首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Models of open magnetic structures on the Sun are presented for periods near solar minimum (CR 1626–1634) and near solar maximum (CR 1668–1678). Together with previous models of open magnetic structures during the declining phase (CR 1601–1611) these calculations provide clues to the relations between open structures, coronal holes, and active regions at different times of the solar cycle. Near solar minimum the close relation between active regions and open structures does not exist. It is suggested that near solar minimum the systematic emergence of new flux with the proper polarity imbalance to maintain open magnetic structures may occur primarily at very small spatial scales. Near solar maximum the role of active regions in maintaining open structures and coronal holes is strong, with large active regions emerging in the proper location and orientation to maintain open structures longer than typical active region lifetimes. Although the use of He I 10830 Å spectroheliograms as a coronal hole indicator is shown to be subject to significant ambiguity, the agreement between calculated open structures and coronal holes determined from He I 10830 Å spectroheliograms is very good. The rotation properties of calculated open structures near solar maximum strongly suggest two classes of features: one that rotates differentially similar to sunspots and active regions and a separate class that rotates more rigidly, as was the case for single large coronal holes during Skylab.  相似文献   

2.
Sýkora  J.  Badalyan  O.G.  Obridko  V.N. 《Solar physics》2003,212(2):301-318
Observations of ten solar eclipses (1973–1999) enabled us to reveal and describe mutual relations between the white-light corona structures (e.g., global coronal forms and most conspicuous coronal features, such as helmet streamers and coronal holes) and the coronal magnetic field strength and topology. The magnetic field strength and topology were extrapolated from the photospheric data under the current-free assumption. In spite of this simplification the found correspondence between the white-light corona structure and magnetic field organization strongly suggests a governing role of the field in the appearance and evolution of local and global structures. Our analysis shows that the study of white-light corona structures over a long period of time can provide valuable information on the magnetic field cyclic variations. This is particularly important for the epoch when the corresponding measurements of the photospheric magnetic field are absent.  相似文献   

3.
The cyclic evolution of the heliospheric plasma parameters is related to the time-dependent boundary conditions in the solar corona. “Minimal” coronal configurations correspond to the regular appearance of the tenuous, but hot and fast plasma streams from the large polar coronal holes. The denser, but cooler and slower solar wind is adjacent to coronal streamers. Irregular dynamic manifestations are present in the corona and the solar wind everywhere and always. They follow the solar activity cycle rather well. Because of this, the direct and indirect solar wind measurements demonstrate clear variations in space and time according to the minimal, intermediate and maximal conditions of the cycles. The average solar wind density, velocity and temperature measured at the Earth’s orbit show specific decadal variations and trends, which are of the order of the first tens per cent during the last three solar cycles. Statistical, spectral and correlation characteristics of the solar wind are reviewed with the emphasis on the cycles.  相似文献   

4.
Fluctuations in the solar wind plasma and magnetic field are well described by the sum of two power law distributions. It has been postulated that these distributions are the result of two independent processes: turbulence, which contributes mainly to the smaller fluctuations, and crossing the boundaries of flux tubes of coronal origin, which dominates the larger variations. In this study we explore the correspondence between changes in the magnetic field with changes in other solar wind properties. Changes in density and temperature may result from either turbulence or coronal structures, whereas changes in composition, such as the alpha-to-proton ratio are unlikely to arise from in-transit effects. Observations spanning the entire ACE dataset are compared with a null hypothesis of no correlation between magnetic field discontinuities and changes in other solar wind parameters. Evidence for coronal structuring is weaker than for in-transit turbulence, with only ∼ 25% of large magnetic field discontinuities associated with a significant change in the alpha-to-proton ratio, compared to ∼ 40% for significant density and temperature changes. However, note that a lack of detectable alpha-to-proton signature is not sufficient to discount a structure as having a solar origin.  相似文献   

5.
Coronal Faraday rotation of the linearly polarized carrier signals of the HELIOS spacecraft was recorded during the regularly occurring solar occultations over almost a complete solar cycle from 1975 to 1984. These measurements are used to determine the average strength and radial variation of the coronal magnetic field at solar minimum at solar distances from 3–10 solar radii, i.e., the range over which the complex fields at the coronal base are transformed into the interplanetary spiral. The mean coronal magnetic field in 1975–1976 was found to decrease with radial distance according to r , where = 2.7 ± 0.2. The mean field magnitude was 1.0 ± 0.5 × 10 –5 tesla at a nominal solar distance of 5 solar radii. Possibly higher magnetic field strengths were indicated at solar maximum, but a lack of data prevented a statistical determination of the mean coronal field during this epoch.  相似文献   

