首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
赵善仁  吴悦斌 《现代地质》1996,10(4):478-484
五台山—恒山绿岩带Au、Ag、Cu矿床可分为二大类型:(1)再生型金银铜矿,产在包括岩浆岩在内的各类岩石断裂构造中,与岩浆期后热液有关;(2)变生型金银铜矿,产于各类变质岩中,具有层控特征(即绿岩型金矿)。在地球化学特征上,再生型矿床与变生型矿床相比,矿体及围岩中Mo、Ag、Pb、Zn、Cd等成矿及伴生元素明显富集;K2O、Rb、Sr、Ba、Th、U也明显富集,是后期岩浆热液作用的结果;Hg、F的明显富集则与后期构造活动有关;Zn/Cd比值较低,说明受到后期岩浆侵入影响;Th/U比值低,可能指示富钙的酸性岩环境。再生型Au矿化的元素组合为Cd、As、Ni、Ag、Sb、Au、Hg(Bi),再生型Ag矿化的元素组合为As、Sb、Ag、Cd、Cu、Ni(Mo、Pb、Zn、Bi),变生型Au矿化的元素组合较简单,只为Au、Hg、As或Au、Cu。上述地球化学特征不仅可以有效地区分矿化类型,而且可以作为地球化学找矿和评价的指标  相似文献   

2.
The Xiaoqinling district, the second largest gold producing district in China, is located on the southern margin of the North China Craton. It consists of three ore belts, namely, the northern ore belt, the middle ore belt and the southern ore belt. Pyrite from the Dahu gold deposit in the northern ore belt and Wenyu and Yinxin gold deposits in the southern ore belt were investigated using a combination of ore microscopy and in-situ laser-ablation inductively-coupled plasma-mass spectrometry (LA-ICP-MS). A range of trace elements was analyzed, including Au, Te, Ag, Pb, Bi, Cu, Co, Ni, Zn, Mo, Hg, As and Si. The results show that there are no systematic differences between the trace element compositions of pyrite in the three deposits from different ore belts. In general, Au concentrations in pyrite are low (from < 0.01 ppm to 2.2 ppm) but Ni concentrations are rather high (up to 8425 ppm). A four-stage mineralization process is indicated by microscopic and field observations and this can be related to the systematic trace element differences between distinct generations of pyrite. Stage I precedes the main gold mineralization stage; pyrite of this stage has the lowest Au concentrations. Stages II and III contributed most of the gold to the ore-forming system. The corresponding pyrite yielded the highest concentrations of Au and Ni. Our microscopic observations suggest that pyrite in the main gold mineralization stage precipitated simultaneously with molybdenite that has been previously dated as Indosinian (~ 218 Ma by Re–Os molybdenite dating), indicating the Indosinian as the main gold mineralization stage. The Indosinian mineralization age and the geological and geochemical features of these gold deposits (e.g., low salinity, CO2-rich ore fluids; spatial association with large-scale compressional structures of the Qinling orogen; δ18O and δD data suggestive of mixing between metamorphic and meteoric waters; δ34S and Pb-isotopic data that point to a mixed crustal-mantle source) all point to typical orogenic-type gold deposits. High Ni concentrations (up to 8425 ppm) of pyrite possibly linked to deep-seated mafic/ultramafic metamorphic rocks provide further evidence on the orogenic gold deposit affinity, but against the model of a granitic derivation of the mineralizing fluid as previously suggested by some workers. Generally low Au concentration in pyrite is also consistent with those from worldwide orogenic gold deposits. Therefore, the gold mineralization in the Xiaoqinling district is described as orogenic type, and is probably related to Indosinian collision between the North China Craton and the Yangtze Craton.  相似文献   

