首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper introduces the Tolerable Windows Approach (TWA) asa decision analytical framework for addressing global climatechange. It is implemented as an integrated assessment model (IAM)developed in the project on Integrated Assessment of ClimateProtection Strategies (ICLIPS). The background and the main objectivesof the project are described and its relationships to other currentintegrated assessment efforts are elucidated. Key features ofthe TWA are compared with those of cost-benefit and cost-effectivenessframeworks. An overview of the ICLIPS IAM framework is providedtogether with its methodological foundations. Main features ofthe individual models are presented, covering the climate, theaggregated economic, and the impact models. Additional componentsof the framework include dynamic mitigation cost functions andan agriculture/land-use model (both incorporated into the fullyintegrated ICLIPS climate-economy model) as well as a globalmulti-region, multi-sector, dynamic general equilibrium model.  相似文献   

2.
We use a georeferenced model of ecosystem carbon dynamics to explore the sensitivity of global terrestrial carbon storage to changes in atmospheric CO2 and climate. We model changes in ecosystem carbon density, but we do not model shifts in vegetation type. A model of annual NPP is coupled with a model of carbon allocation in vegetation and a model of decomposition and soil carbon dynamics. NPP is a function of climate and atmospheric CO2 concentration. The CO2 response is derived from a biochemical model of photosynthesis. With no change in climate, a doubling of atmospheric CO2 from 280 ppm to 560 ppm enhances equilibrium global NPP by 16.9%; equilibrium global terrestrial ecosystem carbon (TEC) increases by 14.9%. Simulations with no change in atmospheric CO2 concentration but changes in climate from five atmospheric general circulation models yield increases in global NPP of 10.0–14.8%. The changes in NPP are very nearly balanced by changes in decomposition, and the resulting changes in TEC range from an increase of 1.1% to a decrease of 1.1%. These results are similar to those from analyses using bioclimatic biome models that simulate shifts in ecosystem distribution but do not model changes in carbon density within vegetation types. With changes in both climate and a doubling of atmospheric CO2, our model generates increases in NPP of 30.2–36.5%. The increases in NPP and litter inputs to the soil more than compensate for any climate stimulation of decomposition and lead to increases in global TEC of 15.4–18.2%.  相似文献   

3.
In integrated assessments of climate change, greenhouse-gasemissions and climate change impacts provide the linkages betweenthe world economy and the climate system. Key climatic processesoperate at the scales of centuries. This requires highlyaggregated models for portraying the dynamics of the economicsystem. An extended Ramsey-type optimal growth model is presentedas the appropriate tool to be integrated with a reduced-formclimate model in the ICLIPS integrated assessment. Theeleven-region model of the world economy involves exogenouspopulation and endogenous investment dynamics with productivityprogress based on a technological diffusion model. World regionsare linked via intertemporal trade flows of the compositeconsumption/investment good, capital mobility, and emission permittrading. Coupled with the ICLIPS Climate Model, the AggregatedEconomic Model can determine corridors of permitted long-termcarbon emission paths or, as primarily discussed in this paper,specific cost-effective emission trajectories. The sensitivity ofmitigation costs to externally specified climate change/impactconstraints and to assumptions about non-CO2 greenhouse-gasemissions is also discussed.  相似文献   

4.
A critical issue for policymakers in defining mitigationstrategies for climate change is the availability ofappropriate evaluation tools. The development of climate impactresponse functions (CIRFs) is our reaction to this challenge.CIRFs depict the response of selected climate-sensitive impactsectors across a wide range of plausible futures. They consist ofa limited number of climate-change-related dimensions andsensitivities of sector-specific impact models. The concept ofCIRFs is defined and the procedure to develop them is presented.The use of climate change scenarios derived from various GCMexperiments and the adopted impact assessment models areexplained.The CIRFs presented here consider climate change impacts onnatural vegetation, crop production, and water availability. Theyare part of the ICLIPS integrated assessment framework based onthe tolerable windows approach. CIRFs can be applied both in`forward' and in `inverse' mode. In the latter, they help totranslate thresholds for climate impacts perceived by stakeholders(so-called impact guardrails) into constraints for climatevariables (so-called climate windows). This enables the results ofdetailed impact models to be incorporated into intertemporallyoptimizing integrated assessment models, such as the ICLIPS model.  相似文献   

