首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
《Quaternary Science Reviews》2003,22(2-4):225-244
The Thebes Section in unglaciated southwestern Illinois contains a well preserved ∼500 kyr loess–paleosol sequence with four loesses and three interglacial soils. Various magnetic, mineralogical, and elemental properties were analyzed and compared over the thickness of soil sola. These proxies for soil development intensity have the following trend: Yarmouth Geosol>Sangamon Geosol>modern soil. Quartz/plagioclase, Zr/Sr, and TiO2/Na2O ratios were most sensitive to weathering. Frequency dependent magnetic susceptibility and anhysteretic remanent magnetization, greatest in A horizons, also correspond well with soil development intensity. Neoformed mixed-layered kaolinite/expandables, suggestive of a warm/humid climate, were detected in the Sangamon and Yarmouth soil sola. Clay illuviation in soils was among the least sensitive indicators of soil development. Differences in properties among interglacial soils are interpreted to primarily reflect soil development duration, with climatic effects being secondary. Assuming logarithmic decreases in weathering rates, the observed weathering in the Sangamon Geosol is consistent with 50 kyr of interglacial weathering (Oxygen Isotope Stage 5) compared to 10 kyr for the modern soil (Oxygen Isotope Stage 1). We propose that the Yarmouth Geosol in the central Midwest formed over 180 kyr of interglacial weathering (including oxygen isotope stages 7, 9, and 11).  相似文献   

2.
The Albany-Fraser Orogen (AFO), southeast Western Australia, is an underexplored, deeply weathered regolith-dominated terrain that has undergone complex weathering associated with various superimposed climatic events. For effective geochemical exploration in the AFO, integrating landscape evolution with mineralogical and geochemical variations of regolith and bedrock provides fundamental understanding of mechanical and hydromorphic dispersion of ore and pathfinder elements associated with the different weathering processes.In the Neale tenement, northeast of the AFO, a residual weathering profile that is 20-55 m thick was developed under warm and humid climatic conditions over undulating Proterozoic sheared granitoids, gneisses, schists and Au-bearing mafic rocks. From the base, the typical weathering profile consists of saprock, lower ferruginous saprolite, upper kaolinitic saprolite and discontinuous silcrete duricrust or its laterally coeval lateritic residuum. These types of duricrusts change laterally into areas of poorly-cemented kaolinitic grits or loose lateritic pisoliths and nodules.Lateritic residuum probably formed on remnant plateaus and was transported mechanically under arid climatic conditions over short distances, filling valleys to the southeast. Erosion of lateritic residuum exposes the underlying saprolite and, together with dilution by aeolian sands, constitutes the transported overburden (2-25 m thick). The reworked lateritic materials cover the preserved silcrete duricrusts in valleys. The lower ferruginous saprolite and lateritic residuum are well developed over mafic and sulphide-bearing bedrocks, where weathering of ferromagnesian minerals and sulphides led to enrichment of Fe, Cu, Ni, Cr, Co, V and Zn in these units. Kaolinitic saprolite and the overlying pedogenic silcrete are best developed over alkali granites and quartzofeldspathic gneisses, which are barren in Au and transition elements, and enriched in silica, alumina, rare earth and high field strength elements.A residual Au anomaly is formed in the lower ferruginous saprolite above a Au -bearing mafic intrusion at the Hercules prospect, south of the Neale tenement, without any expression in the overlying soil (< 20 cm). Conversely, a Au anomaly is recorded in the transported cover, particularly in the uppermost 3 m at the Atlantis prospect, 5 km southwest of the Hercules prospect. No anomalies have been detected in soils using five different size fractions (> 2,000 μm, 2,000-250 μm, 250-53 μm, 53-2 μm and < 2 μm). Therefore, soil cannot be efficiently applied as a reliable sampling medium to target mineralization at the Neale tenement. This is because mechanical weathering was interrupted by seasonal periods of intensive leaching under the present-day surface conditions and/or dilution by recently deposited aeolian sediments which obscure any signature of a potential Au anomaly in soils. Therefore, surface soil sampling should extend deeper than 20 cm to avoid dilution by aeolian sands and seasonal leaching processes. Regolith mapping and the distinction between the residual and transported weathering products are extremely significant to follow the distal or proximal mineralization.  相似文献   

