首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In periglacial regions, frozen river banks are affected by thermal and mechanical erosion. In Siberia, bank retreats of up to 40 m per year are observed. This thermal erosion occurs during a few weeks, at springtime, for high enough water temperatures and river discharges. Until now, models of thermal erosion have been based on the assumption of a constant thermal erosion rate. We have developed a more general model at variable rate, whose solution is calculated using the integral method. Results of this model are compared with experiments, carried out in a cold room. A hydraulic channel allows measurements of the thermal erosion rate of a ground ice sample subjected to a turbulent water flow. Once validated, the model is applied to the periglacial river study case. The model has contributed to better understanding of the roles of each parameter during the thermal erosion process. High water temperature, discharge and ice temperature produce major thermal erosion, whereas the ice content in the soil tends to slow down the thermal erosion process. The effects of water temperature are predominant. An acceleration phase characterized by an increase of the thermal erosion rate occurs at the beginning of the thermal erosion process. The duration of such an acceleration phase is systematically studied. A relatively long acceleration phase is related to a low ablation rate. During the flood season, when the water temperature is increased to 18 °C, this acceleration phase lasts only a few minutes. However, for data typical of periglacial rivers, when the water temperature is close to the melting point, the acceleration phase can last a few days. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
In Central Yakutia, frozen river banks are affected by a combination of thermal and mechanical erosion. Exceptional bank retreat of up to 40 m per year is observed. This results from ground thawing produced by heat transfer from the ?ow of water through the frozen ground, followed by mechanical transport of the thawed sediments. A one‐dimensional model is proposed to estimate the thermal erosion ef?ciency. A test of this model is a comparison of results obtained from experiments carried out in a cold room. A hydraulic channel allows measurements of the thaw front propagation, as well as the thermal erosion rate, in simulated ground ice that is subjected to warm water ?ow. Various laboratory simulations demonstrate the validity of the mathematical model for the range of laboratory conditions. A hierarchy of parameters (Reynolds number, water and ground ice temperatures) is proposed to explain the present ef?ciency of thermal erosion along the Siberian rivers. From the characteristics of the Lena River (geometry, temperature and discharge) during the ?ood season, the erosion of banks with different ice content predicted by the model is in agreement with ?eld observations. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
This study investigates the potential of estimating the soil moisture profile and the soil thermal and hydraulic properties by assimilating soil temperature at shallow depths using a particle batch smoother (PBS) using synthetic tests. Soil hydraulic properties influence the redistribution of soil moisture within the soil profile. Soil moisture, in turn, influences the soil thermal properties and surface energy balance through evaporation, and hence the soil heat transfer. Synthetic experiments were used to test the hypothesis that assimilating soil temperature observations could lead to improved estimates of soil hydraulic properties. We also compared different data assimilation strategies to investigate the added value of jointly estimating soil thermal and hydraulic properties in soil moisture profile estimation. Results show that both soil thermal and hydraulic properties can be estimated using shallow soil temperatures. Jointly updating soil hydraulic properties and soil states yields robust and accurate soil moisture estimates. Further improvement is observed when soil thermal properties were also estimated together with the soil hydraulic properties and soil states. Finally, we show that the inclusion of a tuning factor to prevent rapid fluctuations of parameter estimation, yields improved soil moisture, temperature, and thermal and hydraulic properties.  相似文献   

4.
The effect of ice cover on bed deformations in the lower pools of hydraulic structures was examined by using data of laboratory and numerical experiments. Data of numerical experiments were used to parameterize bed deformations as a function of the release volume and duration, the length of ice hole, ice roughness coefficient, soil particle size, porosity, and density. The results of numerical experiments were compared with data of field and laboratory measurements.  相似文献   

5.
Using field observations at four gauging stations along the Inner Mongolia Reach of the Yellow River in China, this paper explores effects of the ice on the hydraulics of this river reach for four different conditions, namely: under open channel flow, during ice-running period, the ice-covered period, and the river break-up period. The rating curves were found to be well recognized under open channel situations, but were sometimes poorly defined and extremely variable under ice conditions. The results also show that the water level is insensitive to flowing ice prior to freeze-up. However, significant, but hardly surprising, variations were observed during ice-covered conditions. The rating curves for both the ice covered condition and river ice breakup period are developed and some related hydraulic issues are examined. Additionally, the impacts of the ice accumulation and associated riverbed deformation during ice period on the rating curves are discussed.  相似文献   

