首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Measurements taken between July 2006 to May 2007 at the Maqu station in the Upper Yellow River area were used to study the surface radiation budget and soil water and heat content in this area. These data revealed distinct seasonal variations in downward shortwave radiation, downward longwave radiation, upward longwave radiation and net radiation, with larger values in the summer than in winter because of solar altitudinal angle. The upward shortwave radiation factor is not obvious because of albedo (or snow). Surface albedo in the summer was lower than in the winter and was directly associated with soil moisture and solar altitudinal angle. The annual averaged albedo was 0.26. Soil heat flux, soil temperature and soil water content changed substantially with time and depth. The soil temperature gradient was positive from August to February and was related to the surface net radiation and the heat condition of the soil itself. There was a negative correlation between soil temperature gradient and net radiation, and the correlation coefficient achieved a significance level of 0.01. Because of frozen state of the soil, the maximum soil thermal conductivity value was 1.21 W m−1°C−1 in January 2007. In May 2007, soil thermal conductivity was 0.23 W m−1°C−1, which is the lowest value measured in the study, likely due to the fact that the soil was drier then than in other months. The soil thermal conductivity values for the four seasons were 0.27, 0.38, 0.55 and 0.83 W m−1°C−1, respectively.  相似文献   

2.
Hydrothermal processes and the regimes of frozen soil formed in alpine regions with glaciers and lake area are complex and important for ecological environment but have not been studied in Tibet. Based on soil temperature and moisture data from October 2005 to September 2006 collected in the Nam Co lake basin, Tibetan Plateau (TP), those questions were discussed. The mean annual air temperature was −3.4°C with 8 months below 0°C. Air and soil temperature varied between −25.3~13.1°C and −10.3~8.8°C, respectively. Soil moisture variations in the active layer were small with the minimum value of 1.4%, but were influenced greatly by snowmelt, rainfall and evaporation, varying up to 53.8%. The active layer froze later, thawed earlier and was thinner, however, the lower altitude limit of permafrost is higher than that in most areas of TP. The effects of soil moisture (unfrozen water content) on soil temperature, which were estimated through proposed models, were more significant near ground surface than the other layers. The surface soil temperature decreased with snowcover, the effect of cold snow meltwater infiltration on soil thermal conditions was negligible, however, the effect of rainfall infiltration was evident causing thermal disruptions.  相似文献   

3.
The process of evaporation from the lake surface is one of the main mechanisms in the energy and water budgets of the lake hydrologic cycle, and an essential component of the water balance especially for inland lakes. In this study, using routine meteorological data as input, a one-layer potential evaporation model was employed to simulate evaporation and energy fluxes over Lake Yamdrok Yumco, the largest high-elevation inland lake in the mountain area of the Tibet-Himalaya in China. Then, the calculation results were compared with the measured values from a big pan evaporator of 20 m2 near the lake. The results show that the average annual input radiation flux R is 128.2 W m−2, the lake storage heat flux G is 19.4 W m−2, the sensible heat flux H is 20.4 W m−2 and the latent heat flux lE is 107.8 W m−2. The R and G exhibit similar seasonal variations. The lE reaches a maximum in October, lagging nearly 4 months behind the R and the G, which indicates the large heat capacity of the lake. The simulated annual evaporation ranges from 1,113.2 to 1,429.1 mm and its mean value is 1,252.5 mm during 1961–2005. The simulated annual evaporation is in good agreement with the measured value, and the measured average lake temperature is as expected when compared with the measured lake surface temperature.  相似文献   