3.
Economic important minerals and ore deposits are common in hydrothermal altered serpentinized zone. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite sensor is capable of discrimination of such hydrothermal mineralized zone and detection of hydrothermal altered minerals. In the present study, the hydrothermal altered serpentinized harzburgites of Wadi Hibi area of Northern Oman Mountains have been discriminated by using ASTER VNIR–SWIR spectral bands by image processing methods and the occurrences of Ni-magnesioferrite–magnetite–awaruite in the rocks are studied. The color composite RGB image developed using ASTER spectral bands 8, 4 and 1, mapped well the occurrence of weathered peridotites by pale green to dark blue in colors and discriminated the hydrothermally altered serpentinized rocks by pale brown to dark blue colors due to the strong absorption of OH and Mg–OH molecules that occurred in the serpentine minerals of the rocks in the study area. The ASTER band ratios 4/7, 4/1, and 2/3 × 4/3 RGB images studied are capable of discrimination of hydrothermal mineralized areas more clear by pale blue to purple colors due to the strong absorption of such hydroxyl bearing serpentine minerals. The studied image processing methods are evaluated by applying to the region of Wadi Sarami situated in the Semail ophiolite (Oman). In addition to that, the occurrence of serpentine minerals namely, lizardite and antigorite in the hydrothermally altered serpentinized region are detected qualitatively and quantitatively using Spectral Angle Mapper (SAM) supervised classification image processing method and studied.The interpreted images are verified in the field and checked for the occurrences of minerals including Ni-magnesioferrite, magnetite, pentlandite and awaruite and are confirmed through laboratory studies. Petrographic study of serpentinized harzburgites shows that the rocks consist predominantly of antigorite and lizardite serpentines, olivine and have the opaque minerals assemblage of Ni-magnesioferrite + magnetite + awaruite + pentlandite developed during serpentinization of the rock. The occurrences of such minerals are confirmed by XRD, electron microprobe analyses and spectral measurements in the laboratory.ASTER sensor proved its capability in discriminating the hydrothermal altered serpentinized zone and detecting the mineral occurrences and thus the study recommends the technique to the exploration geologists, scientists and mining geologists for mapping of such rocks and minerals in the similar arid region.  相似文献   

4.
The Dalucao deposit in western Sichuan Province, southwest China, is one of the largest and most extensive rare earth element (REE) deposits in the Himalayan Mianning–Dechang REE Belt. Moreover, this is the only deposit identified in the southern part of the belt. The deposit contains the No. 1, 2, and 3 orebodies. The No. 1 and 3 orebodies are hosted in two breccia pipes within syenite–carbonatite rocks that intrude a Proterozoic quartz–diorite pluton. Both breccia pipes have elliptical horizontal cross-sections at the surface, being 200–400 m long, 180–200 m wide, and extending to > 450 m depth. The No. 1 and No. 3 orebodies have total thicknesses of 55–175 m and 14–58 m, respectively. REE mineralization is associated with four brecciation events that are recorded in both pipes. The ore grades in the No. 1 and 3 orebodies are similar, with the rocks containing 1.0–4.5% rare earth oxides (REOs). The No. 1 orebody is characterized by a mineral assemblage comprising fluorite + barite + celestite + bastnäsite (i.e., Type I), whereas the No. 3 orebody is characterized by an assemblage comprising fluorite + celestite + pyrite + muscovite + bastnäsite + strontianite (i.e., Type II). Significant amounts of weathered high-grade REE ore (up to 60 wt.% of the rock mass) is mainly present in the No. 1 orebody. This is the main ore-type targeted for exploration within the Dalucao deposit, but is rarely present in other deposits in the Mianning–Dechang REE Belt.Faulting and cryptoexplosive breccia events, possibly linked to movement on the Panxi Fault, were more common in the No. 1 orebody than in the No. 3 orebody. This facilitated the introduction of ore-forming hydrothermal fluids and provided space for the precipitation of REE minerals. Based on the present results, we infer that the Dalucao deposit was the product of multiple stages of ore formation. REE minerals formed in envelopes around, or fractures within, quartz, fluorite, calcite, barite, and celestite in the brecciated ores. The main REE minerals were deposited from hydrothermal fluids within cryptoexplosive breccia, followed by weathering that increased the ore grade. Petrographic studies and X-ray powder diffraction (XRD) analyses indicate that the weathered ore contains 5–60% REE minerals (including bastnäsite, parisite, and monazite), together with gangue (quartz, barite, celestite, and fluorite), large amount of clay minerals (smectite, illite, kaolinite, and sepiolite), and relict igneous minerals (quartz, albite, and K-feldspar). The weathered samples are strongly enriched in La (up to 92,390 ppm), Ce (up to 103,500 ppm), Pr (up to 8006 ppm), and Nd (up to 16,690 ppm) compared with the unweathered brecciated ores. Conversely, Sr concentrations are significantly more enriched in the brecciated ores (up to 256,500 ppm) than in the weathered ores (generally less than 2671 ppm with one exception of 37,850 ppm) due to less celestite. Calcite is largely absent from the weathered ores (except one sample with up to 30% mode), which contrasts with the brecciated ores that contain up to 75% calcite. The effects of weathering, oxidation, loss of ions, and hydration on the brecciated ores led to the refertilization of the REEs and an increase in the grade of the ore deposit.  相似文献   

