examined. Two runs estimate the global oceanic anthropogenic CO2 uptake to be 1.64 and 1.73 Pg C yr-1 for the 1990s, and that the global ocean contained 86.8 and 92.7 Pg C of anthropogenic CO2 at the end of 1994, respectively. Both the total inventory and uptake from our model are smaller than the data-based estimates. In this presentation, the vertical distributions of anthropogenic CO2 at three meridional sections are discussed and compared with the available data-based estimates. The inventory in the individual basins is also calculated. Use of large isopycnal diffusivity can generally improve the simulated results, including the exchange flux, the vertical distribution patterns, inventory, storage, etc. In terms of comparison of the vertical distributions and column inventory, we find that the total inventory in the Pacific Ocean obtained from our model is in good agreement with the data-based estimate, but a large difference exists in the Atlantic Ocean, particularly in the South Atlantic. The main reasons are weak vertical mixing and that our model generates small exchange fluxes of anthropogenic CO2 in the Southern Ocean. Improvement in the simulation of the vertical transport and sea ice in the Southern Ocean is important in future work.  相似文献   

3.
Experiments with the coupled climate model CLIMBER-3α, which contains an oceanic general circulation model, show deep upwelling in the Southern Ocean to be proportional to the surface wind stress in the latitudinal band of Drake Passage. At the same time, the distribution of the Southern Ocean upwelling onto the oceanic basins is controlled by buoyancy distribution; the inflow into each basin being proportional to the respective meridional density difference. We observe approximately the same constant of proportionality for all basins, and demonstrate that it can be directly related to the flow geometry. For increased wind stress in the Southern Ocean, the overturning increases both in the Atlantic and the Indo-Pacific basin. For strongly reduced wind stress, the circulation enters a regime where Atlantic overturning is maintained through Pacific upwelling, in order to satisfy the transports set by the density differences. Previous results on surface buoyancy and wind stress forcing, obtained with different models, are reproduced within one model in order to distill a consistent picture. We propose that both Southern Ocean upwelling and meridional density differences set up a system of conditions that determine the global meridional overturning circulation.  相似文献   

4.
张荣华 《气象学报》1996,54(1):53-64
用中国科学院大气物理研究所高分辨率、自由表面热带海洋环流模式对厄尼诺/南方涛动(El/Southern Oscillation)循环中另一重要位相La Niña事件进行了数值模拟研究。模式区域为南北纬30°之间的热带太平洋,经纬圈水平方向分辨率分别为2°和1°,垂直方向分为不等距的14层;模式中考虑了盐度并引入与洋流切变和层结稳定度有关的垂直扩散参数化方案。在观测到的海表风应力、热量和淡水通量(蒸发与降水之差)驱动下,所发展的模式从1984年积分到1989年。本文给出模式对近十几年来最强的1988年La Niña事件进行数值模拟的结果,着重分析La Niña期间热带太平洋海面起伏、流场和温度场时空演变,以及La Niña和El期间变量场时空结构差别。文中还进行了模式结果和一些观测资料间的比较。  相似文献   

5.
1. Introduction Ocean General Circulation Models (OGCMs) arekey tools in the assessment of the future ocean up-take of atmospheric greenhouse gases and heat. Fur-thermore, whereas nature experiences one realisationof the climate state, climate models can be used as alaboratory to produce a multitude of climate realisa-tions, and by that contribute to the understanding ofthe variability and stability properties of the system.It is, in this respect, crucial to evaluate the climatemodels ag…  相似文献   