6.
Using field observations at four gauging stations along the Inner Mongolia Reach of the Yellow River in China, this paper explores effects of the ice on the hydraulics of this river reach for four different conditions, namely: under open channel flow, during ice-running period, the ice-covered period, and the river break-up period. The rating curves were found to be well recognized under open channel situations, but were sometimes poorly defined and extremely variable under ice conditions. The results also show that the water level is insensitive to flowing ice prior to freeze-up. However, significant, but hardly surprising, variations were observed during ice-covered conditions. The rating curves for both the ice covered condition and river ice breakup period are developed and some related hydraulic issues are examined. Additionally, the impacts of the ice accumulation and associated riverbed deformation during ice period on the rating curves are discussed.  相似文献   

7.
Infiltration into frozen soil plays an important role in soil freeze–thaw and snowmelt-driven hydrological processes. To better understand the complex thermal energy and water transport mechanisms involved, the influence of antecedent moisture content and macroporosity on infiltration into frozen soil was investigated. Ponded infiltration experiments on frozen macroporous and non-macroporous soil columns revealed that dry macroporous soil produced infiltration rates reaching 103 to 104 mm day−1, two to three orders of magnitude larger than dry non-macroporous soil. Results suggest that rapid infiltration and drainage were a result of preferential flow through initially air-filled macropores. Using recorded flow rates and measured macropore characteristics, calculations indicated that a combination of both saturated flow and unsaturated film flow likely occurred within macropores. Under wet conditions, regardless of the presence of macropores, infiltration was restricted by the slow thawing rate of pore ice, producing infiltration rates of 2.8 to 5.0 mm day−1. Reduced preferential flow under wet conditions was attributed to a combination of soil swelling, due to smectite-rich clay (that reduced macropore volume), and pore ice blockage within macropores. In comparison, dry soil column experiments demonstrated that macropores provided conduits for water and thermal energy to bypass the frozen matrix during infiltration, reducing thaw rates compared with non-macroporous soils. Overall, results showed the dominant control of antecedent moisture content on the initiation, timing, and magnitude of infiltration and flow in frozen macroporous soils, as well as the important role of macropore connectivity. The study provides an important data set that can aid the development of hydrological models that consider the interacting effects of soil freeze–thaw and preferential flow on snowmelt partitioning in cold regions.  相似文献   

8.
Earlier modelling studies have shown the difficulty of accurately simulating snowmelt infiltration into frozen soil using the hydraulic model approach. Comparison of model outputs and field measurements have inferred the occurrence of rapid flow even during periods when the soil is still partly frozen. A one-dimensional, physically based soil water and heat model (SOIL) has been complemented with a new two-domain approach option to simulate preferential flow through frozen layers. The ice is assumed to be first formed at the largest water filled pore upon freezing. Infiltrating water may be conducted rapidly through previously air-filled pores which are not occupied by ice. A minor fraction of water is slowly transferred within the liquid water domain, which is absorbed by the solid particles. A model validation with field measurements at a location in the middle-east of Sweden indicated that the two-domain approach was suitable for improving the prediction of drainage during snowmelting. In particular, the correlation between simulated and observed onset of drainage in spring was improved. The validation also showed that the effect of the high flow domain was highly sensitive to the degree of saturation in the topsoil during freezing, as well as to the hydraulic properties at the lower frost boundary regulating the upward water flow to the frozen soil and ice formation.  相似文献   

