首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study was carried out in Tungnath alpine meadows of Kedarnath Wild Life Sanctuary, Western Himalaya from subalpine to upper alpine zone. A total of four summits were selected along an altitudinal gradient and sampled for detailed vegetation analysis using multi summit approach as per Global observation research initiative in alpine environments(GLORIA). Species richness, diversity, and evenness among four summits as well as the interaction between environmental variables with plant communities were assessed. Monthly mean soil temperature was calculated using data retrieved from geo-precision temperature logger in order to identify the trend of soil temperature among different season and altitudinal gradient and its implications to plant communities. Soil samples were analyzed fromeach summit by collecting randomized composite soil samples. The indirect non-metric multidimensional scaling(NMDS) and direct canonical correspondence analysis(CCA) tools of ordination techniques to determine the linkage between plant species from various sample summits and biotic/abiotic environmental gradients were used in the present study. The results of the study demonstrated increase in species richness as soil temperature increases, the ecotone representing summits were found most warm summits followed by highest species richness. Annual soil temperature increased by 1.43°C at timberline ecotone. Whereas, at upper alpine zone the soil temperature increased by 0.810 C from year 2015 to 2016. S?rensen's similarity index was found to be increased between subalpine and upper alpine zone with increase in the presence of subalpine plant species at upper alpine zone. Both the ordination tools separate the subalpine summit and their respective vegetation from summits representingtimberline ecotone and upper alpine zone. Soil p H, altitude, soil cation exchange capacity were found as the key abiotic drivers for distribution of plant species.  相似文献   

2.
The Himalaya harbor rich floristic diversity which is of immense scientific interest and socio-economic importance.In this study, floristic diversity of a remote alpine valley has been studied based on information extracted from remotely sensed satellite data along with field surveys undertaken during 2008-2014.Analysis of vegetation information from satellite data revealed that ~75% of the area is covered with natural vegetation which comprises lush green coniferous forests, alpine pastures and alpine scrub lands.With inputs from vegetation information extracted from satellite data, comprehensive field surveys were planned to document the floristic diversity of the region.Analysis of species composition showed a total of 285 plant species,belonging to 191 genera in 60 families.Of these, 250 species are herbs, 14 shrubs, 2 sub-shrubs and 19 trees.The dicotyledons are represented by 240 species, monocotyledons 30, gymnosperms 04, andpteriodophytes 11 species.Asteraceae is the largest family with 35 species.During the present study, 5species(Corydalis cashmeriana, Hippophae rhamnoides, Primula minutissima, Saussurea sacra and Inula orientalis) have been recorded for the first time from this Himalayan region.The study demonstrates the benefits of geo-informatics in floristic studies, particularly the robustness of remotely sensed data in identifying areas with potentially high species richness, which would be otherwise difficult in a complex mountainous terrain using traditional floristic surveys alone.The present study is expected to provide baseline scientific data for cutting edge studies relating to long term ecological research, bioprospecting, possible impacts of changing climate on vegetation and sustainable use of plant resources in this Himalayan region.  相似文献   

3.
Owing to a predicted rise in temperature, increase in precipitation and the escalating anthropogenic stresses, the Himalayan ecosystems are the most threatened non-polar regions of the world. In the past, there have been racing extinctions and range shifts of several life forms in this region, particularly of the plant species. Therefore, consistent qualitative and quantitative records on botanical baseline data on a regular basis are indispensable. The current communication attempts to provide a detailed account on the current state of knowledge and research gaps in floristic studies of Himachal Pradesh, Western Himalaya. Based on an extensive review of more than 140 studies in the form of scientific peer reviewed literature on floristics, medicinal and aromatic plants(MAPs), rare, endangered, threatened and endemic species and ethno-botany, it is revealed that the number of floristic studies in Himachal Pradesh have surged in the past years but studies pertaining to the lower plants remain meagre. Unfortunately, the remote valleys including micro-watersheds lying in the coldarid regions are relatively less studied in terms of available growing stock and population status of MAPs. Depleting traditional ethno-botanical knowledge has been the major concern and, many threatened MAPs need to be accessed globally following IUCN standards. Thus, documentation of the conservation status of key MAPs, setting aside conservation areas around viable populations of threatened species, developing germplasm banks of the priority MAPs and monitoring the impacts of climate change has been suggested.  相似文献   