5.
Individual countries are requested to submit nationally determined contributions (NDCs) to alleviate global warming in the Paris Agreement. However, the global climate effects and regional contributions are not explicitly considered in the countries’ decision-making process. In this study, we evaluate the global temperature slowdown of the NDC scenario (?T = 0.6°C) and attribute the global temperature slowdown to certain regions of the world with a compact earth system model. Considering reductions in CO2, CH4, N2O, BC, and SO2, the R5OECD (the Organization for Economic Co-operation and Development in 1990) and R5ASIA (Asian countries) are the top two contributors to global warming mitigation, accounting for 39.3% and 36.8%, respectively. R5LAM (Latin America and the Caribbean) and R5MAF (the Middle East and Africa) followed behind, with contributions of 11.5% and 8.9%, respectively. The remaining 3.5% is attributed to R5REF (the Reforming Economies). Carbon Dioxide emission reduction is the decisive factor of regional contributions, but not the only one. Other greenhouse gases are also important, especially for R5MAF. The contribution of short-lived aerosols is small but significant, notably SO2 reduction in R5ASIA. We argue that additional species beyond CO2 need to be considered, including short-lived pollutants, when planning a route to mitigate climate change. It needs to be emphasized that there is still a gap to achieve the Paris Agreement 2-degree target with current NDC efforts, let alone the ambitious 1.5-degree target. All countries need to pursue stricter reduction policies for a more sustainable world.  相似文献   

6.
7.
Jian Ni 《Climatic change》2002,55(1-2):61-75
The BIOME3 model was used to simulate the distribution patterns and carbon storage of the horizontal, zonal boreal forests in northeast and northwest China using a mapping system for vegetation patterns combined with carbon density estimates from vegetation and soils. The BIOME3 prediction is in reasonable good agreement with the potential distribution of Chinese boreal forests. The effects of changing atmospheric CO2 concentration had a nonlinear effect on boreal forest distribution, with 3.5–10.8% reduced areas for both increasing and decreasing CO2. In contrast, the increased climate together with and without changing CO2 concentration showed dramatic changes in geographic patterns, with 70% reduction in area and disappearance of almost boreal forests in northeast China. The baseline carbon storage in boreal forests of China is 4.60 PgC (median estimate) based on the vegetation area of actual boreal forest distribution. If taking the large area of agricultural crops into account, the median value of potential carbon storage is 6.92 PgC. The increasing (340–500 ppmv) and decreasing CO2 concentration (340–200 ppmv) led to decrease of carbon storage, 0.33 PgC and 1.01 PgC respectively compared to BIOME3 potential prediction under present climate and CO2 conditions. Both climate change alone and climate change with CO2 enrichment (340–500 ppmv) reduced largely the carbon stored in vegetation and soils by ca. 6.5 PgC. The effect of climate change is more significant than the direct physiological effect of CO2 concentration on the boreal forests of China, showing a large reduction in both distribution area and carbon storage.  相似文献   