6.
Obridko  V.N.  Shelting  B.D. 《Solar physics》1999,187(1):185-205
The structure and variations of open field regions (OFRs) are analyzed against the solar cycle for the time interval of 1970–1996. The cycle of the large-scale magnetic field (LSMF) begins in the vicinity of maximum Wolf numbers, i.e. during the polar field reversal. At the beginning of the LSMF cycle, the polar and mid-latitude magnetic field systems are connected by a narrow bridge, but later they evolve independently. The polar field at the latitudes above 60° has a completely open configuration and fills the whole area of the polar caps near the cycle minimum of local fields. At this time, essentially all of the open solar flux is from the polar caps. The mid-latitude open field regions (OFRs) occur at a latitude of 30–40° away from solar minimum and drift slowly towards the equator to form a typical 'butterfly diagram' at the periphery of the local field zone. This supports the concept of a single complex – 'large-scale magnetic field – active region – coronal hole'. The rotation characteristics of OFRs have been analyzed to reveal a near solid-body rotation, much more rigid than in the case of sunspots. The rotation characteristics are shown to depend on the phase of the solar cycle.  相似文献   

7.
Litvinenko  Yuri E. 《Solar physics》1999,188(1):115-123
The rate of two-dimensional flux pile-up magnetic reconnection is known to be severely limited by gas pressure in a low-beta plasma of the solar corona. As earlier perturbational calculations indicated, however, the pressure limitation should be less restrictive for three-dimensional flux pile-up. In this paper the maximum rate of reconnection is calculated in the approximation of reduced magnetohydrodynamics (RMHD), which is valid in the solar coronal loops. The rate is calculated for finite-magnitude reconnecting fields in the case of a strong axial field in the loop. Gas pressure effects are ignored in RMHD but a similar limitation on the rate of magnetic merging exists. Nevertheless, the magnetic energy dissipation rate and the reconnection electric field can increase by several orders of magnitude as compared with strictly two-dimensional pile-up. Though this is still not enough to explain the most powerful solar flares, slow coronal transients with energy release rates of order 1025– 1026 erg s–1and heating of quiet coronal loops are within the compass of the model.  相似文献   

8.
Belenko  Irina A. 《Solar physics》2001,199(1):23-35
Spatial and temporal distributions of coronal holes for the rising phase of the solar cycle during 1996–1999 are considered. Connections between the number of non-polar coronal holes on the solar disk and the Wolf number, the mean solar photospheric magnetic field, and the solar flux density at 2800 mHz are analyzed. Peculiarities of the photospheric magnetic field structure of the regions corresponding to coronal hole locations and comparison with `clear' ones are discussed.  相似文献   

9.
The relation between coronal green line intensity and high-speed streams of solar wind emitted by coronal holes or by loop structures of the corona is studied. As well as these exclusive regions of coronal radiative emission, other factors of solar activity have been taken into account in this relation, such as proton events, sunspot number, faculae, and solar magnetic fields.Although the investigated time period (1964–1974) is very short, because of lack of data, we attempted to define the intensity of the coronal green line as an integrated index of the solar activity which can express all the photospheric and coronal phenomena of the Sun. The contraction of the low-density coronal-hole regions and the presence of bright loops during solar maximum provide a theoretical explanation of the above-mentioned relation.  相似文献   

10.
Long-lived brightness structures in the solar electron corona persist over many solar rotation periods and permit an observational determination of coronal magnetic tracer rotation as a function of latitude and height in the solar atmosphere. For observations over 1964–1976 spanning solar cycle 20, we compare the latitude dependence of rotation at two heights in the corona. Comparison of rotation rates from East and West limbs and from independent computational procedures is used to estimate uncertainty. Time-averaged rotation rates based on three methods of analysis demonstrate that, on average, coronal differential rotation decreases with height from 1.125 to 1.5 R S. The observed radial variation of differential rotation implies a scale height of approximately 0.7 R S for coronal differential rotation.Model calculations for a simple MHD loop show that magnetic connections between high and low latitudes may produce the observed radial variations of magnetic tracer rotation. If the observed tracer rotation represents the rotation of open magnetic field lines as well as that of closed loops, the small scale height for differential rotation suggests that the rotation of solar magnetic fields at the base of the solar wind may be only weakly latitude dependent. If, instead, closed loops account completely for the radial gradients of rotation, outward extrapolation of electron coronal rotation may not describe magnetic field rotation at the solar wind source. Inward extrapolations of observed rotation rates suggest that magnetic field and plasma are coupled a few hundredths of a solar radius beneath the photosphere.  相似文献   