6.
The effect of idealized wind-driven circulation changes in the Southern Ocean on atmospheric CO2 and the ocean carbon inventory is investigated using a suite of coarse-resolution, global coupled ocean circulation and biogeochemistry experiments with parameterized eddy activity and only modest changes in surface buoyancy forcing, each experiment integrated for 5,000 years. A positive correlation is obtained between the meridional overturning or residual circulation in the Southern Ocean and atmospheric CO2: stronger or northward-shifted westerly winds in the Southern Hemisphere result in increased residual circulation, greater upwelling of carbon-rich deep waters and oceanic outgassing, which increases atmospheric pCO2 by ~20 μatm; weaker or southward-shifted winds lead to the opposing result. The ocean carbon inventory in our model varies through contrasting changes in the saturated, disequilibrium and biogenic (soft-tissue and carbonate) reservoirs, each varying by O(10–100) PgC, all of which contribute to the net anomaly in atmospheric CO2. Increased residual overturning deepens the global pycnocline, warming the upper ocean and decreasing the saturated carbon reservoir. Increased upwelling of carbon- and nutrient-rich deep waters and inefficient biological activity results in subduction of unutilized nutrients into the ocean interior, decreasing the biogenic carbon reservoir of intermediate and mode waters ventilating the Northern Hemisphere, and making the disequilibrium carbon reservoir more positive in the mode waters due to the reduced residence time at the surface. Wind-induced changes in the model carbon inventory are dominated by the response of the global pycnocline, although there is an additional abyssal response when the peak westerly winds change their latitude, altering their proximity to Drake Passage and changing the depth extent of the southward return flow of the overturning: a northward shift of the westerly winds isolates dense isopycnals, allowing biogenic carbon to accumulate in the deep ocean of the Southern Hemisphere, while a southward shift shoals dense isopycnals that outcrop in the Southern Ocean and reduces the biogenic carbon store in the deep ocean.  相似文献   

7.
利用可分辨云模式及中国南海北部试验区加密探空的平均水平风场、位温场和水汽场模拟分析了1998年5月15日至6月11日中国南海北部地区中尺度对流系统(Mesoscal Convective System,简称MCS)中冰相相变潜热对云和降水、辐射传输以及大尺度环境场的影响作用。研究表明,冰相相变潜热总体上不会引起明显的大气辐射通量的变化,但会引起较明显的下垫面热通量的变化。凝华潜热释放显著地增加了大气稳定度,造成对流和下垫面热通量的减弱,从而导致地面降水减小10.11%。碰冻潜热释放也使得大气稳定度增加,不利于中尺度对流系统对流的发展,区域累积降水量减小2.2%。融化潜热的冷却效应,使得融化层以下的大气降温,从而增加了低层大气的不稳定性,有利于海面热通量的输送,导致MCS降水增加4.1%。因此,冰相相变潜热对降水的影响主要是通过影响大气环境稳定,进而影响洋面感热通量和潜热通量的垂直输送和对流的发展,导致区域降水改变。  相似文献   

8.
The impact of spatially non-uniform emissions on the turbulence dispersion of passive tracers in the convective boundary layer is studied by means of large-eddy simulation. We explicitly calculated the different terms of the budget equations for the concentrations, fluxes and variances, and used sub-domain averaging where each sub-domain is the typical size of a large-scale model grid cell. We found that the concentration profiles in the sub-domain where the emission takes place are lightly affected by the size of the emission release. This effect becomes more relevant in the downwind sub-domain. Although sub-domain averaged fluxes are not affected by the emission source size, concentration variances are dramatically increased when the emission shrinks. This increase originates from the mixing of highly concentrated air parcels with those of low concentrations. We also found that the concentration variance at the surface is driven neither by the position of the emission source nor the strength of the shear forcing but solely by the emission variance.  相似文献   