4.
We investigated the independent and interactive effects of nutrient loading and summer water temperature on phytoplankton, drift macroalgae, and eelgrass (Zostera marina) in a coastal lagoon mesocosm experiment conducted from May through August 1999. Temperature treatments consisted of controls that approximated the 9-yr mean daily temperatures for Ninigret and Point Judith Lagoons in Rhode Island (United States) and treatments approximately 4°C above and 4°C below the controls. Nutrient treatments consisted of the addition of 6 mmol N m−2d−1 and 0.5 mmol P m−2 d−1 to mesocosms 4°C above and 4°C below the 9-yr daily mean. Nutrient enrichment produced marked phytoplankton blooms in both cool and warm treatments during early summer. These were replaced after midsummer by dramatic growths of macroalgal mats ofEnteromorpha flexuosa and, to a lesser degree,Cladophora sericea. No phytoplankton blooms were observed in the cool unenriched treatments, but blooms did develop in the mean temperature and warm mesocosms during the second half of the summer that were similar in intensity, though of shorter duration, than those observed earlier in the enriched systems. Macroalgal blooms did not occur in the unenriched mesocosms. Sustained warm water temperatures markedly decreased eelgrass density and belowground production and increased the time interval between the initiation of new leaves, particuarly when the biomass of macroalgae was high. The negative effect of elevated water temperature on eelgrass was significantly increased under conditions of elevated inorganic nutrient input. By the end of summer, virtually all of the measures of eelgrass health declined in rank order from cool, to mean, to cool enriched, to warm, to warm enriched treatments. It is likely that the marked declines in eelgrass abundance observed during recent decades in the Northeast have resulted from an interaction of increasing nutrient enrichment combined with increasing summer water temperatures.  相似文献   

5.
Surface tension (σ) profoundly influences the ability of gas bubbles to nucleate in silicate melts. To determine how temperature impacts σ, experiments were carried out in which high-silica rhyolite melts with 5 wt% dissolved water were decompressed at temperatures that ranged from 775 to 1,085°C. Decompressions were also carried out using dacite melts with 4.3 wt% dissolved water at 1,150°C. Water bubbles nucleated in rhyolite only when decompressions exceeded 95 MPa at all temperatures. Bubbles nucleated in number densities that increased as decompression increased and at hotter temperatures at a given amount of decompression. After correcting decompression amounts for temperature differences, values for σ were estimated from nucleation rates and found to vary between 0.081 and 0.093 N m−1. Surface tension decreases as temperature increases from 775 to 875°C, but then increases as temperature increases to 1,085°C. Those values overlap previous results, but only when melt viscosity is less than 104 Pa s. For low-viscosity rhyolite, there is a strong correlation of σ with temperature, in which σ increases by 6.9 × 10−5 N m−1 C−1. That variation is robust for 5–9 wt% dissolved water, as long as melt viscosity is ≤104 Pa s. More viscous rhyolite deviates from that correlation probably because nucleation is retarded in stiffer melts. Bubbles nucleated in dacite when decompressions exceeded 87 MPa, and occured in one or more events as decompression increased. Surface tension is estimated to be 0.083 (±0.001) N m−1 and when adjusted for temperature agrees well with previous results for colder and wetter dacite melts. At a given water content, dacite melts have lower surface tensions than rhyolite melts, when corrected to a fixed temperature.  相似文献   

6.
Heat flow has been determined by combining temperature measurements in 7 boreholes with thermal conductivity measurements in the Upper Vindhyan sedimentary rocks of Shivpuri area, central India. The boreholes are distributed at 5 sites within an area of 15 × 10 km2; their depths range from 174 to 268 m. Geothermal gradients estimated from borehole temperature profiles vary from 8.0–12.7 mK m−1 in the sandstone-rich formations to 25.5–27.5 mK m−1 in the shale-rich formations, consistent with the contrast in thermal conductivities of the two rock types. Heat flow in the area ranges between 45 and 61 mW m−2, with a mean of 52±6 mW m−2. The heat flow values are similar to the >50 mW m−2 heat flow observed in other parts of the northern Indian shield. The heat flow determinations represent the steady-state heat flow because, the thermal transients associated with the initial rifting, convergence and sedimentation in the basin as well as the more recent Deccan volcanism that affected the region to the south of the basin would have decayed, and therefore, the heat flow is in equilibrium with the radiogenic heat production of the crust and the heat flow from the mantle. The present study reports the heat flow measurements from the western part of the Vindhyan basin and provides heat flow information for the Bundhelkhand craton for the first time. Radioelement (Th, U and K) abundances have been measured both in the sedimentary rocks exposed in the area as well as in the underlying basement granite-gneiss of Bundelkhand massif exposed in the adjacent area. Radioactive heat production, estimated from those abundances, indicate mean values of 0.3 μW m−3 for sandstone with inter-bands of shale and siltstone, 0.25 μW m−3 for sandstone with inter-bands siltstone, 0.6 μW m−3 for quartzose sandstone, and 2.7 μW m−3 for the basement granitoids. With a total sedimentary thickness not exceeding a few hundred metres in the area, the heat production of the sedimentary cover would be insignificant. The radioactive heat contribution from the basement granitoids in the upper crust is expected to be large, and together with the heat flow component from the mantle, would control the crustal thermal structure in the region.  相似文献   