5.
Mylonite textures in granodiorite boulders are responsible for higher rates of surface denudation of host rocks and the progressive development of unusual rock weathering features, termed weathering posts. These textures are characterized by smaller grain sizes, higher biotite content, and a higher biotite axial ratio in host rocks relative to weathering posts. Elemental concentrations do not show a significant difference between weathering posts and the host rocks in which they are found, and this reflects the absence of a weathering residue on the rock surfaces. Chemical weathering loosens the bonds between mineral grains through the expansion of biotite, and the loosened grains fall off or are blown off the boulder surface and continue their chemical alteration in the surrounding soil. The height of weathering posts on late Quaternary moraines increases at a linear rate of ~ 1.45 ± 0.45 cm (1000 yr)? 1 until post heights reach the diameter of host rocks. Such a rate of boulder denudation, if unrecognized, would generate significant errors (> 20%) in cosmogenic exposure ages for Pleistocene moraines. Given the paucity of boulders with diameters that significantly exceed 1.5 m, the maximum age of utility of weathering posts as a numeric age indicator is ~ 100 ka.  相似文献   

6.
Rapid weathering and erosion rates in mountainous tropical watersheds lead to highly variable soil and saprolite thicknesses which in turn impact nutrient fluxes and biological populations. In the Luquillo Mountains of Puerto Rico, a 5-m thick saprolite contains high microorganism densities at the surface and at depth overlying bedrock. We test the hypotheses that the organisms at depth are limited by the availability of two nutrients, P and Fe. Many tropical soils are P-limited, rather than N-limited, and dissolution of apatite is the dominant source of P. We document patterns of apatite weathering and of bioavailable Fe derived from the weathering of primary minerals hornblende and biotite in cores augered to 7.5 m on a ridgetop as compared to spheroidally weathering bedrock sampled in a nearby roadcut.Iron isotopic compositions of 0.5 N HCl extracts of soil and saprolite range from about δ56Fe = 0 to ? 0.1‰ throughout the saprolite except at the surface and at 5 m depth where δ56Fe = ? 0.26 to ? 0.64‰. The enrichment of light isotopes in HCl-extractable Fe in the soil and at the saprolite–bedrock interface is consistent with active Fe cycling and consistent with the locations of high cell densities and Fe(II)-oxidizing bacteria, identified previously. To evaluate the potential P-limitation of Fe-cycling bacteria in the profile, solid-state concentrations of P were measured as a function of depth in the soil, saprolite, and weathering bedrock. Weathering apatite crystals were examined in thin sections and an apatite dissolution rate of 6.8 × 10? 14 mol m? 2 s? 1 was calculated. While surface communities depend on recycled nutrients and atmospheric inputs, deep communities survive primarily on nutrients released by the weathering bedrock and thus are tightly coupled to processes related to saprolite formation including mineral weathering. While low available P may limit microbial activity within the middle saprolite, fluxes of P from apatite weathering should be sufficient to support robust growth of microorganisms in the deep saprolite.  相似文献   