9.
刘波  李阳春  徐永福  范广洲 《大气科学》2015,39(6):1149-1164
本文选用中国科学院大气物理研究所全球海洋模式(LICOM),对中尺度涡旋参数化方案(GM90方案)中等密度扩散系数和等密度面厚度扩散系数(统称为涡旋扩散系数Aρ)对物理场及CFC-11(一氟三氯甲烷)分布的影响进行了研究。本文做了两个试验,即涡旋扩散系数采用常系数方式(对照试验)和采用在非绝热层以下Aρ随海洋浮力频率垂直变化的参数化方案(浮力试验)。模拟结果表明,依浮力频率垂直变化的方案对模式物理场的模拟能力有一定程度的提升,如南极绕极流的输送强度比常系数方案增大了约20%~30%,与观测事实更接近;浮力试验对对照试验中过强的南极中层水有一定的削弱作用,使得模式对南大洋高纬次表层位密度的模拟有一定的改善。稍有不足的是,浮力试验对南极底层水也有一定的削弱,使得2000~3000 m深度位密度模拟较常系数方案偏低。通过对CFC-11分布、存储以及输送的研究发现,次网格参数取值的不同对南大洋CFC-11模拟情况有较大影响。浮力试验加大了南北高纬CFC-11海表的吸收通量,对南极大陆周边海域向南大洋主储藏区(34°S~60°S)的CFC-11输送能力有一定的增强,使得南大洋对CFC-11储藏量增大,大部分海区与观测资料更接近。通过CFC-11断面分析,浮力试验对南大洋上层海洋位密度模拟的改善使得CFC-11垂直结构与观测更接近。  相似文献   

10.
The responses of vertical structures,in convective and stratiform regions,to the large-scale forcing during the landfall of tropical storm Bilis(2006) are investigated using the data from a two-dimensional cloud-resolving model simulation.An imposed large-scale forcing with upward motion in the mid and upper troposphere and downward motion in the lower troposphere on 15 July suppresses convective clouds,which leads to ~100% coverage of raining stratiform clouds over the entire model domain.The imposed forci...  相似文献   

11.
We use a coarse resolution ocean general circulation model to study the relation between meridional pressure and density gradients in the Southern Ocean and North Atlantic and the Atlantic meridional overturning circulation. In several experiments, we artificially modify the meridional density gradients by applying different magnitudes of the Gent–McWilliams isopycnal eddy diffusion coefficients in the Southern Ocean and in the North Atlantic and investigate the response of the simulated Atlantic meridional overturning to such changes. The simulations are carried out close to the limit of no diapycnal mixing, with a very small explicit vertical diffusivity and a tracer advection scheme with very low implicit diffusivities. Our results reveal that changes in eddy diffusivities in the North Atlantic affect the maximum of the Atlantic meridional overturning, but not the outflow of North Atlantic Deep Water into the Southern Ocean. In contrast, changes in eddy diffusivities in the Southern Ocean affect both the South Atlantic outflow of North Atlantic Deep Water and the maximum of the Atlantic meridional overturning. Results from these experiments are used to investigate the relation between meridional pressure gradients and the components of the Atlantic meridional overturning. Pressure gradients and overturning are found to be linearly related. We show that, in our simulations, zonally averaged deep pressure gradients are very weak between 20°S and about 30°N and that between 30°N and 60°N the zonally averaged pressure grows approximately linearly with latitude. This pressure difference balances a westward geostrophic flow at 30–40°N that feeds the southbound deep Atlantic western boundary current. We extend our analysis to a large variety of experiments in which surface freshwater forcing, vertical mixing and winds are modified. In all experiments, the pycnocline depth, assumed to be the relevant vertical scale for the northward volume transport in the Atlantic, is found to be approximately constant, at least within the coarse vertical resolution of the model. The model behaviour hence cannot directly be related to conceptual models in which changes in the pycnocline depth determine the strength of Atlantic meridional flow, and seems conceptually closer to Stommel’s box model. In all our simulations, the Atlantic overturning seems to be mainly driven by Southern Ocean westerlies. However, the actual strength of the Atlantic meridional overturning is not determined solely by the Southern Ocean wind stress but as well by the density/pressure gradients created between the deep water formation regions in the North Atlantic and the inflow/outflow region in the South Atlantic.  相似文献   