7.
Peatlands are a large potential source of methane (CH4) to the atmosphere. In order to investigate the effects of climate change on CH4 emission from northern ombrotrophic peatlands, a simulation model coupling water table dynamics with methane emission was developed for the Mer Bleue Bog in Ontario, Canada. The model was validated against reported values of CH4 flux from field measurements and the model outputs exhibited high sensitivity to acrotelm thickness, leaf area index, transmissivity and slope of water table. With a 2–4°C temperature rise over the 4-year simulation period, the rate of CH4 release dropped significantly to under 0.1 mg m−2 day−1. On the other hand, mean CH4 emission increased by >26-fold when the increase in precipitation was >15%. When looking at the combined effects, the highest CH4 release (13.3 mg m−2 day−1) was attained under the scenario of 2°C temperature rise and 25% precipitation increase. Results obtained in this study highlight the importance of avoiding more extreme climate change, which would otherwise lead to enhanced methane release from peatlands and further atmospheric warming through positive feedback.  相似文献   

8.
Pb diffusion in rutile   总被引:16,自引:0,他引:16  
Diffusion of Pb was measured in natural and synthetic rutile under dry, 1 atmosphere conditions, using mixtures of Pb titanate or Pb sulfide and TiO2 as the sources of diffusant. Pb depth profiles were then measured with Rutherford Backscattering Spectrometry (RBS). Over the temperature range 700–1100 °C, the following Arrhenius relation was obtained for the synthetic rutile: D=3.9 × 10−10exp(−250 ± 12 kJ mol−1/RT) m2s−1. Results for diffusion in natural and synthetic rutile were quite similar, despite significant differences in trace element compositions. Mean closure temperatures calculated from the diffusion parameters are around 600 °C for rutile grains of ∼100 μm size. This is about 100 °C higher than rutile closure temperature determinations from past field-based studies, suggesting that rutile is more resistant to Pb loss through volume diffusion than previously thought. Received: 28 June 1999 / Accepted: 29 December 1999  相似文献   

9.
A methodology to estimate a methane emission in a waste landfill site was developed. The methane flux at a waste landfill site in summer, autumn, and winter was within the following ranges: from −1.3×10−2 to 16, from −6.4×10−2 to 7.5, and from −1.6×10−3 to 1.5×10−2 g-CH4 m−2 h−1, respectively. In those seasons, the mean methane emission rate and coefficient of variation were 1.1 g-CH4 m−2 h−1 ±290%, 0.57 g-CH4 m−2 h−1 ±347%, and 5.4×10−2 g-CH4 m−2 h−1 ±370%, respectively. These results simultaneously showed that fluctuations of methane emission from the landfill surface were both of spatial and temporal variability. In each season, an exponential relationship was observed between the methane flux density and the ground temperature. Total methane emissions were estimated to be 5.7×10−2, 7.1×10−3, and 1.7×10−3 g-CH4 m−2 h−1 in the summer, autumn, and winter surveys, respectively, using a temperature surrogated-kriging method. The results of this study would improve upon the labor-intensive closed-chamber method, and could be a more practical way to estimate methane emissions from waste landfills.  相似文献   