7.
Weathering of basaltic ash in volcanic areas produces andosols, rich in allophane and ferrihydrite. Since the rate of mineral formation is very useful in climate and geochemical modelling, this study investigates Si isotope compositions of allophane as a proxy for mineral formation. Allophane formed in contrasting conditions in five Icelandic soil profiles displays silicon isotope signatures lighter than the basalt in less weathered soils (?0.64 ± 0.15‰), and heavier in more weathered organic-rich soils (+0.23 ± 0.10‰). The fate of the dissolved Si in those volcanic soils strongly depends on Al availability. In organic-rich soils, most of Al is humus-complexed, and the results support that Si precipitates as opaline silica by super-saturation, leaving an isotopically heavier dissolved Si pool to form allophane with uncomplexed Al. This study highlights that Si isotopes can be useful to record successive soil processes involved in mineral formation, which is potentially useful in environmental paleo-reconstruction.  相似文献   

8.
The Tso Morari serpentinites in the Ladakh area, northwest Himalaya, originated from the forearc mantle overlying the northward subducting Neo-Tethys lithosphere and the margin of the Indian continent. The serpentinites are characterized by high concentration of fluid-mobile elements (FME: As, Sb, B, Li, and U) compared to ophiolitic or abyssal serpentinites. The Pb isotopic compositions of serpentinites show influence of the subducted Indian continental lithosphere. Trace element concentrations of antigorite determined in situ with Laser Ablation High Resolution Inductively Coupled Mass Spectrometer (LA-HR-ICP-MS) show high contents of FME including Pb, in contrast to the spatially associated iron oxides. Rare earth elements (REE) and compatible elements, such as Sc and Co, remained immobile during the hydration, allowing the identification of the primary minerals (olivine or orthopyroxene) from which serpentine formed. Serpentinized olivine displays higher Sb and As concentrations (up to 1000 × PM) than serpentinized orthopyroxenes that are enriched in Pb, Cs and Li (2 to up to 10 × PM).We propose that the observed FME distribution in two types of serpentine reflect the differential incorporation of FME during the downward movement of the serpentinite along the subduction plane. At temperature lower than 400 °C, at shallow depths, olivine is preferentially serpentinized and incorporates elements that are fluid soluble at low temperatures, such as Sb and As. Above 400 °C, orthopyroxene is hydrated and incorporates Pb, Cs, Li and possibly Ba. Boron and U are incorporated in both types of serpentine suggesting that they are released from slabs at temperatures around 300–400 °C. The serpentine acts as a sink for water, but also for FME and transports them to deeper and hotter levels in the mantle, down to the isotherm 600–650 °C where dehydration occurs.  相似文献   

9.
Iron mobilisation from aquifer rocks in an important fractured aquifer system in South Africa is resulting in clogging of boreholes by Fe oxide minerals. Leach experiments using natural waters were conducted to determine the effects of redox conditions, pH lithology and presence of organic acids on the rate and extent of Fe dissolution from aquifer rocks, with the aim of clarifying the association of Fe clogging with geological formations that show Fe staining on weathering. The results indicate that the greatest amount of Fe (>30 mmol/kg rock) is leached from arenaceous rocks with low total Fe contents (49.0–75.0 mmol/kg) under anoxic conditions. Rocks with the highest Fe contents (>800 mmol/kg) generated low concentrations of Fe (<10 mmol/kg) even under favourable conditions of 0 mg/L DO and pH 3. The extent of Fe dissolution from the rocks was found to be most strongly dependent on the redox conditions, and the form of Fe present in the rock, with ascorbate-extracted amorphous Fe being the most mobile. The rate of dissolution is affected by pH and the presence of natural organic acids in the leachate. However, the effect of organic acids was only noticeable on arenaceous rocks.  相似文献   