12.
A one-dimensional penetrative plume model has been constructed to parameterize the process of deep convection in ocean general circulation models (OGCMs). This research is motivated by the need for OGCMs to better model the production of deep and intermediate water masses. The parameterization scheme takes the temperature and salinity profiles of OGCM grid boxes and simulates the subgrid-scale effects of convection using a one-dimensional parcel model. The model moves water parcels from the surface layer down to their level of neutral buoyancy, simulating the effect of convective plumes. While in transit, the plumes exchange water with the surrounding environment; however, the bulk of the plume water mass is deposited at e level of neutral buoyancy. Weak upwelling around the plumes is included to maintain an overall mass balance. The process continues until the negative buoyant energy of the one-dimensional vertical column is minimized. The parameterized plume entrainment rate, which plays a central role in the parameterization, is calculated using modified equations based on the physics of entraining buoyant plumes. This scheme differs from the convective adjustment techniques currently used in OGCMs, because the parcels penetrate downward with the appropriate degree of mixing until they reach their level of neutral stability.  相似文献   

13.
Seasonal estimates of the oceanic poleward heat transport are obtained using a climate model that is a global atmospheric general circulation model on an 8° × 10° grid. The climate model is used to calculate the surface heat flux into each ocean grid point for each day of the year. The rate of ocean heat storage is calculated using climatological surface temperatures, mixed layer depths, and ice amounts. By assuming that the rate of change of heat storage in the deep ocean is spatially constant, the horizontal transports are calculated from the vertical fluxes and the upper ocean storage rates. The oceanic meridional transport for each latitude and for each ocean basin are derived, and results are compared with other calculations of the seasonal transports. In the Northern Hemisphere, comparisons between the simulated seasonal transports indicate that the annual variation is much greater in the Pacific than in the Atlantic.  相似文献   

14.
A long-standing problem in large-eddy simulations (LES) of the planetary boundary layer (PBL) is that the mean wind and temperature profiles differ from the Monin-Obukhov similarity forms in the surface layer. This shortcoming of LES has been attributed to poor grid resolution and inadequate sub-grid-scale (SGS) modeling. We study this deficiency in PBL LES solutions calculated over a range of shear and buoyancy forcing conditions. The discrepancy from similarity forms becomes larger with increasing shear and smaller buoyancy forcing, and persists even with substantial horizontal grid refinement. With strong buoyancy forcing, however, the error is negligible.In order to achieve better agreement between LES and similarity forms in the surface layer, a two-part SGS eddy-viscosity model is proposed. The model preserves the usual SGS turbulent kinetic energy formulation for the SGS eddy viscosity, but it explicitly includes a contribution from the mean flow and a reduction of the contributions from the turbulent fluctuations near the surface. Solutions with the new model yield increased fluctuation amplitudes near the surface and better correspondence with similarity forms out to a distance of 0.1–0.2 times the PBL depth, i.e., a typical surface-layer depth. These results are also found to be independent of grid anisotropy. The new model is simple to implement and computationally inexpensive.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

15.
Diagnostic methods are defined in order to compare two numerical simulations of ocean dynamics in a region of freshwater influence. The first one is a river plume simulation based on a high resolution numerical configuration of the POM coastal ocean model in which mixing parametrizations have been previously defined. The second one is a simulation based on the NEMO Global Ocean Model used for climate simulations in its half-a-degree configuration in which a river inflow is represented as precipitation on two coastal grid cells. Both simulations are forced with the same freshwater inflows and wind stresses. The divergence of volumetric fluxes above and below the halocline are compared. Results show that when an upwelling wind blows, the two models display similar behavior although the impact of lack of precision can be observed in the NEMO configuration. When a downwelling wind blows, the NEMO Global Ocean configuration can not reproduce the coastally trapped baroclinic dynamics because its grid resolution is too coarse. To find a parametrization to help represent these dynamics in ocean general circulation models, a method based on energy conservation is investigated. This method shows that it is possible to link the energy fluxes provided by river inflows to the divergence of energy fluxes integrated over the grid cells of ocean general circulation models. A parametrization of the dynamics created by freshwater inflows is deduced from this method. This enabled creation of a box model that proved to have the same behavior as the fluxes previously computed from the high resolution configuration.  相似文献   