11.
The analysis of the daily measurements of the coronal green line intensity, which have been extensively tested for homogeneity and freedom of trends observed at the Pic-du-Midi observatory during the period 1944–1974, has revealed some characteristic asymmetric variations. A north-south asymmetry of the green line intensity is the main feature of the period 1949–1971 while a south-north one is obvious within 1972–1974 and the minor statistical significance span 1944–1948. On the other hand a significant W-E asymmetry has been confirmed in the whole period 1944–1974. It is noteworthy that the period 1949–1971, where the N-S asymmetry takes place consists a 22-yr solar cycle which starts from the epoch of the solar magnetic field inversion of the solar cycle No. 18 and terminates in the relevant epoch of the cycle No. 20.The combination of N-S and S-N asymmetry with a W-E one makes the NW solar-quarter to appear as the most active of all in the 22-yr cycle 1949–1971, while in the periods 1944–1948 and 1972–1974 the SW quarter is the most active. Finally, from the polar distribution of the green line intensity has been derived that the maximum values of the asymmetries occur in heliocentric sectors ± 10°–20° far from the solar equator on both sides of the central meridian.Physical mechanisms which could contribute to the creation of both N-S and E-W asymmetries of the solar activity and the green line intensity as an accompanied event, like different starting time of an 11-yr solar cycle in the two solar hemispheres, the motion of the Sun towards the Apex, and short-lived active solar longitudes formed by temporal clustering of solar active centers, have been discussed.  相似文献   

12.
Antiochos  S. K.  Dahlburg  R. B. 《Solar physics》1997,174(1-2):5-19
The effects of three-dimensionality on the modelling of solar magnetic fields are described. We focus on two processes that are believed to play an important role in coronal heating – the braiding of field lines by photospheric motions and the reconnection of colliding flux tubes. First, it is shown that a proper treatment of boundary conditions at the photosphere in 3D entails qualitatively new physical processes that are not present in 2D. The numerical resolution of even simple boundary velocity patterns in 3D leads to obstacles which have no counterpart in the 2D case. We conclude that adaptive mesh refinement is necessary for capturing the essential 3D physics of a braiding motion at the photosphere. Next, the effects of 3D on magnetic reconnection are discussed. Reconnection in 3D can lead to an evolution of interacting flux tubes, magnetic tunneling, that is not only impossible in lower dimensionality, but is strikingly counterintuitive. The implications of these results for the structure of the solar magnetic field and for coronal heating are described.  相似文献   

13.
The experiment with 10K-80 aboard the INTER-BALL-2 (which detects protons with energies > 7, 27–41, 41–58, 58–88, 88–180 and 180–300 MeV) registered six events of the solar energetic particle (SEP) increase. These events are during the initial rise phase of the 23rd solar activity cycle. Solar flares with the SEP generation are accompanied by coronal mass ejection (CME). Here we analyze the dynamics of the differential energy spectrum at different phases of the SEP increase.  相似文献   

14.
Using intermediate degreep-mode frequency data sets for solar cycle 22, we find that the frequency shifts and magnetic activity indicators show a “hysteresis” phenomenon. It is observed that the magnetic indices follow different paths for the ascending and descending phases of the solar cycle while for radiative indices, the separation between the paths are well within the error limits.  相似文献   

15.
Mavromichalaki  H.  Petropoulos  B.  Zouganelis  I. 《Solar physics》2002,206(2):401-414
Monthly mean values of the coronal index of solar activity and other solar indices are analyzed for the period 1965–1997 covering three solar cycles. The coronal index is based upon the total irradiance of the coronal 530.3 nm green line from observations at five stations. The significant correlation of this index with the sunspot number and the number of the grouped solar flares have led to an analytical expression which can reproduce the coronal index of solar activity as a function of these parameters. This expression well explains the existence of the two maxima during the solar cycles taking into account the evolution of the magnetic field that can be expressed by a sinusoidal term with a 6-year period. The agreement between observed and calculated values of the coronal index on a monthly basis is high enough and reaches the value of 92%. It is concluded that the coronal index can be used as a representative index of solar activity in order to be correlated with different periodic solar–terrestrial phenomena useful for space weather studies.  相似文献   