3.
Geochemical exploration by stream sediment sampling using bulk leach extractable gold (BLEG) technique and applying concentration-number (C-N) fractal model, factor analysis (FA), and geochemical mineralization probability index (GMPI) resulted in the recognition of new Au occurrences around the Sukari gold mine in the central Eastern Desert of Egypt. The geochemical data of 128 stream sediment samples collected from the study area was used for delineating the geochemical anomalies and characterizing the dispersion trains of ore and associated elements (Au, Ag, As, Sb, Cu, Pb, Zn, Mo). Statistical analysis of the geochemical data applying the C-N fractal modeling enabled us to identify significant anomaly and background populations of the investigated elements and to construct reliable geochemical anomaly maps. Factor analysis using centered log-ratios (CLR), to address the problem of closed compositional data, revealed significant element associations for mineralization (Au, As, Mo, Zn, Ba), country rock compositions (Rb, Li, Be, Sn, Bi for granite, and Co, Cr, Ni for mafic rocks), and element mobility (e.g. Sb, Zr, and Ag). Weak and moderate Au anomalies that cannot be detected by factor score maps can be delineated clearly by using the C-N fractal method and GMPI distribution map. Our study revealed that Ag, As, and Sb are the main pathfinder elements for gold mineralization in arid to semiarid regions exemplified by the Sukari gold district. Silver can be used as a “direct” pathfinder, whereas As and Sb are “indirect” pathfinders for Au in such regions. The spatial distribution of Au and Ag anomalies indicate that gold mineralization in the Sukari district is structurally controlled. However, the spatial distribution of Cu, Pb, Zn, and Mo is controlled by mineralogical and lithological factors and is not related to any significant base metal deposits.  相似文献   

4.
Kohonen neural network (KNN) and factor analysis are applied to regional geochemical pattern recognition for a Pb–Zn–Mo–Ag mining area around Sheduolong in Qinghai Province, China. Prior to factor analysis, the geochemical data are classified by KNN. The results demonstrate that the 4-factor model accounted for 67% of the variation in the data. Factor F1, a Pb–Zn–Mo factor and Factor F4, an Au–Ag factor, correlates with monzonitic granite intrusions and particularly with Pb–Zn–Mo–Ag mineralization within those rocks. Factor F2, an As–Co factor, correlates with metamorphic rocks of paleoproterozoic Baishahe formation. Factor F3, a Bi–Cu factor, correlates with granodiorite intrusions. The factor score maps suggest a revised location of faults and their mineralization significance in coarse geological map. The approach not only effectively interprets the geological significance of the factors, but also reduces the area of exploration targets.  相似文献   

5.
Summary The study focuses on the mode of occurrence of Au, Ag and Te in ores of the Gaisk, Safyanovsk, Uzelginsk and other volcanic-hosted massive sulfide (VHMS) deposits in the Russian Urals. Minerals containing these elements routinely form fine inclusions within common sulfides (pyrite, chalcopyrite and sphalerite). Gold is mostly concentrated as ‘invisible’ gold within pyrite and chalcopyrite at concentrations of 1–20 ppm. Silver mainly occurs substituted in tennantite (0.1–6 wt.% Ag). In the early stages of mineralization, gold is concentrated into solid solution within the sulfides and does not form discrete minerals. Mineral parageneses identified in the VHMS deposits that contain discrete gold- and gold-bearing minerals, including native gold, other native elements, various tellurides and tennantite, were formed only in the latest stages of mineralization. Secondary hydrothermal stages and local metamorphism of sulfide ores resulted in redistribution of base and precious metals, refining of the common sulfides, the appearance of submicroscopic and microscopic inclusions of Au–Ag alloys (fineness 0.440–0.975) and segregation of trace elements into new, discrete minerals. The latter include Au and Ag compounds combined with Te, Se, Bi and S. Numerous tellurides (altaite, hessite, stützite, petzite, krennerite etc.) are found in the massive sulfide ores of the Urals and appear to be major carriers of gold and PGE in VHMS ores.  相似文献   