4.
Introduction High mountain ecosystems are comparatively thrilling and sensitive at least at the upper elevation levels, and are determined by abiotic climate related ecological factors. Therefore, the ecosystems at the low temperature limits of plant life are generally considered to be particularly sensitive to climate changes (Koerner 1999). As temperature is a key factor for high mountain plants (Koerner and Larcher 1988, Gottfried et al. 1998), an upward migration of species must be conse…  相似文献   

5.
Implementing conservation actions on-the-ground is not a straightforward process,especially when faced with high scientific uncertainty due to limited available information. This is especially acute in regions of the world that harbor many unique species that have not been well studied,such as the alpine zone of the Hengduan Mountains of Northwest Yunnan (NWY),a global biodiversity hotspot and site of The Nature Conservancy’s Yunnan Great Rivers Project. We conducted a quantitative,but rapid regional-level assessment of the alpine flora across NWY to provide a broad-based understanding of local and regional patterns of the alpine flora,the first large-scale analysis of alpine biodiversity patterns in this region. Multivariate analyses were used to classify the major plant community types and link community patterns to habitat variables. Our analysis indicated that most species had small distributions and/or small population sizes. Strong patterns emerged with higher diversity in the more northern mountains,but beta diversity was high,averaging only 10% among sites. The ordinations indicated that elevation and geographic location were the dominant environ-mental gradients underlying the differences in the species composition among communities. The high beta diversity across the alpine of these mountains implies that conservation strategies ultimately will require the protection of large numbers of species over a large geographical area. However,prioritiza-tion should be given to areas where potential payoffs are greatest. Sites with high species richness also have a greater number of endemic species,and,by focusing efforts on these sites,conservation investments would be maximized by protecting the greatest number of unique species.  相似文献   

6.
The campo rupestre sensu lato is a vegetation type that occurs in South American mountains, supports a distinctive flora characterized by high rates of endemism, high herbaceous species richness and often-neglected but also species-rich of the arboreal stratum. We aimed to investigate how environmental factors and elevation are associated with the distribution and diversity of woody species in different rupestrian vegetation types across South America. Using a database of 2,049 woody species from 185 sites across four vegetation types within the campo rupestre, we assessed how the vegetation types were grouped according to their floristic composition and number of shared indicator species, as well as by using different beta diversity indices. The most important variables from a set of 27 variables(e.g. altitude, geo-edaphic and climatic) explaining species distribution were identified using redundancy analysis(RDA) and variation partitioning methods. The distribution of vegetation types was related to both environmental and spatial fractions, with a set of 17 variables retained(e.g. rockiness, grass cover and temperature seasonality as the most important variables). There was an association between the floristic composition of each vegetation type and the elevation range. Although the identified vegetation types are floristically related, they are distinguished by exclusive and habitat-specialist woody species. This uniqueness of vegetation types should be considered in terms of complementarity for the conservation of campos rupestres.  相似文献   

7.
The present study highlights the rich species diversity of higher plants in the Bhabha Valley of western Himalaya in India. The analysis of species diversity revealed that a total of 313 species of higher plants inhabit the valley with a characteristic of moist alpine shrub vegetation. The herbaceous life forms dominate and increase with increasing altitude. The major representations are from the families Asteraceae, Rosaceae, Lamiaceae and Poaceae, suggesting thereby the alpine meadow nature of the study area. The effect of altitude on species diversity displays a hump-shaped curve which may be attributed to increase in habitat diversity at the median ranges and relatively less habitat diversity at higher altitudes. The anthropogenic pressure at lower altitudes results in low plant diversity towards the bottom of the valley with most of the species being exotic in nature. Though the plant diversity is less at higher altitudinal ranges, the uniqueness is relatively high with high species replacement rates. More than 90 % of variability in the species diversity could be explained using appropriate quantitative and statistical analysis along the altitudinal gradient. The valley harbours 18 threatened and 41 endemic species, most of which occur at higher altitudinal gradients due to habitat specificity.  相似文献   