16.
Microwave maps of solar active region NOAA 8365 are used to derive the coronal magnetograms of this region. The technique is based on the fact that the circular polarization of a radio source is modified when microwaves pass through the coronal magnetic field transverse to the line of sight. The observations were taken with the Siberian Solar Radio Telescope (SSRT) on October 21 – 23 and with the Nobeyama Radio Heliograph (NoRH) on October 22 – 24, 1998. The known theory of wave mode coupling in quasi-transverse (QT) region is employed to evaluate the coronal magnetograms in the range of 10 – 30 G at the wavelength 5.2 cm and 50 – 110 G at 1.76 cm, taking the product of electron density and the scale of coronal field divergence to be constant of 1018 cm–2. The height of the QT-region is estimated from the force-free field extrapolations as 6.2 × 109 cm for the 20 G and 2.3 × 109 cm for 85 G levels. We find that on large spatial scale, the coronal magnetograms derived from the radio observations show similarity with the magnetic fields extrapolated from the photosphere.  相似文献   

17.
Coronal holes and interplanetary disturbances are important aspects of the physics of the Sun and heliosphere. Interplanetary disturbances are identified as an increase in the density turbulence compared with the ambient solar wind. Erupting stream disturbances are transient large-scale structures of enhanced density turbulence in the interplanetary medium driven by the high-speed flows of low-density plasma trailing behind for several days. Here, an attempt has been made to investigate the solar cause of erupting stream disturbances, mapped by Hewish & Bravo (1986) from interplanetary scintillation (IPS) measurements made between August 1978 and August 1979 at 81.5 MHz. The position of the sources of 68 erupting stream disturbances on the solar disk has been compared with the locations of newborn coronal holes and/or the areas that have been coronal holes previously. It is found that the occurrence of erupting stream disturbances is linked to the emergence of new coronal holes at the eruption site on the solar disk. A coronal hole is indicative of a radial magnetic field of a predominant magnetic polarity. The newborn coronal hole emerges on the Sun, owing to the changes in magnetic field configuration leading to the opening of closed magnetic structure into the corona. The fundamental activity for the onset of an erupting stream seems to be a transient opening of pre-existing closed magnetic structures into a new coronal hole, which can support highspeed flow trailing behind the compression zone of the erupting stream for several days.  相似文献   

18.
The rotation of the solar corona has been studied using recurrence properties of the green coronal line (5303 Å) for the interval 1947–1970. Short-lived coronal activity is found to show the same differential rotation as short-lived photospheric magnetic field features. Long-lived recurrences show rigid rotation in the latitude interval ±57°.5. It is proposed that at least part of the variability of rotational properties of the solar atmosphere may be understood as a consequence of coexistence of differential and rigid solar rotation.On leave from Torino University, Italy, as an ESRO-NASA Fellow.  相似文献   

19.
20.
DAGLIS  I. A.  AXFORD  W. I.  SARRIS  E. T.  LIVI  S.  WILKEN  B. 《Solar physics》1997,172(1-2):287-296
Particle acceleration is a prominent feature of the geomagnetic storm, which is the prime dynamic process in Geospace – the near-Earth space environment. Magnetic storms have their origin in solar events, which are transient disturbances of the solar atmosphere and radiation that propagates as variations of the solar wind fields and particles through interplanetary space to the Earth's orbit. During magnetic storms, ions of both solar wind origin and terrestrial origin are accelerated and form an energetic ring current in the inner magnetosphere. This current has global geomagnetic effects, which have both physical and technical implications. Recently, it has been shown that large magnetic storms, which exhibit an unusually energized ionospheric plasma component, are closely associated with coronal mass ejections (CMEs). This implies a cause/effect chain connecting solar events through CMEs and the solar wind with the acceleration of terrestrial ion populations which eventually constitute the main source of global geomagnetic disturbances. Here we present spacecraft observations related to storm-time particle acceleration and assess the observations within the framework of causes and effects of solar-terrestrial relationships.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号