16.
The Earth System Climate Model from the University of Victoria is used to investigate changes in ocean properties such as heat content, temperature, salinity, density and circulation during 1500 to 2000, the time period which includes the Little Ice Age (LIA) (1500–1850) and the industrial era (1850–2000). We force the model with two different wind-stress fields which take into account the North Atlantic Oscillation. Furthermore, temporally varying radiative forcings due to volcanic activity, insolation changes and greenhouse gas changes are also implemented. We find that changes in the upper ocean (0–300 m) heat content are mainly driven by changes in radiative forcing, except in the polar regions where the varying wind-stress induces changes in ocean heat content. In the full ocean (0–3,000 m) the wind-driven effects tend to reduce, prior to 1700, the downward trend in the ocean heat content caused by the radiative forcing. Afterwards no dynamical effect is visible. The colder ocean temperatures in the top 600 m during the LIA are caused by changes in radiative forcing, while the cooling at the bottom is wind-driven. The changes in salinity are small except in the Arctic Ocean. The reduced salinity content in the subsurface Arctic Ocean during the LIA is a result from reduced wind-driven inflow of saline water from the North Atlantic. At the surface of the Arctic Ocean the changes in salinity are caused by changes in sea–ice thickness. The changes in density are a composite picture of the temperature and salinity changes. Furthermore, changes in the meridional overturning circulation (MOC) are caused mainly by a varying wind-stress forcing; the additional buoyancy driven changes due to the radiative forcings are small. The simulated MOC is reduced during the LIA as compared to the industrial era. On the other hand, the ventilation rate in the Southern Ocean is increased during the LIA.  相似文献   

17.
Seasonal and inter-annual variability of the mixed layer temperature in the Southern South China Sea (SSCS) is investigated using a regional ocean circulation model simulation. The mixed layer depth (MLD) over the SSCS exhibits a strong seasonal signal with deeper MLDs during the northeast and southwest monsoons. The main factor that drives the mixed layer temperature variation in the SSCS is the air-sea heat fluxes, with vertical ocean processes acting as a relatively weak negative feedback. In general, the budget analysis demonstrates a net balance between the vertical ocean processes and surface heat flux during the pre-monsoon and southwest monsoon. Northeast monsoon period is noted by an offsetting of surface heat flux, horizontal and vertical ocean processes. The first dominant mode of mixed layer temperature inter-annual variability in the SSCS shows significant correlation (0.34) with the El Nino phenomenon in the Pacific Ocean and is best correlated (0.67) with a lag of 5 months.  相似文献   