8.
Based on data from 22 sample plots and applying the Canonical Correspondence Analysis (CCA),this paper discusses the vegetation-environment relationships between the northern slope of Karlik Mountain and Naomaohu Basin,which is situated in the easternmost end of the Tianshan Mountains,Xinjiang Uygur Autonomous Region,China.For the zonal vegetation,community diversity of mountain vegetation is higher than that of the desert vegetation due to environmental factors.The CCA ordination diagram revealed that the composition and distribution of vegetation types are mainly determined by altitude,soil pH and soil salt content.With increasing elevation,the soil pH and total salt content decrease but the contents of soil organic matter,soil water,total nitrogen and total phosphorus increase gradually.In the CCA ordination diagrams,the sample plots and main species can be divided into five types according to their adaptations to the environmental factors.Type I is composed of desert vegetation distributed on the low mountains,hills,plains and deserts below an elevation of 1900 m;type II is distributed in the mountain and desert ecotone with an elevation of 1900-2300 m,and includes steppe desert,desert steppe and wetland meadow;type III is very simply composed of only salinized meadow;type IV is distributed above an elevation of 2300 m,containing mountain steppe,meadow steppe,subalpine meadow and alpine meadow;type V only contains salinized meadow.The results show that with increasing elevation,species combination changes from the xerophytic shrubs,semi-shrubs and herbs distributed in the low altitude zone with arid climate to the cold-tolerant perennial herbs growing in the high altitudinal zone with cold climate.  相似文献   

9.
In this study, Land Surface Temperature(LST) and its lapse rate over the mountainous Kashmir Himalaya was estimated using MODIS data and correlated with the observed in-situ air temperature(Tair) data. Comparison between the MODIS LST and Tair showed a close agreement with the maximum error of the estimate ±1°C and the correlation coefficient 0.90. Analysis of the LST data from 2002-2012 showed an increasing trend at all the selected locations except at a site located in the southeastern part of Kashmir valley. Using the GTOPO30 DEM, MODIS LST data was used to estimate the actual temperature lapse rate(ATLR) along various transects across Kashmir Himalaya, which showed significant variations in space and time ranging from 0.3°C to 1.2°C per 100 m altitude change. This observation is at variance with the standard temperature lapse rate(STLR) of 0.65°C used universally in most of the hydrological and other land surface models. Snowmelt Runoff Model(SRM) was used to determine the efficacy of using the ATLR for simulating the stream flows in one of the glaciated and snow-covered watersheds in Kashmir. The use of ATLR in the SRM model improved the R2 between the observed and predicted streamflows from 0.92 to 0.97.It is hoped that the operational use of satellite-derived LST and ATLR shall improve the understanding and quantification of various processes related to climate, hydrology and ecosystem in the mountainous and data-scarce Himalaya where the use of temperature and ATLR are critical parameters for understanding various land surface and climate processes.  相似文献   

10.
Understanding the factors that drive variation in species distribution is a central theme of ecological research. Although several studies focused on alpine vegetation, few efforts have been made to identify the environmental factors that are responsible for the variations in species composition and richness of alpine shrublands using numericalmethods. In the present study, we investigated vegetation and associated environmental variables from 45 sample plots in the middle Qilian Mountains of the northwestern China to classify different community types and to elucidate the speciesenvironment relationships. We also estimated the relative contributions of topography and site conditions to spatial distribution patterns of the shrub communities using the variation partitioning. The results showed that four shrub community types were identified and striking differences in floristic composition were found among them. Species composition greatly depended on elevation, slope,shrub cover, soil p H and organic carbon. The important determinants of species richness were soil bulk density and slope. No significant differences in species richness were detected among the community types. Topography and site conditions had almost equal effects on compositional variation. Nonetheless,a large amount of the variation in species composition remained unexplained.  相似文献   

11.
The study intended to describe the alpine vegetation of a protected area of the northwestern Himalaya and identify the important environmental variables responsible for species distribution. We placed random plots covering different habitats and altitude to record species composition and environmental variables. Vegetation was classified using hierarchical cluster analysis and vegetation-environment relationships were evaluated with Canonical Correspondence Analysis. Four communities, each in alpine shrub and meadows were delineated and well justified in the ordination plots. Indicator species for the different communities were identified. Maximum species richness and diversity were found in community IV among shrub communities and community II among the meadows. Studied environmental variables explained 61.5% variation in shrub vegetation and 59.8% variation in meadows. Soil variables explained higher variability (∼35%) than spatial variables (∼21%) in both shrubs and meadows. Altitude, among the spatial variables and carbon/nitrogen ratio and nitrogen among the soil variables explained maximum variation. About 40% variations left unexplained. Latitude and species diversity among the other variables had significant correlation with ordination axes. Study showed that altitude and C/N ratio played a significant role in species composition. Extensive sampling efforts and inclusion of other non-studied variables are also suggested for better understanding.  相似文献   