10.
11.
12.
Soil radon (222Rn) has been monitored during winter months under cool-temperate deciduous stands of different surface geology in Tomakomai and in Sapporo, Hokkaido, Japan. Radon level was lower in Tomakomai of immature soil of porous volcanic ash emitted from an active volcano (Mt. Tarumae), compared with those in Sapporo of alluvial sediments. In Tomakomai, mean value of the 222Rn activity concentration was higher in winter (570 Bq m?3) than in summer (350 Bq m?3) at a depth of 1 m, which is consistent with the results in cold and dry winter reported in the literature. In contrast, soil radon decreasing with decreasing soil temperature from mid-September (5.0 kBq m?3) remained low (2.6 kBq m?3) under persistent snow in Sapporo, which had already been observed in the same location. Measurements of the activity concentrations of 222Rn in snow and in snow air as well as in soil air indicate that the small amount of 222Rn is released from the ground surface to the overlying snowpack with a 222Rn flux density of 0.4 mBq m?2 s?1 under thick snow cover in Sapporo.  相似文献   

13.
Radiocarbon analyses were carried out in the annual bands of a 40 year old coral collected from the Gulf of Kutch (22.6°N, 70°E) in the northern Arabian Sea and in the annual rings of a teak tree from Thane (19°14′N, 73°24′E) near Bombay. These measurements were made in order to obtain the rates of air-sea exchange of CO2 and the advective mixing of water in the Gulf of Kutch. The Δ14C peak in the Thane tree occurs in the year 1964, with a value of ∼630‰, significantly lower than that of the mean atmospheric Δ14C of the northern hemisphere (∼ 1000‰). The radiocarbon time series of the coral was modelled considering the supply of carbon and radiocarbon to the gulf through air-sea exchange and advective water transport from the open Arabian Sea. A reasonable fit for the coral data was obtained with an air-sea CO2 exchange rate of 11–12 mol m−2 yr−1, and an advective velocity of 28 m yr−1 between the Arabian Sea and the Gulf of Kutch; this was based on a model generated time series for radiocarbon in the Arabian Sea. The deduced velocity (∼ 28 m yr−1) of the advective transport of water between the gulf and the Arabian Sea is much lower than the surface tidal current velocity in this region, but can be understood in terms of net fluxes of carbon and radiocarbon to the gulf to match the observed coral Δ14C time series.  相似文献   

14.
 Unit-cell dimensions of a natural phlogopite from Pargas, Finland, have been determined in the temperature interval of 27–1050 °C by X-ray powder diffraction technique. Expansion rates vary discontinuously with temperature with a break at 412 °C. Below this temperature, the linear expansions (α) for a, b and c axis lengths are 3.74 × 10−5 K−1, 1.09 × 10−5 K−1, and 1.19 × 10−5 K−1, respectively, and above that they are 0.86 × 10−5 K−1, 0.80 × 10−5 K−1, and 1.93 × 10−5 K−1. The volume thermal expansion coefficients are 6.26 × 10−5 K−1 and 3.71 × 10−5 K−1 for low-temperature and high-temperature intervals, respectively. The observed kink in the rate of thermal expansions with temperature could be due to the different mode of structural changes. Thermogravimetric analysis of the sample indicates the oxidation of iron in the temperature range of 500–600 °C and dehydroxylation as well as decomposition of phlogopite in the temperature range of 900–1200 °C. Received: 8 September 1998 / Accepted: 28 February 2000  相似文献   