10.
The Doriri Creek (DC) Ni–Pd–Pt prospect was discovered in 1966 in the Papuan Ultramafic Belt (PUB) in PNG. The DC was interpreted as a hydrothermal Ni accumulation. The DC is located in the southern proximity of Mt Suckling (~ 180 km SE of Port Moresby), where local intrusive rocks are intermediate to acid dykes and small stocks, within the tec tonized contact zone of the Australian and Woodlark Plates. The active volcanoes of Mount Victory and Waiowa indicate recent thermal activity in the area.The Doriri Creek prospect is the result of episodic hydrothermal fluid flow running through the Doriri prospect, that resulted in Ni concentration of up to 1.55 wt.%, formed by alteration of an ultramafic unit of peridotites/pyroxenites within a Mg-rich gabbronorite envelope. Ni was concentrated in chlorite and serpentine group minerals in addition to Fe oxides, with a minor amount in pentlandite in locally sulfidic samples. Ore mineralogy is also associated with a high phosphorous content as apatite, that concentrates LREE (light rare earth elements). Palladium concentrations are up to 0.37 ppm. Platinum is present in concentrations up to 0.06 ppm within the ore.The alteration halo associated with Doriri Creek mineralization is ~ 100 m in width. Primary mineralogy comprises pyroxene, olivine and plagioclase, which have been altered extensively to amphibole and chlorite–serpentine group minerals. This halo is characterized by enrichments of U, K and W over background values.Local magnetite concentration is up to ~ 35% of whole rock, which is very pronounced in the sulfide rich area of the system. The top part of the DC system is overprinted by tropical weathering at metric scale, which displays LREE enrichment and positive Ce anomalies.The Papuan Ultramafic Belt is described as a highly prospective ground for hydrothermal Ni systems based on its availability of Ni, active thermal flow engines, and the geologic regional context dominated by mafic rock suites and the presence of carbonate/siliciclastic units.  相似文献   

11.
Large volumes of coal fly ash are continually being produced and stockpiled around the world and can be a source of environmentally sensitive trace elements. Whilst leaching tests are used for regulatory purposes, these provide little information about the true geochemical behaviour and ‘reactivity’ of trace elements in coal ash because they are poorly selective. Isotope dilution (ID) assays are frequently used in soil geochemistry as a means of measuring the reactive pools of trace metals that are in equilibrium with soil pore waters. This paper examines the applicability of multi-element ID assays in measuring the labile or reactive pool of Cd, Pb and Zn in a range of fresh and weathered fly ash, where pH is generally much more alkaline than in soils. The method generally worked well using 0.0005 M EDTA as a background electrolyte as it provided robust analytical ICP-MS measurements as well as fulfilling the important principle of ID that non-labile metal should not be solubilised. Reactive pools were equivalent to 0.5–3% of the total Pb pool and 4–13% of the total Cd pool. For Zn, where samples had pH < 11.5, the reactive Zn pool varied between 0.3% and 2%; when fresh ash samples with pH > 11.5 were tested, the method failed as the spiked isotope appeared to be sorbed or precipitated. Ash weathering was found to exert little impact on the lability of Cd, Pb and Zn. Isotope dilution results were compared with 0.43 M HNO3 and 0.05 M EDTA extractions, these commonly being used as analogues of the ID assay, and concluded that these can be used as fast, cost-effective and simple proxies for the ID assays. Results suggest that ID methods can be used to enhance knowledge of trace element behaviour in fresh and weathered fly ash.  相似文献   

12.
The fresh and weathered garnet amphibolites, from the Akom II area in the Archaean Congo Craton, were investigated to determine the S, Cu, Ni, Cr, and Au-PGE values. The garnet amphibolites are composed of amphibole, plagioclase, garnet, quartz, and accessory apatite, spinel, sericite, pyrite, chalcopyrite and non-identified opaque minerals. The presence of apatite, sericite, and two generations of opaque minerals suggests that they might be affected by hydrothermal alteration. They are characterized by moderate Al2O3, Fe2O3, CaO, V, Zn, and Co contents with negative Eu- and Ce-anomalies. The sulfur concentrations are variable (380–1710 ppm). According to the sulfur contents, amphibolites can be grouped into two: amphibolites with low contents, ranging between 380 and 520 ppm (av. = 457 ppm); and amphibolites with elevated contents, varying from 1140 to 1710 ppm (av. = 1370 ppm). Amphibolites contain contrast amounts of Cu (∼ 1800 to 5350 ppm) while nickel contents attain 121 ppm. Chromium contents vary from 43 to 194 ppm. Sulfur correlates positively with Cu and Cr, but negatively with Ni and Ni/Cr ratio. The total Au-PGE contents attain 59 ppb.The presence of amphibole and feldspars confirms the low degree of amphibolite weathering. The secondary minerals are constituted of kaolinite, gibbsite, goethite and hematite. Despite the accumulation of some elements, the major and trace element distribution is quite similar to that of fresh amphibolites. Nevertheless, the weathering processes lead to the depletion of several elements such as S (239–902 ppm), Cu (520–2082 ppm), and Ni (20–114 ppm). Chromium and Au-PGE show an opposite trend marked by a slight enrichment in the weathered amphibolites. Amidst the Au-PGE, Pd (60 ppb) and Pt (23 ppb) have elevated contents in the fresh rocks as well as in the weathered materials. The PPGE contents are much higher than IPGE contents in both types of materials. The Pd/Pt, Pd/Rh, Pd/Ru, Pd/Ir, Pd/Os, and Pd/Au values indicate that Pt, Rh, Ru, Ir, Os and Au are more mobile than Pd. Chondrite-normalized base metal patterns confirm the abundance of Pd and the slight enrichment of Au-PGE in weathered rocks. Palladium, Rh and Ir are positively correlated with S. Conversely Pt and Ru are negatively correlated with S and Au is not correlated with S. Despite the high and variable S and Cu contents, the garnet amphibolites possess low Au-PGE and other base metals contents.  相似文献   