12.
《山地科学学报》2020,17(10):2405-2417
Ohud mountain is one of the main important historic sites in the Arab Peninsula, and it is distinguishable over the rest of the mountains in the region. No extensive floristic survey has been carried out on Ohud mountain because of the rugged topography of this mountain. The current study investigates the floristic diversity and the correspondence of environmental factors of the phytogeographical distribution of plants, based on the floristic analysis of the present region. The research question is about the relationships between the species diversity and the human impacts of populated area at lowlands around Ohud mountain. A total of 59 species belonging to 56 genera and 28 families were recorded. Asteraceae had the highest contribution, about 12% of the total plant species. The analysis of the life forms demonstrated the prevalence of therophytes(68%) followed by chamaephytes(24%), indicating the adaptation of these life forms to hyperarid conditions. The chorological analysis indicated the predominance of the bi-regional taxa over the other phytochoria. Most of the recorded plant species belong to Saharo-Arabian and Sudano-Zambezian(24%) phytochoria. TWINSPAN analysis was performed to detect the indicator species of different vegetation groups and confirmed by detrended correspondence analysis(DCA or DECORANA). It is concluded that species richness and diversity revealed clear variation along the mountain and among the studied sites. Plant species diversity and richness were more pronounced in the intermediate portion of the elevation gradients across the mountain, with a decrease in the high altitudinal belts. The decrease was also recorded at the lower altitudes, where human impacts clearly affected vegetation; leading to a decrease in alpha diversity. In addition, the beta diversity among moderately highlands and lowlands was considerably high indicating the heterogeneous species composition among the studied sites along mountain elevations. The general pattern of vegetation groups distribution is controlled by a number of environmental factors; such as latitude, longitude, elevation, organic matter and some anions and cations. A Canonical Correspondence Analysis(CCA) ordination revealed that the vegetation structure has a strong association with the latitude of the mountain followed by organic matter and Magnesium. It is recommended that the populated area should be subjected to restoration of mountain ecosystem that might be degraded by human activities.  相似文献   

13.
The investigation of distribution patterns of species diversity is significant for successful biodiversity conservation. The spatial patterns of vegetation and different life-forms species diversity along an elevation gradient in the middle section of the southern slope of the Tianshan Mountains in Xinjiang, China were explored, using the detrended canonical correspondence analysis(DCCA) and the generalized additive model(GAM) methods based on a field survey of 53 sampling plots. In this work 158 species of seed plants were recorded, including 141 herbaceous, 14 shrub, and 2 tree species, in which the woody plants are very limited. 53 sampling plots were classified into 9 major plant communities. The results indicate that the herb communities were the most sensitive to changes in elevation gradient. The diversity indices of the community as a whole presented bimodal patterns. The peak values for the species diversities were found in the transition region between mountain steppe desert and mountain desert steppe(2,200–2,300m), and in the alpine grassland region(2,900–3,100m), while maximum species diversities were in the areas of intermediate environmental gradient. The main environmental factors on the distribution patterns in plant diversity were the elevation, soil water, total nitrogen, available nitrogen, organic matter, and total salt. The response tendency of the four diversity indices for the whole community to the soil environment was the same as that of the herb layers.  相似文献   

14.
Due to the Tibetan Plateau's unique high altitude and low temperature climate conditions,the region's alpine steppe ecosystem is highly fragile and is suffering from severe degradation under the stress of increasing population,overgrazing,and climate change.The soil stoichiometry,a crucial part of ecological stoichiometry,provides a fundamental approach for understanding ecosystem processes by examining the relative proportions and balance of the three elements.Understanding the impact of degradation on the soil stoichiometry is vital for conservation and management in the alpine steppe on the Tibetan Plateau.This study aims to examine the response of soil stoichiometry to degradation and explore the underlying biotic and abiotic mechanisms in the alpine steppe.We conducted a field survey in a sequent degraded alpine steppe with seven levels inNorthern Tibet.The plant species,aboveground biomass,and physical and chemical soil properties such as the moisture content,temperature,pH,compactness,total carbon(C),total nitrogen(N),and total phosphorus(P)were measured and recorded.The results showed that the contents of soil C/N,C/P,and N/P consistently decreased along intensifying degradation gradients.Using regression analysis and a structural equation model(SEM),we found that the C/N,C/P,and N/P ratios were positively affected by the soil compactness,soil moisture content and species richness of graminoids but negatively affected by soil pH and the proportion of aboveground biomass of forbs.The soil temperature had a negative effect on the C/N ratio but showed positive effect on the C/P and N/P ratios.The current study shows that degradation-induced changes in abiotic and biotic conditions such as soil warming and drying,which accelerated the soil organic carbon mineralization,as well as the increase in the proportion of forbs,whichwere difficult to decompose and input less organic carbon into soil,resulted in the decreases in soil C/N,C/P,and N/P contents to a great extent.Our results provide a sound basis for sustainable conservation and management of the alpine steppe.  相似文献   