6.
The Laloki and Federal Flag deposits are two of the many (over 45) polymetallic massive sulfide deposits that occur in the Astrolabe Mineral Field, Papua New Guinea. New data of the mineralogical compositions, mineral textures, and fluid inclusion studies on sphalerite from Laloki and Federal Flag deposits were investigated to clarify physiochemical conditions of the mineralization at both deposits. The two deposits are located about 2 km apart and they are stratigraphically hosted by siliceous to carbonaceous claystone and rare gray chert of Paleocene–Eocene age. Massive sulfide ore and host rock samples were collected from each deposit for mineralogical, geochemical, and fluid inclusion studies. Mineralization at the Laloki deposit consists of early‐stage massive sulfide mineralization (sphalerite‐barite, chalcopyrite, and pyrite–marcasite) and late‐stage brecciation and remobilization of early‐stage massive sulfides that was accompanied by late‐stage sphalerite mineralization. Occurrence of native gold blebs in early‐stage massive pyrite–marcasite‐chalcopyrite ore with the association of pyrrhotite‐hematite and abundant planktonic foraminifera remnants was due to reduction of hydrothermal fluids by the reaction with organic‐rich sediments and seawater mixing. Precipitation of fine‐grained gold blebs in late‐stage Fe‐rich sphalerite resulted from low temperature and higher salinity ore fluids in sulfur reducing conditions. In contrast, the massive sulfide ores from the Federal Flag deposit contain Fe‐rich sphalerite and subordinate sulfarsenides. Native gold blebs occur as inclusions in Fe‐rich sphalerite, along sphalerite grain boundaries, and in the siliceous‐hematitic matrix. Such occurrences of native gold suggest that gold was initially precipitated from high‐temperature, moderate to highly reduced, low‐sulfur ore fluids. Concentrations of Au and Ag from both Laloki and Federal Flag deposits were within the range (<10 ppm Au and <100 ppm Ag) of massive sulfides at a mid‐ocean ridge setting rather than typical arc‐type massive sulfides. The complex relationship between FeS contents in sphalerite and gold grades of both deposits is probably due to the initial deposition of gold on the seafloor that may have been controlled by factors such as Au complexes, pH, and fO2 in combination with temperature and sulfur fugacity.  相似文献   

7.
张吉宽 《黄金地质》2000,6(3):70-76
经过对4个金矿区带的系统调查研究。发现脉状热液金矿由早而晚具有磁黄铁矿-石英、黄铁矿-毒砂,黄铁矿-石英大脉、金-脉状黄铁矿、金银-多金属硫化物、金银-碲化物,黄铁矿-石英-碳酸盐7个阶段,矿床之间的差异只是成矿阶段系列发育的完整程度和成矿阶段发育的强度不同。在矿床、矿带和矿田范围内,都具有由上而下,由早而晚的金矿化垂向相对分带,Au,Cu,Zn,Pb,Ag存在明显的时空变化趋势。  相似文献   

8.
A biogeochemical orientation survey was carried out in the vicinity of an epithermal Au deposit in the Moisan Au–Ag mineralized area, Haenam district in Korea. The Au–Ag bearing quartz veins of the mine occur as narrow open-space fillings within Cretaceous silicic pyroclastics. The vein minerals consist mainly of quartz, sericite, pyrite, chalcopyrite, and galena, with some electrum and argentite. The main objectives of this study were to study the geochemical characteristics of rocks, soils and plants in this area, to investigate the spatial relationship between Au and associated elements in rock–soil–plant system, and to evaluate the applicability of biogeochemical prospecting for Au vein occurrences in Korea. Samples of rocks and soils, and leaves of three plant species (Japanese red pine — P. densiflora, oriental white oak — Q. aliena, Japanese mallotus — M. japonicus) were collected from the target mineralized area and control barren locations, and analyzed for trace elements by instrumental neutron activation analysis. Sampling lines were composed of one slope line which is almost parallel to the mineralized quartz-veins, and four transect lines spaced 100 m apart across the veins at 20 m sampling intervals. From the multi-element data of rock samples (n = 9), high values of Au (maximum 2030 ppb) are spatially related to Au–quartz veins. Soil samples (n = 61) collected from five sampling lines show higher values of Au (24–825 ppb) whereas soil samples from the control locations have lower values of Au (below 25 ppb). Many plant species collected from the vicinity of the veins have high Au contents compared with those at the control locations, but the ranges of Au values are variable among plant species. In a total of 128 samples of plant leaves, Q. aliena yielded Au values of 0.4 to 6.9 ppb, and M. japonicus 0.9 to 4.1 ppb. Gold contents in P. densiflora ranged from 0.1 to 5.6 ppb. Plant leaves from control areas show less than 1.6 ppb Au. The biological absorption coefficient (BAC) of Au in plants decreases in the order of Q. aliena > M. japonicus > P. densiflora. Based on the results of the study, Q. aliena appeared to be the best sampling media for biogeochemical prospecting of Au in the study area.  相似文献   