18.
Under global warming, the predicted intensification of the global freshwater cycle will modify the net freshwater flux at the ocean surface. Since the freshwater flux maintains ocean salinity structures, changes to the density-driven ocean circulation are likely. A modified ocean circulation could further alter the climate, potentially allowing rapid changes, as seen in the past. The relevant feedback mechanisms and timescales are poorly understood in detail, however, especially at low latitudes where the effects of salinity are relatively subtle. In an attempt to resolve some of these outstanding issues, we present an investigation of the climate response of the low-latitude Pacific region to changes in freshwater forcing. Initiated from the present-day thermohaline structure, a control run of a coupled ocean–atmosphere general circulation model is compared with a perturbation run in which the net freshwater flux is prescribed to be zero over the ocean. Such an extreme experiment helps to elucidate the general adjustment mechanisms and their timescales. The atmospheric greenhouse gas concentrations are held constant, and we restrict our attention to the adjustment of the upper 1,000 m of the Pacific Ocean between 40°N and 40°S, over 100 years. In the perturbation run, changes to the surface buoyancy, near-surface vertical mixing and mixed-layer depth are established within 1 year. Subsequently, relative to the control run, the surface of the low-latitude Pacific Ocean in the perturbation run warms by an average of 0.6°C, and the interior cools by up to 1.1°C, after a few decades. This vertical re-arrangement of the ocean heat content is shown to be achieved by a gradual shutdown of the heat flux due to isopycnal (i.e. along surfaces of constant density) mixing, the vertical component of which is downwards at low latitudes. This heat transfer depends crucially upon the existence of density-compensating temperature and salinity gradients on isopycnal surfaces. The timescale of the thermal changes in the perturbation run is therefore set by the timescale for the decay of isopycnal salinity gradients in response to the eliminated freshwater forcing, which we demonstrate to be around 10–20 years. Such isopycnal heat flux changes may play a role in the response of the low-latitude climate to a future accelerated freshwater cycle. Specifically, the mechanism appears to represent a weak negative sea surface temperature feedback, which we speculate might partially shield from view the anthropogenically-forced global warming signal at low latitudes. Furthermore, since the surface freshwater flux is shown to play a role in determining the ocean’s thermal structure, it follows that evaporation and/or precipitation biases in general circulation models are likely to cause sea surface temperature biases.  相似文献   

19.
A hindcast experiment of the Mediterranean present-day climate is performed using a fully-coupled Atmosphere–Ocean Regional Climate Model (AORCM) for the Mediterranean basin. The new model, called LMDz-NEMO-Med, is composed of LMDz4-regional as atmospheric component and of NEMOMED8 as oceanic component. This AORCM equilibrates freely, without any flux adjustment, neither in fresh water nor in heat. At its atmospheric lateral boundary conditions, it is driven by ERA-40 data from 1958 to 2001, after a spin-up of 40 years in coupled configuration. The model performance is assessed and compared with available observational datasets. The model skill in reproducing mean state and inter-annual variability of main atmospheric and oceanic surface fields is in line with that of state-of-the-art AORCMs. Considering the ocean behaviour, the inter-annual variations of the basin-scale heat content are in very good agreement with the observations. The model results concerning salt content could not be adequately validated. High inter-annual variability of deep convection in the Gulf of Lion is simulated, with 53 % of convective winters, representative of the present climate state. The role of different factors influencing the deep convection and its inter-annual variability is examined, including dynamic and hydrostatic ocean preconditioning and atmospheric surface forcing. A conceptual framework is outlined and validated in linking the occurrence of deep convection to the efficiency of the integrated surface buoyancy fluxes along the winter season to mix the initially stratified averaged water column down to the convective threshold depth. This simple framework (based only on 2 independent variables) is able to explain 60 % (resp. 69 %) of inter-annual variability of the deep water formation rate (resp. maximum mixed layer depth) for the West Mediterranean Deep Water (WMDW) formation process.  相似文献   

20.
Three experiments for the simulation of typhoon Sinlaku (2002) over the western North Pacific are performed in this study by using the Canadian Mesoscale Compressible Community (MC2) atmospheric model. The objective of these simulations is to investigate the air-sea interaction during extreme weather conditions, and to determine the sensitivity of the typhoon evolution to the sea surface temperature (SST)cooling induced by the typhoon. It is shown from the three experiments that the surface heat fluxes have a substantial influence on the slow-moving cyclone over its lifetime. When the SST in the East China coastal ocean becomes 1℃ cooler in the simulation, less latent heat and sensible heat fluxes from the underlying ocean to the cyclone tend to reduce the typhoon intensity. The cyclone is weakened by 7 hPa at the time of its peak intensity. The SST cooling also has impacts on the vertical structure of the typhoon by weakening the warm core and drying the eye wall. With a finer horizontal resolution of (1/6)°×(1/6)°, the model produces higher surface wind, and therefore more surface heat fluxes are emitted from the ocean surface to the cyclone, in the finer-resolution MC2 grid compared with the relatively lower resolution of 0.25°×0.25°MC2 grid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号