13.
Particle-size analysis is a useful way to determine the source and deposition of sediments. However, there are inconsistencies when this method is used to constrain the origin of the red soils in south-eastern China. To address this problem, we performed a detailed grain-size analysis of two red soil sequences in Xuancheng and Qiliting located along the lower reaches of the Yangtze River. By comparing their particle-size characteristics with those of the loess on the Loess Plateau in northern China, we found that the aeolian samples plot in a particular zone in the CM (grain size of the cumulative 1% versus median grain size) plot and cluster nearer the lower left corner of the plot as their degree of weathering increases. The grain-size features suggest that the onset of large-scale aeolian deposition along the lower reaches of the Yangtze River occurred at approximately 0.8 Ma. Although both sedimentary sorting and post-depositional weathering control the grain-size variations in the deposits, the extremely strong weathering due to the humid, warm climate along the lower reaches of the Yangtze River primarily modified the grain-size distributions of the primary red soil deposits. Strong weathering increased the very fine silt (2–5 μm) fraction and decreased the coarse (>63 μm) fraction. We also found that certain grain-size parameters of the red soils varied with the weathering intensity, which can be used as indicators of palaeoclimate variations. The grain size variations in both the Qiliting and Xuancheng sequences suggest that the mid-Pleistocene climate transition (MPT) may have affected the lower reaches of the Yangtze River at 0.9 Ma.  相似文献   

14.
《Applied Geochemistry》2006,21(10):1750-1759
Low-molecular-weight (LMW) organic acids occur widely in soils. Results in pure mineral systems and podzols suggest that LMW organic acids can promote the dissolution of Al from kaolinite, Al oxides and soils, but limited information is available concerning the role of these organic acids on Al mobilization in variable charge soils as yet. This paper deals with the effect of LMW organic acids on Al mobilization and mobilized Al distributed between the solution phase and exchangeable sites in two acidic variable charge soils. The results indicated that LMW organic acids accelerated Al mobilization through proton- and ligand- promoted reactions. The ability of different organic acids to mobilize Al followed the order: citric acid > oxalic acid > malonic acid > malic acid > tartaric acid > salicylic acid > lactic acid > maleic acid. This order was in general agreement with the magnitude of the stability constants of Al–organic acid complexes. The ratio of soluble Al to exchangeable Al also increased as the stability constants increased. These results showed that the organic acids with strong Al-complexation capacity were most effective in Al mobilization, whereas the weak organic acids promoted the retention of mobilized Al by the soil exchangeable sites. Increase in both organic acid concentration and solution pH promoted Al mobilization and also increased the ratio of soluble Al to exchangeable Al due to the increase in the concentration of the effective organic ligands, especially in the strong organic acid systems. These findings may have their practical significance for establishing more effective amelioration procedures for variable charge soils with increased acidity and higher mobility of Al.  相似文献   