15.
Development and Applications of Dome A-DEM in Antarctic Ice Sheet   总被引:1,自引:0,他引:1  
Dome A, the highest dome of East Antarctic Ice Sheet, is being an area focused by international Antarctic community after Chinese Antarctic Expedition finally reached there in 2005, and with the ongoing International Polar Year (IPY) during August 2007. In this paper two data processing methods are used together to generate two 100-m cell size digital elevation models (DEMs) of the Dome A region (Dome A-DEM) by using Cokriging method to interpolate the ICESat GLAS data, with Ihde-DEM as a constraint. It provides fundamental data to glaciological and geophysical investigation in this area. The Dome A-DEM was applied to determining the ice-sheet surface elevations and coordinates of the south and north summits, defining boundaries of basins and ice flowlines, deducing subglacial topography, and mapping surface slope and aspect in Dome A region. The DEM shows there are two (north and south) summits in Dome A region. The coordinate and the surface elevation of the highest point (the north summit) are 80°21′29.86″S, 77°21′50.29″E and 4092.71±1.43m, respectively. The ice thickness and sub-ice bedrock elevation at north summit are 2420m and 1672m, respectively. Dome A region contains four drainage basins that meet together near the south summit. Ice flowlines, slope and aspect in detail are also derived using the DEM.  相似文献   

16.
Are there some relationships among species diversity and soil chemical properties of high altitude natural grasslands? Plant community composition and chemical properties of soil samples were compared to investigate the relationship between soil and species diversity, and the richness in Tibetan alpine grasslands. Results showed that species diversity was significantly positively related to soil organic matter (SOM), total nitrogen (TN), available nitrogen (AN), total phosphorus (TP), available phosphorus (AP), and available potassium (AK) in the high alpine grasslands. Margalefs species richness index was also significantly positively related to SOM, TN, AN, and TP. Most soil chemical properties showed significantly positive correlation with species diversity and Margalef's richness index. Our results suggested that higher plant species richness index and diversity occurred in more fertile soil habitats in high altitude natural grassland community. In practice, fertilization management for the restoration of degraded grassland should be conducted with reference to the nutrient levels ofnatural grassland without the additional artificial fertilizer and with higher species-diversity and richness index.  相似文献   

17.
Nanda Devi Biosphere Reserve(NDBR) was declared as the first Himalayan Biosphere Reserve owing to its unique biological and cultural wealth. Its core zones, Nanda Devi National Park and Valley of Flowers National Park, are a UNESCO World Natural Heritage Site. In spite of lying at a high altitude, interplay of factors such as unique geographical location, climate, topography and wide altitudinal variations have endowed NDBR with a rich and diverse flora. Proportionately high percentage of endemic and near endemic plants makes NDBR a very important protected area from conservation point of view. However, its floristic wealth is facing unprecedented threats in the form of climate change and growing anthropogenic pressure. Hence, a need was felt to assess the directionality, quality and sufficiency of past and ongoing research for the conservation of floral and ethnobotanical wealth of NDBR in the absence of any such previous attempt. Based on an extensive review of more than 150 plant studies on NDBR, this communication provides a detailed account of the current state of knowledge and information gaps on flora, vegetation ecology, rare, endangered, threatened(RET) and endemic plants and ethnobotany. Priority research areas and management measures are discussed for the conservation of its unique floral wealth. Incomplete floral inventorization, lack of biodiversity monitoring, meagre studies on lower plant groups, population status of medicinal plants, habitat assessment of threatened taxa and geo-spatial analysis of alpine vegetation were identified as areas of immediate concern.  相似文献   