8.
Climate change mitigation via a reduction in the anthropogenic emissions of carbon dioxide (CO2) is the principle requirement for reducing global warming, its impacts, and the degree of adaptation required. We present a simple conceptual model of anthropogenic CO2 emissions to highlight the trade off between delay in commencing mitigation, and the strength of mitigation then required to meet specific atmospheric CO2 stabilization targets. We calculate the effects of alternative emission profiles on atmospheric CO2 and global temperature change over a millennial timescale using a simple coupled carbon cycle-climate model. For example, if it takes 50 years to transform the energy sector and the maximum rate at which emissions can be reduced is ?2.5% $\text{year}^{-1}$ , delaying action until 2020 would lead to stabilization at 540 ppm. A further 20 year delay would result in a stabilization level of 730 ppm, and a delay until 2060 would mean stabilising at over 1,000 ppm. If stabilization targets are met through delayed action, combined with strong rates of mitigation, the emissions profiles result in transient peaks of atmospheric CO2 (and potentially temperature) that exceed the stabilization targets. Stabilization at 450 ppm requires maximum mitigation rates of ?3% to ?5% $\text{year}^{-1}$ , and when delay exceeds 2020, transient peaks in excess of 550 ppm occur. Consequently tipping points for certain Earth system components may be transgressed. Avoiding dangerous climate change is more easily achievable if global mitigation action commences as soon as possible. Starting mitigation earlier is also more effective than acting more aggressively once mitigation has begun.  相似文献   

9.
A combination of linear response models is used to estimate the transient changes in the global means of carbon dioxide (CO2) concentration, surface temperature, and sea level due to aviation. Apart from CO2, the forcing caused by ozone (O3) changes due to nitrogen oxide (NOx) emissions from aircraft is also considered. The model is applied to aviation using several CO2 emissions scenarios, based on reported fuel consumption in the past and scenarios for the future, and corresponding NOx emissions. Aviation CO2 emissions from the past until 1995 enlarged the atmospheric CO2 concentration by 1.4 ppmv (1.7% of the anthropogenic CO2 increase since 1800). By 1995, the global mean surface temperature had increased by about 0.004 K, and the sea level had risen by 0.045 cm. In one scenario (Fa1), which assumes a threefold increase in aviation fuel consumption until 2050 and an annual increase rate of 1% thereafter until 2100, the model predicts a CO2 concentration change of 13 ppmv by 2100, causing temperature increases of 0.01, 0.025, 0.05 K and sea level increases of 0.1, 0.3, and 0.5 cm in the years 2015, 2050, and 2100, respectively. For other recently published scenarios, the results range from 5 to 17 ppmv for CO2 concentration increase in the year 2050, and 0.02 to 0.05 K for temperature increase. Under the assumption that present-day aircraft-induced O3 changes cause an equilibrium surface warming of 0.05 K, the transient responses amount to 0.03 K in surface temperature for scenario Fa1 in 1995. The radiative forcing due to an aircraft-induced O3 increase causes a larger temperature change than aircraft CO2 forcing. Also, climate reacts more promptly to changes in O3 than to changes in CO2 emissions from aviation. Finally, even under the assumption of a rather small equilibrium temperature change from aircraft-induced O3 (0.01 K for the 1992 NOx emissions), a proposed new combustor technology which reduces specific NOx emissions will cause a smaller temperature change during the next century than the standard technology does, despite a slightly enhanced fuel consumption. Regional effects are not considered here, but may be larger than the global mean responses.  相似文献   

10.
Anthropogenic climate change will continue long after anthropogenic CO2 emissions cease. Atmospheric CO2, global warming and ocean circulation will approach equilibrium on the millennial timescale, whereas thermal expansion of the ocean, ice sheet melt and their contributions to sea level rise are unlikely to be complete. Atmospheric CO2 in year 3000 depends non-linearly on the total amount of CO2 emitted and is very likely to exceed the present level of ∼380 ppmv. CO2 is doubled for ∼2500 GtC emitted, quadrupled if all ∼5000 GtC of conventional fossil fuel resources are emitted, and increases by a factor of ∼32 if a further 20,000 GtC of exotic fossil fuel resources are emitted. Global warming in year 3000 will also depend on climate sensitivity to doubling CO2, which is most probably ∼3 C but highly uncertain. Thermal expansion will contribute 0.5–2 m to millennial sea level rise for each doubling of CO2. The Greenland ice sheet could melt completely within the millennium under > 8×CO2, adding a further ∼7 m to sea level. The rate of melt depends on the magnitude of forcing above a regional warming threshold of 1–3 C. The West Antarctic ice sheet could be threatened by 4–10 C local warming, and its potential contribution to millennial sea level rise exceeds current maximum estimates of ∼1 m. The fate of the ocean thermohaline circulation may depend on the rate as well as the magnitude of forcing.  相似文献   