9.
化探异常信息识别是化探数据分析最重要的任务之一, 也是化探数据在资源勘查领域受到广泛关注的最重要原因, 前人对化探异常信息识别做过大量研究, 这些研究中的大多数主要关注化探示踪元素的含量, 近而根据含量指标计算异常阈值, 而对示踪元素在空间中的分布特征关注较少。本文选择 1: 20万比例尺的克拉玛依幅为研究区, 根据区内金矿的矿床地球化学特征选择Ag、As、Au和Sb等4种元素为本区内金矿的示踪元素, 以地球化学元素分散晕形成理论为依据, 使用GIS技术和Matlab软件绘制研究区内4种金矿示踪元素的综合地球化学异常图。结果表明, 与传统阈值方法得到的化探异常图相比, 本文得到的化探异常图能够更好地指示研究区内已知金矿。  相似文献   

10.
基于分形与多重分形理论的非线性化探数据处理方法及以空间加权主成分分析模型为代表的地学多源信息融合技术,为致矿地球化学异常信息的识别和提取提供了有力的工具。本文以钦-杭结合带南段庞西垌地区1∶5万水系沉积物地球化学数据为例,研究如何综合运用多重分形局部奇异性与空间加权主成分分析这两种地学信息处理方法来识别和提取致矿地球化学异常信息。首先,采用滑动窗口的方法绘制了研究区与银金矿化关系密切的五种地球化学元素Au、Ag、Cu、Pb和Zn的局部奇异性指数图以增强局部弱缓异常信息。然后,在控矿条件分析的基础上,运用北东向断裂构造这一重要控矿要素对Ag-Au成矿作用的影响范围,即距离北东向断裂的距离,作为应变量来构建用于空间加权主成分分析的空间权重系数的计算模型,以此来突显化探样品在控矿地质条件约束下的空间相关性。进而,采用空间加权主成分分析方法来得到Au、Ag、Cu、Pb和Zn多元素奇异性指数值的组合异常(第一主成分因子得分)。结果表明:综合运用多重分形局部奇异性与空间加权主成分分析方法可以有效的识别和提取Ag-Au致矿地球化学异常信息,圈定具有示矿意义的多元素组合异常区。  相似文献   

11.
张二法 《黄金地质》2002,8(3):43-46
小秦岭地区不同矿化类型的含Au石英脉Au/Ag值有不同的特点,多金属硫化物型一般小于0.8,黄铁矿型介于0.8-2.0之间,少黄铁矿型一般大于2.0。利用Au/Ag值可以大致确定矿脉的矿化类型,判断矿脉的水平,垂向分带和剥蚀深度,预测深部矿脉的矿化类型,东闯金矿床深部Au/Ag值为1.39,预示其深部有可能出现黄铁矿型矿化,深部探矿仍有前景。  相似文献   