15.
This study investigated the distribution and sources of Cd in soils from a Cd-rich area in the Three Gorges region, China. The results showed that in the study area arable soils contain 0.42–42 mg kg−1 Cd with 0.12–8.5 mg kg−1 in the natural soils, corresponding to high amounts of Cd (0.22–42 mg kg−1) in outcropping sedimentary rocks in the area. Both lognormal distribution and enrichment factor (EF) plots were applied in an attempt to distinguish between geogenic and anthropogenic origins of Cd in the local soils. The lognormal distribution plots illustrated that geogenic sources dominated in soils with low and moderate Cd concentrations (<8.5 mg kg−1), whereas anthropogenic sources (agricultural activities, coal mining) significantly elevated Cd contents in some arable soils (>8.5 mg kg−1). The enrichment factor plots illustrated that the majority of the soil samples had EF values of <5, pointing to a geogenic origin of Cd in the soils, whereas some arable soils had EF values >5, pointing to an additional anthropogenic input of Cd to the soils. Sequential extraction results showed that Cd soluble in water and weak acid (water-soluble, exchangeable and carbonate fraction of the soil) accounts for an average of 31% of the total soil Cd, which indicates high potential for Cd mobility and bioavailability. The findings point to a potential health risk from Cd in areas with high geogenic background concentrations of this metal.  相似文献   

16.
Mineralization with ion adsorption rare earth elements (REEs) in the weathering profile of granitoid rocks from Nanling region of Southeast China is an important REE resource, especially for heavy REE (HREE) and Y. However, the Jurassic granites in Zhaibei which host the ion adsorption light REE (LREE) ores are rare. It is of peraluminous and high K calc-alkaline composition, which has similar geochemical features of high K2O + Na2O and Zr + Nb + Ce + Y contents and Ga/Al ratio to A-type granite. Based on the chemical discrimination criteria of Eby [Geology 20 (1992) 641], the Zhaibei granite belongs to A1-type and has similar source to ocean island basalts. The rock is enriched in LREE and contains abundant REE minerals including LREE-phosphates and halides. Minor LREE was also determined in the feldspar and biotite, which shows negligible and negative Eu anomalies, respectively. This indicates that the Zhaibei granite was generated by extreme differentiation of basaltic parent magmas. In contrast, granites associated with ion adsorption HREE ores contain amounts of HREE minerals, and show similar geochemical characteristics with fractionated felsic granites. Note that most Jurassic granitoids in the Nanling region contain no REE minerals and cannot produce REE mineralization. They belong to unfractionated M-, I- and S-type granites. Therefore, accumulation of REE in the weathering profile is controlled by primary REE mineral compositions in the granitoids. Intense fractional crystallization plays a role on REE enrichment in the Nanling granitoid rocks.  相似文献   

17.
《Applied Geochemistry》2006,21(4):580-613
To quantify and explain the contributions by pollution and chemical weathering to their composition, we studied the chemistries of springs and surface waters in the mountainous part of the Vouga River basin. Water samples were collected during a number of consecutive summer campaigns. Recharge rates were derived from monitored discharge rates within the basin. Very large contributions by meteoric, agricultural and domestic sources to the water chemistries were found, identified by the chloride, sulfate and nitrate concentrations: on average only 1/4 to 1/3 of the solutes could be attributed to chemical weathering. Two petrologic units characterize the river basin: granites and metasediments. The waters collected within metasediment units are distinct from those in granite terrain by a higher magnesium concentration. On that basis, it could be estimated that the Rio Vouga, when leaving the mountainous part of the basin, has for some 2/5 a signature determined by chemical weathering in the metasediments. The dominant primary minerals subject to chemical weathering are plagioclase (Pl) and biotite (in granite) or Pl and chlorite (in metasediment). Kaolinite, gibbsite and vermiculite are the major weathering products where annual precipitation (P) > 1000 mm y−1, and kaolinite, vermiculite and smectite where P was lower. Using an algorithm based on the ratio of dissolved silica to bicarbonate, the contributions of chemical weathering of primary minerals could be unraveled. The results show that in granite the export rate (as mol ha−1 y−1 wt%mineral−1) of oligoclase (Pl with An10–30) was 5.0 ± 2.6 and of biotite 3.2 ± 2.6, while in metasediment these rates for albite (Pl with An0–10) are 16.5 ± 8.9 and for chlorite are 0.5 ± 0.5. The observed decrease of dissolved silica in surface waters relative to springs was ascribed to (summer) uptake by aquatic biota.  相似文献   