9.
The lower stretch of the Vistula is the most ice‐jammed river section on the North European Plain. Since 1982, the structure of hanging dams has been studied by means of a mechanical non‐core sampler. In this article, a selected of field research results of the hanging dams' structure and the degree of filling of the cross section with ice obtained during surface ice‐jam events in the years 1995–2014 are presented, along with an explanation of their causes. Surface ice jams occurred during spring snowmelt surges and ice breakups and also during freeze‐up and ice‐covered periods. Their main cause was changes in the river flow and was also those affected by anthropogenic sources. A characteristic feature of the analysed cross sections was the considerable share of the underhanging ice dam's firm accumulation with ice floes, when the cross section would be filled with ice in excess of 70%. In most cases, due to low river discharge, there was no substantial flooding damage. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Land data assimilation (DA) has gradually developed into an important earth science research method because of its ability to combine model simulations and observations. Integrating new observations into a land surface model by the DA method can correct the predicted trajectory of the model and thus, improve the accuracy of state variables. It can also reduce uncertainties in the model by estimating some model parameters simultaneously. Among the various DA methods, the particle filter is free from the constraints of linear models and Gaussian error distributions, and can be applicable to any nonlinear and non-Gaussian state-space model; therefore, its importance in land data assimilation research has increased. In this study, a DA scheme was developed based on the residual resampling particle filter. Microwave brightness temperatures were assimilated into the macro-scale semi-distributed variance infiltration capacity model to estimate the surface soil moisture and three hydraulic parameters simultaneously. Finally, to verify the scheme, a series of comparative experiments was performed with experimental data obtained during the Soil Moisture Experiment of 2004 in Arizona. The results show that the scheme can improve the accuracy of soil moisture estimations significantly. In addition, the three hydraulic parameters were also well estimated, demonstrating the effectiveness of the DA scheme.  相似文献   

11.
In cold Arctic snowpacks, meltwater retention is a significant factor controlling the timing and magnitude of runoff. Meltwater percolates vertically through the snowpack until it reaches an impermeable horizon, whereupon a saturated zone is established. If the underlying media is below the freezing point, accretive ice formation takes place. This process has previously been crudely parameterized or modelled numerically. Such ice is called either superimposed ice on glaciers or basal ice on bare land. Using theory derived from sea‐ice formation, an analytical solution to basal ice growth is proposed. Results are compared against growth rates derived from numerical modelling. In addition, model results are compared to field observations of ice temperatures. The analytical solution is further extended to account for the temperature gradient inside the underlying media and the variable thermal properties of the underlying media. In the analysis, observations and references have predominantly relied on knowledge from glaciers. However, the process of accretive ice growth is equally important in seasonal snow packs with a cold snow‐ground interface and on Arctic sea ice where the ice‐snow interface is well below freezing point. The simplification of this accretive ice growth problem makes the solution attractive for incorporation in large‐scale cryospheric models. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
As part of an integrated study of the hydrology, meltwater quality and dynamics of the Haut Glacier d'Arolla, Switzerland, the glacier's drainage network structure was determined from patterns of dye recovery in 342 injection experiments conducted from 47 moulins distributed widely across the glacier. This structure was compared with theoretical predictions based upon reconstructed patterns of water flow governed by (a) the subglacial hydraulic potential surface, and (b) the subglacial bedrock surface. These reconstructions were based on measurements of ice surface and bedrock topography obtained by a combination of ground survey and radio-echo sounding techniques. The two reconstructions simulate the drainage system structures expected for (a) closed channels, in which water is pressurized by the overlying ice, and (b) gravity-driven, open-channel flow. The closed-channel model provides the best fit to the observed structure, even though theoretical calculations suggest that, under summer discharge conditions, open-channel flow may be widespread beneath the glacier. Possible reasons for this apparent discrepancy are discussed.  相似文献   

13.
14.
Blind predictions for the response of the 1/4-scale reinforced concrete Hualien (Taiwan) containment model during forced vibration tests are compared with the observed data. The predictions obtained by the CLASSI approach reflect the experimental conditions prior to and after backfill of the soil surrounding the embedded foundation. The experimental data show a strong and unexpected coupling between the response in the NS and EW directions which is not present in the results for the axisymmetric theoretical models. Also, significant differences can be seen between the experimental responses in the two orthogonal horizontal directions which minimize cross-axis coupling. Although these differences are not accounted for in the theoretical models, the discrepancies between predictions and observations are within the uncertainty of the structural and geotechnical data. The obtained differences between predictions and observations give an excellent measure of the prediction error that can be expected in this type of analysis from uncertainty in the data. A detailed assessment of the initial structural and geotechnical data based on extensive comparisons with the results of previous identification studies is also presented. Finally, comparisons between the observed response and calculations based on revised models for the structure and the soil show that current methods of analysis can account accurately for the observed response.  相似文献   