11.
Research on climate change and agriculture has largely focused on production, food prices, and producer incomes. However, societal interest in agriculture is much broader than these issues. The objective of this paper is to analyze the potential impacts of climate change on an important negative externality from agriculture, water quality. We construct a simulation model of maize production in twelve watersheds within the U.S. Chesapeake Bay Region that has economic and watershed components linking climate to productivity, production decisions by maize farmers, and nitrogen loadings delivered to the Chesapeake Bay. Maize is an important crop to study because of its importance to the region's agriculture and because it is a major source of nutrient pollution. The model is run under alternative scenarios regarding the future climate, future baseline (without any climate change), whether farmers respond to climate change, whether there are carbon dioxide (CO2) enrichment effects on maize production, and whether agricultural prices facing the region change due to climate change impacts on global agricultural commodity markets. The simulation results differ from one scenario to another on the magnitude and direction of change in nitrogen deliveries to the Chesapeake Bay. The results are highly sensitive to the choice of future baseline scenario and to whether there are CO2 enrichment effects. The results are also highly sensitive to assumptions about the impact of climate change on commodity prices facing farmers in the Chesapeake Bay region. The results indicate that economic responses by farmers to climate change definitely matter. Assuming that farmers do not respond to changes in temperature, precipitation, and atmosphericCO2 levels could lead to mistaken conclusions about the magnitude and direction of environmental impacts.  相似文献   

12.
We assert that the simulation of fine-scale crop growth processes and agronomic adaptive management using coarse-scale climate change scenarios lower confidence in regional estimates of agronomic adaptive potential. Specifically, we ask: 1) are simulated yield responses tolow-resolution climate change, after adaptation (without and with increased atmospheric CO2), significantly different from simulated yield responses tohigh-resolution climate change, after adaptation (without and with increased atmospheric CO2)? and 2) does the scale of the soils information, in addition to the scale of the climate change information, affect yields after adaptation? Equilibrium (1 × CO2 versus 2 × CO2)climate changes are simulated at two different spatial resolutions in the Great Plains using the CSIRO general circulation model (low resolution) and the National Center for Atmospheric Research (NCAR) RegCM2 regional climate model (high resolution). The EPIC crop model is used to simulate the effects of these climate changes; adaptations in EPIC include earlier planting and switch to longer-season cultivars. Adapted yields (without and with additional carbon dioxide) are compared at the different spatial resolutions. Our findings with respect to question 1 suggest adaptation is more effective in most cases when simulated with a higher resolution climate change than its more generalized low resolution equivalent. We are not persuaded that the use of high resolution climate change information provides insights into the direct effects of higher atmospheric CO2 levels on crops beyond what can be obtained with low resolution information. However, this last finding may be partly an artifact of the agriculturally benign CSIRO and RegCM2 climate changes. With respect to question 2, we found that high resolution details of soil characteristics are particularly important to include in adaptation simulations in regions typified by soils with poor water holding capacity.  相似文献   