12.
Agua Rica (27°26′S–66°16′O) is a world class Cu–Au–Mo deposit located in Catamarca, Argentina. In the E–W 6969400 section examined, the Seca Norte and the Trampeadero porphyries that have intruded the metasedimentary rock are cut by interfingered igneous and hydrothermal heterolithic and monolithic breccias, and sandy dikes. Relic biotite and K-feldspar of the early potassic alteration (370° to > 550 °C) with Cu (Mo–Au) mineralization are locally preserved and encapsulated in a widespread, white mica + quartz + rutile or anatase halo (phyllic alteration) with pyrite + covellite that suggests fluids with temperatures ≤ 360 °C and high f(S2). The Trampeadero porphyry and the surrounding metasedimentary rock with phyllic alteration have molybdenite in stringers and B-type quartz veinlets and the highest Mo grades (> 1000 ppm).Multistage advanced argillic alteration overprinted the earlier stages. Early andalusite ± pyrite ± quartz is preserved in the roots of the argillic halo rimmed by an alumina–silica material and white micas. This alteration assemblage is considered to have been formed at temperatures ≥ 375 °C from condensed magmatic vapor. At higher levels, pyrophyllite replaces muscovite and illite in clasts of hydrothermal breccias in the center and east sector of the study section, suggesting temperatures of 280 to 360 °C. Clasts of vuggy silica in the uppermost levels of the central breccia, indicates that at lower temperatures (< 250 °C), fluids reached very low pH (pH < 2). In this early stage of the advanced argillic alteration, hydrothermal fluids seem to have not precipitated sulfides or sulfosalts.Hydrothermal brecciation was concurrent with fluid exsolution (↑? V), which precipitated intermediate-temperature advanced argillic alunite (svanbergite + woodhouseite) ± diaspore ± zunyite as breccia cement along with abundant covellite + pyrite + enargite ± native sulfur ± kuramite at intermediate depths and in lateral transitional zones to unbrecciated rocks. This mineral assemblage indicates temperatures near 300 °C, oxidized and silica-undersaturated hydrothermal fluids with high sulfur fugacity to prevent gold precipitation. Multiple generations of pyrite, emplectite, colusite, Pb- and Bi-bearing sulfosalts, and native sulfur with Au and Ag, accompanied by alunite introduction in the upper level breccias, probably occurred at lower temperatures, but still high sulfur and oxygen activity. An independent Zn and Pb (as galena) mineralization stage locally coincides with Au–Ag and sulfosalts, and advanced at depth, controlled by fractures and overprinting much of the previous mineralization. A later paragenesis of veinlets of alunite + woodhouseite + svanvergite + pyrite ± enargite that cut the phyllic halo suggests temperatures ~ 250 °C and without woodhouseite + svanvergite, temperatures ~ 200 °C. Kaolinite occurs in the phyllic halo as a late mineral in clots and in veinlets thus, in this zone, the fluid had cooled enough for its formation.  相似文献   

13.
The Benue Trough of Nigeria is an intracratonic rift basin hosting several vein-type base metal deposits. The Akiri Cu ± (Ag) deposit represents a distinct sub-class of sediment-hosted Pb-Zn-Cu-Ba mineralization found throughout the Benue Trough. The deposit is hosted in bleached red beds of the Keana Formation and in shale-siltstones and carbonates of the Ezeaku Formation in the Middle Benue Trough, North-Central Nigeria. Mineralization at the Akiri deposit occurs as vein in-fillings in a series of NE-SW and E-W trending faults and fractures in the Early- to Late-Turonian Keana and Eze-Aku sedimentary rocks. To better constrain the sources of ore minerals and structural controls on the formation of this sediment-hosted Cu ± (Ag) mineralization, we report combined geologic, geochemical, mineralogical, and stable isotopic data for the Akiri Cu ± (Ag) deposit. Major ore-stage sulfides at Akiri are chalcopyrite and pyrite, which were accompanied by several types of alteration, including silicification, hematization, limited pyritization, and bleaching of mineralized sandstone bodies. In-situ trace element and sulfur isotopic data distinguishes early-stage pyrite (Py1) from late-stage pyrite (Py2). The late-stage Py2 co-exists with chalcopyrite suggesting coeval precipitation. Early-stage pyrite (Py1) contains lower Ag (avg. 0.04 ppm) but higher Au (avg. 3.03 ppm) than the late-stage pyrite (Py2) (avg. Ag = 2.78 ppm; Au = 0.424 ppm). The δ34S values of the early-stage sulfide (Py1) vary from 19.07‰ to 25.99‰ (avg. 22.20‰), suggesting that sulfur was largely derived from thermochemical reduction (TSR) of seawater sulfate. The δ34S values for co-existing Py2 and chalcopyrite range from 9.83‰ to 11.24‰ (avg. 10.32‰) and from 7.37‰ to 10.69‰ (avg. 8.96‰), respectively, suggesting a derivation of sulfur from TSR of seawater sulfate with contributions from magmatic sulfur. Based on structural features and ore textures, we propose that sulfide precipitation at Akiri was facilitated by sulfur-rich fluids circulating through pre-existing structures (fractures and faults) under fairly high (>200 °C) to moderate (<170 °C) temperature conditions. Geological, mineralogical, geochemical and isotopic data from this study support the classification of the Akiri Cu (+Ag) deposit as an epigenetic sandstone-hosted copper deposit.  相似文献   