15.
Spatial heterogeneity of soil has great impacts on dynamic processes of the hydrological systems. However, it is challenging and expensive to obtain spatial distribution of soil hydraulic properties, which often requires extensive soil sampling and observations and intensive laboratory analyses, especially in high elevation, hard to access mountainous areas. This study evaluates the impacts of soil heterogeneity on hydrological process in a high elevation, topographically complex watershed in Northwest China. Two approaches were used to derive the spatial heterogeneity of soil properties in the study watershed: (1) the spatial clustering method, Full‐Order‐CLK was used to determine five soil heterogeneous clusters (configurations 97, 80, 60, 40 and 20) through large number of soil sampling and in situ observations, and (2) the average values of soil hydraulic properties for each soil type were derived from the coarse provincial soil data sets (Gansu Soil Handbook at 1 : 1 000 000 scale). Subsequently, Soil and Water Assessment Tool model was used to quantify the impact of the spatial heterogeneity of soil hydraulic properties on hydrological process in the study watershed. Results show the simulations by Soil and Water Assessment Tool with the spatially clustered soil hydraulic information from the field sampling data had much better representation of the soil heterogeneity and had more accurate performance than the model using the average soil property values for each soil type derived from the coarse soil data sets. Thus, incorporating detailed field sampling, soil heterogeneity data greatly improve performance in hydrological modelling. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Numerical experiments suggest that the last glaciation severely affected the upper lithosphere groundwater system in NW Poland: primarily its flow pattern, velocities and fluxes. We have simulated subglacial groundwater flow in two and three spatial dimensions using finite difference codes for steady‐state and transient conditions. The results show how profoundly the ice sheet modifies groundwater pressure heads beneath and some distance beyond the ice margin. All model runs show water discharge at the ice forefield driven by ice‐sheet‐thickness‐modulated, down‐ice‐decreasing hydraulic heads. In relation to non‐glacial times, the transient 3D model shows significant changes in the groundwater flow directions in a regionally extensive aquifer ca. 90 m below the ice–bed interface and up to 40 km in front of the glacier. Comparison with empirical data suggests that, depending on the model run, only between 5 and 24% of the meltwater formed at the ice sole drained through the bed as groundwater. This is consistent with field observations documenting abundant occurrence of tunnel valleys, indicating that the remaining portion of basal meltwater was evacuated through a channelized subglacial drainage system. Groundwater flow simulation suggests that in areas of very low hydraulic conductivity and adverse subglacial slopes water ponding at the ice sole was likely. In these areas the relief shows distinct palaeo‐ice lobes, indicating fast ice flow, possibly triggered by the undrained water at the ice–bed interface. Owing to the abundance of low‐permeability strata in the bed, the simulated groundwater flow depth is less than ca. 200 m. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Hillslopes turn precipitation into runoff and thus exert important controls on various Earth system processes. It remains difficult to collect reliable data necessary for understanding and modeling these Earth system processes in real catchments. To overcome this problem, controlled experiments are being conducted at the Landscape Evolution Observatory at Biosphere 2, The University of Arizona. Previous experiments have revealed differences in hydrological response between 2 landscapes within Landscape Evolution Observatory, even though both landscapes were designed to be identical. In an attempt to discover where the observed differences stem from, we use a fully 3‐dimensional hydrological model (CATchment HYdrology) to show the effect of soil water retention characteristics and saturated hydraulic conductivity on the hydrological response of these 2 hillslopes. We also show that soil water retention characteristics can be derived at hillslope scale from experimental observations of soil moisture and matric potential. It is found that differences in soil packing between the 2 landscapes may be responsible for the observed differences in hydrological response. This modeling study also suggests that soil water retention characteristics and saturated hydraulic conductivity have a profound effect on rainfall–runoff processes at hillslope scale and that parametrization of a single hillslope may be a promising step in modeling rainfall–runoff response in real catchments.  相似文献   