13.
A terrestrial ecosystem model (Sim-CYCLE) was driven by multiple climate projections to investigate uncertainties in predicting the interactions between global environmental change and the terrestrial carbon cycle. Sim-CYCLE has a spatial resolution of 0.5°, and mechanistically evaluates photosynthetic and respiratory CO2 exchange. Six scenarios for atmospheric-CO2 concentrations in the twenty-first century, proposed by the Intergovernmental Panel on Climate Change, were considered. For each scenario, climate projections by a coupled atmosphere–ocean general circulation model (AOGCM) were used to assess the uncertainty due to socio-economic predictions. Under a single CO2 scenario, climate projections with seven AOGCMs were used to investigate the uncertainty stemming from uncertainty in the climate simulations. Increases in global photosynthesis and carbon storage differed considerably among scenarios, ranging from 23 to 37% and from 24 to 81 Pg C, respectively. Among the AOGCM projections, increases ranged from 26 to 33% and from 48 to 289 Pg C, respectively. There were regional heterogeneities in both climatic change and carbon budget response, and different carbon-cycle components often responded differently to a given environmental change. Photosynthetic CO2 fixation was more sensitive to atmospheric CO2, whereas soil carbon storage was more sensitive to temperature. Consequently, uncertainties in the CO2 scenarios and climatic projections may create additional uncertainties in projecting atmospheric-CO2 concentrations and climates through the interactive feedbacks between the atmosphere and the terrestrial ecosystem.  相似文献   

14.
By using a climate system model of intermediate complexity, we have simulated long-term natural climate changes occurring over the last 9000 years. The paleo-simulations in which the model is driven by orbital forcing only, i.e., by changes in insolation caused by changes in the Earth's orbit, are compared with sensitivity simulations in which various scenarios of increasing atmospheric CO2 concentration are prescribed. Focussing on climate and vegetation change in northern Africa, we recapture the strong greening of the Sahara in the early and mid-Holocene (some 9000–6000 years ago), and we show that some expansion of grasslandinto the Sahara is theoretically possible, if the atmospheric CO2 concentration increases well above pre-industrial values and if vegetation growth is not disturbed. Depending on the rate of CO2 increase, vegetation migration into the Sahara can be rapid, up to 1/10th of the Saharan area per decade, but could not exceed a coverage of 45%. In ourmodel, vegetation expansion into today's Sahara is triggered by an increase in summer precipitation which is amplified by a positive feedback between vegetation and precipitation. This is valid for simulations with orbital forcing and greenhouse-gas forcing. However, we argue that the mid-Holocene climate optimum some 9000 to 6000 years ago with its marked reduction of deserts in northern Africa is not a direct analogue for future greenhouse-gas induced climate change, as previously hypothesized. Not only does the global pattern of climate change differ between the mid-Holocene model experiments and the greenhouse-gas sensitivity experiments, but the relative role of mechanisms which lead to a reduction of the Sahara also changes. Moreover, the amplitude of simulated vegetation cover changes in northern Africa is less than is estimated for mid-Holocene climate.  相似文献   

15.
A version of the National Center for Atmospheric Research community climate model — a global, spectral (R15) general circulation model — is coupled to a coarse-grid (5° latitude-] longitude, four-layer) ocean general circulation model to study the response of the climate system to increases of atmospheric carbon dioxide (CO2). Three simulations are run: one with an instantaneous doubling of atmospheric CO2 (from 330 to 660 ppm), another with the CO2 concentration starting at 330 ppm and increasing linearly at a rate of 1% per year, and a third with CO2 held constant at 330 pm. Results at the end of 30 years of simulation indicate a globally averaged surface air temperature increase of 1.6° C for the instantaneous doubling case and 0.7°C for the transient forcing case. Inherent characteristics of the coarse-grid ocean model flow sea-surface temperatures (SSTs) in the tropics and higher-than-observed SSTs and reduced sea-ice extent at higher latitudes] produce lower sensitivity in this model after 30 years than in earlier simulations with the same atmosphere coupled to a 50-m, slab-ocean mixed layer. Within the limitations of the simulated meridional overturning, the thermohaline circulation weakens in the coupled model with doubled CO2 as the high-latitude ocean-surface layer warms and freshens and westerly wind stress is decreased. In the transient forcing case with slowly increasing CO2 (30% increase after 30 years), the zonal mean warming of the ocean is most evident in the surface layer near 30°–50° S. Geographical plots of surface air temperature change in the transient case show patterns of regional climate anomalies that differ from those in the instantaneous CO2 doubling case, particularly in the North Atlantic and northern European regions. This suggests that differences in CO2 forcing in the climate system are important in CO2 response in regard to time-dependent climate anomaly regimes. This confirms earlier studies with simple climate models that instantaneous CO2 doubling simulations may not be analogous in all respects to simulations with slowly increasing CO2.A portion of this study is supported by the US Department of Energy as part of its Carbon Dioxide Research Program  相似文献   