15.
The Racetrack Au−Ag deposit, in the Archaean Yilgarn Block, Western Australia, is hosted by a porphyritic basalt in a low greenschist facies setting and is associated with a brittle strike-slip fault system. Three distinct and successive stages of hydrothermal activity and late quartz-carbonate veining resulted in multiple veining and/or brecciation: Stages I and II are Au-bearing, whereas Stage III and late veins are barren. The ore shows features of both classic epithermal and mesothermal deposits. Alteration assemblages, typified by sericitization, carbonization, silicification and chloritization, are similar to those of mesothermal gold deposits, wheras the quartz vein-textures including comb, rosette, plumose and banded, ore mineralogyof arsenopyrite, pyrite, chalcopyrite, sphalerite, galena, freibergite, tetrahedrite, tennantite, fahlore, electrum and gold, and metal associations (Cu, As, Ag, Sn, Sb, W, Au and Pb) are more characteristics of epithermal deposits. Fluid inclusions related to Stage II are two phase and aqueous with 1–8 (average 4) wt. % NaCl equiv. and CO2 content of <0.85 molal. Pressure-corrected homogenisation temperatures range from 190°C to 260°C. Mineral assemblages indicate that ore fluid pH ranged between 4.2 and 5.3, fO 2 between 10−38.8 and 10−39.6 bars, and mΣs between 10−3.2 and 10−3.6. Calculated chemical and stable isotope compositions require a component of surface water in the ore fluid depositing the mineralisation, but evidence for deep crustal Pb indicates that deeply sourced fluids were also involved. The deposit is interpreted to have formed in a shallow environment via mixing of deeply sourced fluids, from at least as deep as the base of the greenstone belt, with surface waters. It therefore represents the upper crustal end-member of the crustal depth spectrum of Archaean lode-gold mineralisation.  相似文献   

16.
Fluxes of carbon dioxide, water vapor, and heat were measured above crop canopy using the eddy covariance method during the 2008 maize growing season, over an agricultural field within an oasis located in the middle reaches of Heihe River basin, northwest China. The values for friction velocity, the Monin–Obukhov stability parameter, and energy balance closure indicated that the eddy covariance system at this study site provided reliable flux estimates. Results from measurements showed that the mean sensible heat flux was 70 W m−2 with a maximum value of 164 W m−2 (May) and a minimum value of 45 W m−2 (July) during the maize growing season. In contrast, the mean latent heat was 278 W m−2 with a maximum value of 383 W m−2 (July) and minimum of 101 W m−2 (May). The mean downward soil heat flux was 55 W m−2 with a maximum value of 127 W m−2 (May) and minimum of 49 W m−2 (July). The magnitude of mean daytime net CO2 uptake was −11.50 μmol m−2 s−1 with a maximum value of −28.32 μmol m−2 s−1 (18 and 19 July) and a minimum values of −0.32 μmol m−2 s−1 (18 and 19 May). Correlation was observed between daytime half-hourly carbon dioxide flux and canopy conductance. In addition, the relationship between carbon dioxide flux and photosynthetically active radiation for selected days during different stages of maize growing season indicated the carbon dioxide flux uptake by the canopy was controlled by actual photosynthetic activity related to the variation of green leaf area index for the different growing stages.  相似文献   

17.
Drought has become the most severe natural disaster in many provinces of China. In this paper, evaporative drought index (EDI) has been used to monitor China’s surface dryness conditions based on the exponential evapotranspiration (ET) model and Hargreaves equation from JAXA-MODIS Insolation products, GEWEX, NCEP-2 and MODIS NDVI data. The exponential ET model based on the surface net radiation, vegetation index, mean air temperature and diurnal air temperature range (DTaR) has been developed to estimate surface ET of China and has been independently validated using ground-measured data collected from two sites (Arou and Miyun) in China, indicating that the bias varies from −5.96 to 5.02 W/m2. The good agreement between daily estimated and ground-measured ET using ground observation data collected from all 22 sites further supports the validity of the exponential ET model for regional ET estimation. Moreover, EDI is closely correlated to the average soil moisture at 0–10 cm soil depth of the Yongning site with coefficient of determination of R 2 = 0.52. The spatio-temporal patterns of monthly ET and EDI from April to September of 2004 over China are explored and the result indicates EDI is accordant with the precipitation by comparing the 15-day smoothed EDI with precipitation over six representative sites. The EDI based on the exponential ET model by integrating energy fluxes in response to soil moisture stress has demonstrated its validity for monitoring China’s surface drought events.  相似文献   