18.
In recent decades,overgrazing and the warming and drying climate have resulted in significant degradation of alpine grasslands in the source region of the Yellow River.However,research into the relationships between vegetation and soil properties has mainly focused on an overall degradation stage,and few studies have investigated which soil properties can impact vegetation change at different stages of degradation.Vegetation and soil properties were observed in the field and measured in the laboratory for different predefined stages of degradation for alpine grassland in Maduo County in the source region of the Yellow River.Results show that:1)the aboveground and belowground biomass,soil organic carbon,total nitrogen,nitrate,and ammonia content did not decrease significantly from the intact to moderate degradation stage,but decreased significantly at severe and very severe stages of degradation;2)dominant plant species shifted from gramineaes and sedges to forbs;3)the species richness and Pielou evenness indices decreased significantly at the very severe degradation stage,the Shannon-Wiener diversity index increased at the slight and moderate degradation,but decreased at the severe and very severe degradation stages;4)soil bulk density was the strongest soil driver for changes in the plant biomass and community diversity at the intact,slight and moderate degradation stages,whereas soil organic carbon and nitrate nitrogen content were the main driving factors for changes in plant biomass and diversity at the severe and very severe degradation stages.Our results suggest that there may be different interactions between soil properties and plants before and after moderate stages of degradation.  相似文献   

19.
Although snow cover plays an important role in structuring plant diversity in the alpine zone, there are few studies on the relationship between snow cover and species diversity of alpine meadows on the eastern Qinghai-Tibetan Plateau. To assess the effect of snow cover on plant species diversity of alpine meadows, we used ten parallel transects of 60 m × 1 m for this study and described the changes in species diversity and composition associated with snow depth. With the division of snow depth into six classes, the highest species richness (S) and species diversity (H′) occurred with an intermediate snow depth, i.e., class Ⅲ and class Ⅳ, showing a unimodal curve with the increase in snow depth. The relationship between snow depth and plant diversity (both richness and Shannon index) could be depicted by quadratic equations. There was no evident relationship between diversity (both S and H′) and soil water content, which implied that other more important factors influenced species diversity. The patterns of diversity found in our study were largely attributed to freeze-thaw alteration, length of growing season and disturbances of livestock grazing. Furthermore, snow depth affected species composition, as evaluated by the Sorensen's index of similarity. In addition, almost all species limited to one snow depth class were found only in class Ⅲand class Ⅳ, indicating that intermediate snow depth was suitable for the survival and growth of many alpine species.  相似文献   

20.
The high alpine and subalpine vegetation of Dinaric Alps is very diverse.These are conditional on genuine patterns of development of the geological substrate,climate,soil and terrain on the mountain world,which are interconnected and spatially,and ecologically away.Also,today high mountain vegetation is extremely important indicator of global changes.In this area are many refugia of glacial biodiversity.Very illustrative example for understanding the specific forms of ecological diversity is high alpine vegetation in the area of the Balkan Peninsula.Vegetation of alpine belt of Western Balkans and Bosnia and Herzegovina is differed by extremely high level of biological and ecological diversity.Climatogenous vegetation are alpine and sub-alpine pastures above of timberline,then extra zonal forms of vegetation-glaciers,rock creeps,breaches of rocks,alpine springs,marsh,and tall greenery.This vegetation is dominant determinant of alpine ecosystems that creates their unique physiognomy and also enables prime production of biomass.It is different with extraordinary floral richness,especially in a number of endemic species and glacier relicts that are included in a large number of phytocoenoses,many of which are of endemic.In syntaxonomic sense,alpine vegetation is differentiated into 10 classes:Elyno-Seslerietea,Juncetea trifidi,Salicetea herbaceae,Thalspietea rotundifolii,Asplenietea trichomanis,and Scheuchzerio-Caricetea fuscae,Montio-Cardaminetea,Loiseleurio-Vaccinietea,Mulgedio-Aconitetea and Molinio-Arrhenatheretea.These classes are differentiated into 20 vegetation orders,38 alliances and 190 associations and sub-associations.In total,that is 60 % of communities of total vegetation diversity of Bosnia and Herzegovina,and 12.5% of classes of highest syntaxonomic categories in vegetation diversity of Europe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号