16.
Transportation contributes to a significant and rising share of global energy use and GHG emissions. Therefore modeling future travel demand, its fuel use, and resulting CO2 emission is highly relevant for climate change mitigation. In this study we compare the baseline projections for global service demand (passenger-kilometers, ton-kilometers), fuel use, and CO2 emissions of five different global transport models using harmonized input assumptions on income and population. For four models we also evaluate the impact of a carbon tax. All models project a steep increase in service demand over the century. Technology change is important for limiting energy consumption and CO2 emissions, the study also shows that in order to stabilise or even decrease emissions radical changes would be required. While all models project liquid fossil fuels dominating up to 2050, they differ regarding the use of alternative fuels (natural gas, hydrogen, biofuels, and electricity), because of different fuel price projections. The carbon tax of 200 USD/tCO2 in 2050 stabilizes or reverses global emission growth in all models. Besides common findings many differences in the model assumptions and projections indicate room for further understanding long-term trends and uncertainty in future transport systems.  相似文献   

17.
 Impulse-response-function (IRF) models are designed for applications requiring a large number of climate change simulations, such as multi-scenario climate impact studies or cost-benefit integrated-assessment studies. The models apply linear response theory to reproduce the characteristics of the climate response to external forcing computed with sophisticated state-of-the-art climate models like general circulation models of the physical ocean-atmosphere system and three-dimensional oceanic-plus-terrestrial carbon cycle models. Although highly computer efficient, IRF models are nonetheless capable of reproducing the full set of climate-change information generated by the complex models against which they are calibrated. While limited in principle to the linear response regime (less than about 3 C global-mean temperature change), the applicability of the IRF model presented has been extended into the nonlinear domain through explicit treatment of the climate system's dominant nonlinearities: CO2 chemistry in ocean water, CO2 fertilization of land biota, and sublinear radiative forcing. The resultant nonlinear impulse-response model of the coupled carbon cycle-climate system (NICCS) computes the temporal evolution of spatial patterns of climate change for four climate variables of particular relevance for climate impact studies: near-surface temperature, cloud cover, precipitation, and sea level. The space-time response characteristics of the model are derived from an EOF analysis of a transient 850-year greenhouse warming simulation with the Hamburg atmosphere-ocean general circulation model ECHAM3-LSG and a similar response experiment with the Hamburg carbon cycle model HAMOCC. The model is applied to two long-term CO2 emission scenarios, demonstrating that the use of all currently estimated fossil fuel resources would carry the Earth's climate far beyond the range of climate change for which reliable quantitative predictions are possible today, and that even a freezing of emissions to present-day levels would cause a major global warming in the long term. Received: 28 January 2000 / Accepted: 9 March 2001  相似文献   

18.
Solar Radiation Management (SRM) has two characteristics that make it useful for managing climate risk: it is quick and it is cheap. SRM cannot, however, perfectly offset CO2-driven climate change, and its use introduces novel climate and environmental risks. We introduce SRM in a simple economic model of climate change that is designed to explore the interaction between uncertainty in the climate’s response to CO2 and the risks of SRM in the face of carbon-cycle inertia. The fact that SRM can be implemented quickly, reducing the effects of inertia, makes it a valuable tool to manage climate risks even if it is relatively ineffective at compensating for CO2-driven climate change or if its costs are large compared to traditional abatement strategies. Uncertainty about SRM is high, and decision makers must decide whether or not to commit to research that might reduce this uncertainty. We find that even modest reductions in uncertainty about the side-effects of SRM can reduce the overall costs of climate change in the order of 10%.  相似文献   