18.
Heat flow variations with depth in Europe can be explained by a model of surface temperature changes >10°C. New heat flow map of Europe is based on updated database of uncorrected heat flow values to which paleoclimatic correction is applied across the continent. Correction is depth dependent due to a diffusive thermal transfer of the surface temperature forcing of which glacial–interglacial history has the largest impact. It is obvious that large part of the uncorrected heat flow values in the existing heat flow databases from wells as shallow as few hundreds of meters is underestimated. This explains some very low uncorrected heat flow values 20–30 mW/m2 in the shields and shallow basin areas of the craton. Also, heat flow values in other areas including orogenic belts are likely underestimated. Based on the uncorrected and corrected heat flow maps using 5 km × 5 km grid, we have calculated average heat flow values (uncorrected heat flow: 56.0 mW/m2; SD 20.3 mW/m2 vs. corrected heat flow: 63.2 mW/m2; SD 19.6 m/Wm2) and heat loss for the continental part. Total heat loss is 928 E09 W for the uncorrected values versus corrected 1050 E09 W.  相似文献   

19.
Sample cylinders of two galena ore hand specimens from Braubach, Germany were axially shortened in the strain rate range 5 × 10−5 s−1–5 × 10−7 s−1 at a confining pressure of 200 (300) MPa and at temperatures of 20 °C–600 °C. Neutron diffraction analyses of the crystallographic preferred orientation (texture) were carried out before and after experimental deformation on the same sample cylinder. Up to a deformation temperature of 300 °C and a strain rate of 5 × 10−6 s−1 a more or less complete <110> fiber texture develops, the strength of the fiber texture only depending on strain and the strength of the original preferred orientation. At slower strain rate and higher temperature, there is a distinct decrease of the fiber texture development. Diffusional mass transfer starts to become a significant deformation mechanism. Deformation at 500 °C changes the original texture only slightly, which indicates a rapid increase of importance of diffusional flow processes. The alteration of the accompanying sulfosalts indicates that the temperature is high enough for the movement of atoms. The microstructure only reveals remarkable deformation structures at higher strains and in areas of locally higher stresses. Received: 10 June 1997 / Accepted: 14 May 1998  相似文献   

20.
 Infrared absorption spectra of brucite Mg (OH)2 were measured under high pressure and high temperature from 0.1 MPa 25 °C to 16 GPa 360 °C using infrared synchrotron radiation at BL43IR of Spring-8 and a high-temperature diamond-anvil cell. Brucite originally has an absorption peak at 3700 cm−1, which is due to the OH dipole at ambient pressure. Over 3 GPa, brucite shows a pressure-induced absorption peak at 3650 cm−1. The pressure-induced peak can be assigned to a new OH dipole under pressure. The new peak indicates that brucite has a new proton site under pressure and undergoes a high-pressure phase transition. From observations of the pressure-induced peak under various PT condition, a stable region of the high-pressure phase was determined. The original peak shifts to lower wavenumber at −0.25 cm−1 GPa−1, while the pressure-induced peak shifts at −5.1 cm−1 GPa−1. These negative dependences of original and pressure-induced peak shifts against pressure result from enhanced hydrogen bond by shortened O–H···O distance, and the two dependences must result from the differences of hydrogen bond types of the original and pressure-induced peaks, most likely from trifurcated and bent types, respectively. Under high pressure and high temperature, the pressure-induced peak disappears, but a broad absorption band between 3300 and 3500 cm−1 was observed. The broad absorption band may suggest free proton, and the possibility of proton conduction in brucite under high pressure and temperature. Received: 16 July 2001 / Accepted: 25 December 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号