18.
Soils derived from black shale can accumulate high concentrations of elements of environmental concern, especially in regions with semiarid to arid climates. One such region is the Colorado River basin in the southwestern United States where contaminants pose a threat to agriculture, municipal water supplies, endangered aquatic species, and water-quality commitments to Mexico. Exposures of Cretaceous Mancos Shale (MS) in the upper basin are a major contributor of salinity and selenium in the Colorado River. Here, we examine the roles of geology, climate, and alluviation on contaminant cycling (emphasis on salinity and Se) during weathering of MS in a Colorado River tributary watershed. Stage I (incipient weathering) began perhaps as long ago as 20 ka when lowering of groundwater resulted in oxidation of pyrite and organic matter. This process formed gypsum and soluble organic matter that persist in the unsaturated, weathered shale today. Enrichment of Se observed in laterally persistent ferric oxide layers likely is due to selenite adsorption onto the oxides that formed during fluctuating redox conditions at the water table. Stage II weathering (pedogenesis) is marked by a significant decrease in bulk density and increase in porosity as shale disaggregates to soil. Rainfall dissolves calcite and thenardite (Na2SO4) at the surface, infiltrates to about 1 m, and precipitates gypsum during evaporation. Gypsum formation (estimated 390 kg m−2) enriches soil moisture in Na and residual SO4. Transpiration of this moisture to the surface or exposure of subsurface soil (slumping) produces more thenardite. Most Se remains in the soil as selenite adsorbed to ferric oxides, however, some oxidizes to selenate and, during wetter conditions is transported with soil moisture to depths below 3 m. Coupled with little rainfall, relatively insoluble gypsum, and the translocation of soluble Se downward, MS landscapes will be a significant nonpoint source of salinity and Se to the Colorado River well into the future. Other trace elements weathering from MS that are often of environmental concern include U and Mo, which mimic Se in their behavior; As, Co, Cr, Cu, Ni, and Pb, which show little redistribution; and Cd, Sb, V, and Zn, which accumulate in Stage I shale, but are lost to varying degrees from upper soil intervals. None of these trace elements have been reported previously as contaminants in the study area.  相似文献   

19.
《Quaternary Science Reviews》2003,22(5-7):437-444
A long-standing debate regarding the reconstruction of former ice sheets revolves around the use of relative weathering of landscapes, i.e., the assumption that highly weathered landscapes have not been recently glaciated. New cosmogenic isotope measurements from upland bedrock surfaces and erratics along the northeastern margin of the Laurentide Ice Sheet (LIS) shed light on this debate. 10Be and 26Al concentrations from three perched erratics, yielding cosmogenic exposure ages of 17–11 ka, are much lower than those measured in two unmodified, highly weathered tors upon which they lie, which yield cosmogenic exposure ages of >60 ka. These findings suggest that non-erosive ice covered weathered upland surfaces along the northeastern margin of the LIS during the last glacial maximum. These data challenge the use of relative weathering to define the margins of Pleistocene ice sheets. The juxtaposition of non-erosive ice over upland plateaus and erosive ice in adjacent fiords requires strong gradients in basal thermal regimes, suggestive of an ice-stream mode of glaciation.  相似文献   

20.
Water analysis data of 54 groundwater samples from 18 uniformly distributed wells were collected during three campaigns (June, September and December 2004). Q-mode hierarchical cluster analysis (HCA) was employed for partitioning the water samples into hydrochemical facies. Interpretation of analytical data showed that the abundance of major ions was identified as follows: Ca ? Mg > Na > K and HCO3 ? Cl > SO4. Three major water facies are suggested by the HCA analysis. The samples from the area were classified as recharge area waters (Ca–Mg–HCO3 water), transition area waters (Mg–Ca–HCO3–Cl water), and discharge area waters (Mg–Ca–Cl–HCO3 water). Inverse geochemical modeling suggests that relatively few phases are required to derive the water chemistry in the area. In a broad sense, the reactions responsible for the hydrochemical evolution in the area fall into two categories: (1) evaporite weathering reactions and (2) precipitation of carbonate minerals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号