14.
北山地区金矿床金的赋存状态和金矿物特征   总被引:5,自引:0,他引:5  
甘肃北山地区金矿床主要有岩浆热液型金矿床和与韧性剪切带有关的金矿床,矿化类型为石英脉型和蚀变岩型。金多呈独立金矿物形式出现,少放许呈分散状;金矿物以银金矿为主,次为自然金,平均成色772;金矿物以粒间金、裂隙金、连生金、连生金和包体金等形成嵌布于石英、黄铁矿、方铅矿及闪锌矿等主要载物较为发育。金矿物特征反映出本区金矿床的成矿物质主要来源于变质岩,华力西-印支期中酸性岩浆活动是主要的动力源。  相似文献   

15.
Mesozoic ore deposits in Zhejiang Province, Southeast China, are divided into the northwestern and southeastern Zhejiang metallogenic belts along the Jiangshan–Shaoxing Fault. The metal ore deposits found in these belts are epithermal Au–Ag deposits, hydrothermal‐vein Ag–Pb–Zn deposits, porphyry–skarn Mo (Fe) deposits, and vein‐type Mo deposits. There is a close spatial–temporal relationship between the Mesozoic ore deposits and Mesozoic volcanic–intrusive complexes. Zircon U–Pb dating of the ore‐related intrusive rocks and molybdenite Re–Os dating from two typical deposits (Tongcun Mo deposit and Zhilingtou Au–Ag deposit) in the two metallogenic belts show the early and late Yanshanian ages for mineralization. SIMS U–Pb data of zircons from the Tongcun Mo deposit and Zhilingtou Au–Ag deposit indicate that the host granitoids crystallized at 169.7 ± 9.7 Ma (2σ) and 113.6 ± 1 Ma (2σ), respectively. Re–Os analysis of six molybdenite samples from the Tongcun Mo deposit yields an isochron age of 163.9 ± 1.9 Ma (2σ). Re–Os analyses of five molybdenite samples from the porphyry Mo orebodies of the Zhilingtou Au‐Ag deposit yield an isochron age of 110.1 ± 1.8 Ma (2σ). Our results suggest that the metal mineralization in the Zhejiang Province, southeast China formed during at least two stages, i.e., Middle Jurassic and Early Cretaceous, coeval with the granitic magmatism.  相似文献   

16.
17.
The aim of the present study is to analyze relationships between epithermal Au‐Ag deposits of the hydrothermal type and related geological factors and integrate the relationships using probabilistic and statistical models in a geographic information system (GIS) environment. A variety of spatial geological data were compiled, evaluated and integrated to produce a map of potential Au and Ag deposits in the Gangreung area, Korea. This empirical approach assumes that all deposits shared a common genesis. The method consists of three main steps: (i) identification of spatial relationships; (ii) quantification of such relationships and (iii) integration of multiple quantified relationships. A spatial database containing Au and Ag deposits, topographic, geologic, geophysical and geochemical data was constructed using a GIS. The factors relating to 103 Au and Ag mineral deposits are the geological data such as lithology and fault structure, geochemical data including the abundance of Al, As, Ba, Ca, Cd, Co, conductivity, Cr, Cu, Eh, Fe, HCO3–, K, Li, Mg, Mn, Mo, Na, Ni, Pb, pH, Si, Sr, V, W, Zn, Cl?, F?, PO43?, NO2?, NO3? and SO42?, and geophysical data including Bouguer and magnetic anomalies. Using the constructed spatial database, the relationships between mineral deposit areas and 36 related factors are identified and quantified by probabilistic and statistical modeling; that is, likelihood ratio, weights of evidence and logistic regression. All the factors were combined to produce a map of the regional mineral potential using the overlay method in a GIS environment. The mineral potential map was then verified by comparison with known mineral deposits. The verification results give respective accuracies of 82.52%, 72.45% and 81.60% for the likelihood ratio, weights of evidence and logistic regression models, respectively. The mineral potential map can be used as a source of basic information for mineral resource development.  相似文献   