18.
Hydraulic stimulation and geothermal reservoir operation may compromise the rock mechanical stability and trigger microseismic events. The mechanisms leading to this induced seismicity are still not completely understood. It is clear that injection causes an overpressure that reduces the effective stress, bringing the system closer to failure conditions. However, rock instability may not result only from hydraulic effects, but also from thermal effects. In fact, hydro-mechanical (i.e., isothermal) models often fail to reproduce field observations because the injection of cold water into a hot reservoir induces thermal stresses due to rock contraction. Thus, rock instability is likely to result from the superposition of hydraulic and thermal effects. Here, we perform coupled thermo-hydro-mechanical and hydro-mechanical simulations to investigate the effects of cold water injection in a fracture zone-intact rock system. Results show that thermal effects induce a significant perturbation on the stress in the intact rock affected by the temperature drop. This perturbation is likely to trigger induced seismicity in the surroundings of critically oriented fractures near the injection well. Hydro-mechanical simulations show that the behavior depends on the orientation of the faults and on the initial stress tensor. In the direction of the fractures, where the strains are more constrained, total stress increases with increasing pressure; thus, deviatoric stress increases or decreases depending on the initial stress state. The comparison between hydraulic and thermal effects shows that, when the largest confining stress acts perpendicular to the fractures, thermoelastic effects dominate and could trigger induced seismicity.  相似文献   

19.
Theoretical studies of glacial outburst floods (jökulhlaups) assume that: (i) intraglacial floodwater is transported efficiently in isolated conduits; (ii) intraglacial conduit enlargement operates proportionally to increasing discharge; (iii) floodwater exits glaciers through pre‐existing ice‐marginal outlets; and (iv) the morphology and positioning of outlets remains fixed during flooding. Direct field observations, together with historical jökulhlaup accounts, confirm that these theoretical assumptions are not always correct. This paper presents new evidence for spatial and temporal changes in intraglacial floodwater routing during jökulhlaups; secondly, it identifies and explains the mechanisms controlling the position and morphology of supraglacial jökulhlaup outlets; and finally, it presents a conceptual model of the controls on supraglacial outbursts. Field observations are presented from two Icelandic glaciers, Skeiðarárjökull and Sólheimajökull. Video footage and aerial photographs, taken before, during and after the Skeiðarárjökull jökulhlaup and immediately after the Sólheimajökull jökulhlaup, reveal changes in floodwater routing and the positioning and morphology of outlets. Field observations confirm that glaciers cannot transmit floodwater as efficiently as previously assumed. Rapid increases in jökulhlaup discharge generate basal hydraulic pressures in excess of ice overburden. Under these circumstances, floodwater can be forced through the surface of glaciers, leading to the development of a range of supraglacial outlets. The rate of increase in hydraulic pressure strongly influences the type of supraglacial outlet that can develop. Steady increases in basal hydraulic pressure can retro‐feed pre‐existing englacial drainage, whereas transient increases in pressure can generate hydraulic fracturing. The position and morphology of supraglacial outlets provide important controls on the spatial and temporal impact of flooding. The development of supraglacial jökulhlaup outlets provides a new mechanism for rapid englacial debris entrainment. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
The field deployment of a heated distributed temperature sensor (DTS) for over three years has revealed two obstacles to estimating soil moisture (θ) that may hamper subsurface DTS applications as well as use of other subsurface thermal probes. The first observed obstacle was a hysteretic response of the DTS sensor. The relationship between θ and the temperature response (?T) within the cable was not only dependent on θ of the soil, but also on the previous wetting and drying cycles leading to that state. The second observed obstacle was soil structure healing. Soil structure healing causes the relationship between ?T and θ to evolve through time; this calibration curve becomes flatter, or less sensitive, as the surrounding soil makes better contact with the cable. Effects of the hysteretic response of the instrument and soil structure healing are largely the result of small gaps between the cable and soil. These small gaps can be approximated by a contact resistance between the cable and soil. In this article we characterize the occurrence of hysteretic and soil structure healing effects from field data and parameterize contact resistance by simulating heat transfer using a numerical modelling approach Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号