19.
The crop model CERES-Barley was used to assess the impacts of increased concentration of atmospheric CO2 on growth and development of the most important spring cereal in Central and Western Europe, i.e., spring barley, and to examine possible adaptation strategies. Three experimental regions were selected to compare the climate change impacts in various climatic and pedological conditions. The analysis was based on multi-year crop model simulations run with daily weather series obtained by stochastic weather generator and included two yield levels: stressed yields and potential yields. Four climate change scenarios based on global climate models and representing 2 × CO2 climate were applied. Results: (i) The crop model is suitable for use in the given environment, e.g., the coefficient of determination between the simulated and experimental yields equals 0.88. (ii) The indirect effect related to changed weather conditions is mostly negative. Its magnitude ranges from ?19% to +5% for the four scenarios applied at the three regions. (iii) The magnitude of the direct effect of doubled CO2 on the stressed yields for the three test sites is 35–55% in the present climate and 25–65% in the 2 × CO2 climates. (iv) The stressed yields would increase in 2 × CO2 conditions by 13–52% when both direct and indirect effects were considered. (v) The impacts of doubled CO2 on potential yields are more uniform throughout the localities in comparison with the stressed yields. The magnitude of the indirect and direct effects ranges from ?1 to ?9% and from +31 to +33%, respectively. Superposition of both effects results in 19–30% increase of the potential yields. (vi) Application of the earlier planting date (up to 60 days) would result in 15–22% increase of the yields in 2 × CO2 conditions. (vii) Use of a cultivar with longer vegetation duration would bring 1.5% yield increase per one extra day of the vegetation season. (viii) The initial water content in the soil water profile proved to be one of the key elements determining the spring barley yield. It causes the yields to increase by 54–101 kg.ha?1 per 1% increase of the available soil water content on the sowing day.  相似文献   

20.
李伊吟  智海  林鹏飞  刘海龙  于溢 《大气科学》2018,42(6):1263-1272
海洋在气候变暖过程中的重要性通常用海洋热吸收来衡量,热吸收的大小影响全球变暖的幅度。本文利用FGOALS-g2、FGOALS-s2(以下分别缩写为g2、s2)两个耦合模式的CO2浓度以每年1%速率增长(1pctCO2)试验,评估和分析海洋热吸收与气候敏感度的关系。结果表明:进入海洋净热通量(s2模式大于g2模式)会使得s2模式的海洋热吸收总体比g2模式大;更为重要的是,由于s2模式中的海洋热吸收主要集中在上层,使得耦合模式s2中的瞬态气候响应(TCR,或称气候敏感度)比g2大。当CO2浓度加倍时,在两个耦合模式中,海洋热吸收的空间分布呈现显著性的差异,s2模式中上层热吸收明显比深层大,上层热吸收主要位于太平洋和印度洋,而g2模式中上层和深层热吸收差别较小,深层主要位于大西洋和北冰洋。进一步研究表明,海洋热吸收分布特征与两个耦合模式海洋环流变化有关。在g2模式中北大西洋经圈翻转环流(AMOC)强度强且深度大,在CO2浓度加倍时,AMOC减弱小,这样AMOC可将热量带到海洋的深层,增加海洋深层热吸收。而在s2模式中,平均AMOC弱且浅,在CO2浓度加倍时,AMOC减弱明显,热量不易到达深层,主要集中在海洋上层,对气候敏感度影响更快且更强。海洋环流导致热吸收及其空间差异同时影响到气候敏感度的差异。因此,探讨海洋热吸收与气候敏感度之间的关系,利于明确气候敏感度不确定性的来源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号