18.
Orogenic disseminated and Carlin gold deposits share much similarity in alteration and mineralization.The disseminated orogenic Zhenyuan Au deposit along the Ailaoshan shear zone,southeastern Tibet,was selected to clarify their difference.The alteration and mineralization from the different lithologies,including meta-quartz sandstone,carbonaceous slate,meta-(ultra)mafic rock,quartz porphyry and lamprophyre were researched.According to the mineral assemblage and replacement relationship in all types of host rocks,two reactions show general control on gold deposition:(1)replacement of earlier magnetite by pyrite and carbonaceous material;(2)alteration of biotite and phlogopite phenocrysts in quartz porphyry and lamprophyre into dolomite/ankerite and sericite.Despite the lamprophyre is volumetrically minor and much less fractured than other host rocks,it contains a large portion of Au reserve,indicating that the chemically active lithology has played a more important role in gold precipitation compared to structure.LA-ICP-MS analysis shows that Au mainly occurs as invisible gold in fine-grained pyrite disseminated in the host rocks,with Au content reaching to 258.95 ppm.The diagenetic core of pyrite in meta-quartz sandstone enriched in Co,Ni,Mo,Ag and Hg is wrapped by hydrothermal pyrite enriched in Cu,As,Sb,Au,Tl,Pb and Bi.Different host rock lithology has much impact on the alteration and mineralization features.Carbonate and sericite in altered lamprophyre show they have higher Mg than those developed in other of host rocks denoting that the carbonate and sericite incorporated Mg from phlogopite phenocrysts in the primary lamprophyre during alteration.The ore fluid activated the diagenetic pyrite in meta-quartz sandstone leading the hydrothermal pyrite enriched in Cu,Mo,Ag,Sb,Te,Hg,Tl,Pb and Bi,but the hydrothermal pyrite in meta-(ultra)mafic rock is enriched in Co and Ni as the meta-(ultra)mafic rock host rock contain high content of Co and Ni.However,Au and As shear similar range in both types of host rocks indicating that these two elements most likely come from the deep source fluid rather than the host rocks.It was shown in the disseminated orogenic gold deposit that similar hydrothermal alteration with mineral assemblage of carbonate(mainly dolomite and ankerite),sericite,pyrite and arsenopyrite develops in all types of host rocks.This is different from the Nevada Carlin type,in which alteration is mainly dissolution and silicification of carbonate host rock.On the other hand,Au mainly occur as invisible gold in both disseminated orogenic and Carlin gold deposits.  相似文献   

19.
以地理信息系统(GIS)为平台,对张家口北部地区进行金矿成矿分析后认为,太古宇桑干群谷咀子组(Arg)、红旗营子群(Ar3H)和元古宇长城系常州沟组-高于庄组(Chc-g)为成矿的有利地层组合;金矿床(点)多出现于岩浆岩体外接触带;半径为0.75~1.50 km的断层影响带为最佳的有利成矿的断层影响范围;Au、Ag、Cu、Zn化探异常,重砂异常,多元素水系沉积物异常为成矿的有利地球化学元素异常组合;遥感解译的蚀变区和环形构造缓冲区影响带为有利的成矿部位.利用GIS的空间分析功能分别提取了地层、岩体、断裂、化探、遥感等16个分析因子,建立了层次分析模型并根据该区成矿概率的分布进行了成矿远景区的预测,共圈出了18个成矿远景区,其中预测远景区3,4,5,6,7覆盖了大部分已知金矿床(点),而预测远景区2,8,10,11,14,15,18目前还未发现金矿床(点),预测结果对于该区的进一步找矿具有一定的指导意义.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号