首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了研究地-井瞬变电磁响应特征,获得不同井位低阻薄板异常体的响应规律:首先采用交错网格有限差分技术离散二次场满足的频率域赫姆霍兹方程;然后结合虚框叠加等效和虚拟界面法将发射源和接收位置扩展到任意层位,解决了全空间背景格林函数的计算问题;之后利用MUMPS求解器求解频率域二次场,再经过余弦变换,获得井中任意位置的瞬变电磁响应;最后采用三维模型对本文算法的正确性进行验证,设计了均匀半空间和嵌入低阻薄板的三维模型,获得垂直磁场的三维分布,分析均匀导电半空间中低阻薄板对地-井瞬变电磁三维响应的影响特点。结果表明:本文三维地-井瞬变电磁计算方案的计算精度与前人基本相同;水平导电薄板的存在主要影响板体附近及穿过薄板的井中瞬变响应,最大的特点是在异常体位置附近的中期时间道响应出现变号现象。本文的研究为定性解释地-井瞬变电磁法异常提供一个技术手段,也为地-井瞬变电磁三维反演奠定基础。  相似文献   

2.
为了研究地-井瞬变电磁响应特征,获得不同井位低阻薄板异常体的响应规律:首先采用交错网格有限差分技术离散二次场满足的频率域赫姆霍兹方程;然后结合虚框叠加等效和虚拟界面法将发射源和接收位置扩展到任意层位,解决了全空间背景格林函数的计算问题;之后利用MUMPS求解器求解频率域二次场,再经过余弦变换,获得井中任意位置的瞬变电磁响应;最后采用三维模型对本文算法的正确性进行验证,设计了均匀半空间和嵌入低阻薄板的三维模型,获得垂直磁场的三维分布,分析均匀导电半空间中低阻薄板对地-井瞬变电磁三维响应的影响特点.结果表明:本文三维地-井瞬变电磁计算方案的计算精度与前人基本相同;水平导电薄板的存在主要影响板体附近及穿过薄板的井中瞬变响应,最大的特点是在异常体位置附近的中期时间道响应出现变号现象.本文的研究为定性解释地-井瞬变电磁法异常提供一个技术手段,也为地-井瞬变电磁三维反演奠定基础.  相似文献   

3.
覆盖层下三维板状体地-井瞬变电磁响应   总被引:1,自引:0,他引:1  
地-井瞬变电磁法是地质找矿的有效方法之一,它是利用地表发射、井中接收瞬变场响应来实现查找深部矿产资源的一种方法。在时间域有限差分算法的基础上,以回线源为激发源,采用非均匀网格剖分技术,对均匀半空间和倾斜板状体、含有低阻覆盖层的倾斜板状体模拟。通过对比分析表明:均匀半空间中,响应极大值随观测时间延迟而减小;场源位于接收钻孔正上方时,异常体响应特征明显;当场源位于旁侧位置,需要较长的观测时间获得异常体的响应;低阻覆盖层对异常响应的影响在整个观测时间范围内都存在,减弱了异常体的响应;覆盖层的影响随发射场源与接收钻孔位置距离的增加而减弱。研究工作为定性分析地-井TEM响应特征和资料解释时提供参考。  相似文献   

4.
研究了电法测井不同测量方式(井—地,地—井,井—井)下点源场井中电法的三维有限差分数值模拟。采用六面体网格剖分方式来对模型进行剖分,运用一维非零元素行压缩存储模式来存储系数矩阵,减少了内存需求和计算量;采用不完全Cholesky共轭梯度(ICCG)方法来求解线性方程组,提高了求解效率;编制了相应的程序实现了井—地、地—井、井—井、倾斜井条件下的电法测井三维有限差分数值模拟。设计的算例结果验证了该算法的正确性和效率性,并且分析了各种情形下的异常特征,为进一步的反演工作打下了基础。  相似文献   

5.
地—井瞬变电磁法是利用地表发射、井中接收瞬变场响应来实现查找深部矿产资源的一种方法。在时间域有限差分算法的基础上,以回线源为激发源,采用非均匀网格剖分技术,对均匀半空间和倾斜板状体、含有低阻覆盖层的倾斜板状体进行了数值模拟。通过对比分析表明:均匀半空间中,响应极大值随观测时间延迟而减小;早期主要反映围岩响应特征,异常体响应特征在晚期表现出来;场源位于中心位置激发时,异常体响应可以很好地体现出来,当场源位于右侧位置,则要选取较长的观测时间降低周围围岩的影响,使异常体的响应特征显示出来;低阻覆盖层对异常响应的影响在整个观测时间范围内都存在,削弱了异常体的响应特征。研究工作为定性分析地—井TEM响应特征和资料解释提供了参考。  相似文献   

6.
为了更好地探究层状介质背景下井旁隐伏矿体的地-井方位激电异常特征,首先研究了地-井三维激电的有限元正演模拟算法,并编制了程序;然后构建三维地电模型并进行正演模拟,讨论层状介质背景下地-井方位激电异常,并分析其异常特征规律;最后通过比值法归一化压制层状介质背景,突出局部异常。理论和算例表明,比值法归一化处理是地-井方位激电观测中消除层状介质背景异常影响的有效方法。  相似文献   

7.
在地-井瞬变电磁正演模拟中,前人均以总场为研究对象,分析响应特征。此次选择地-井瞬变电磁异常场为研究对象,对单异常体和多异常体以及在"定源异井"和"动源定井"两种观测方式下典型地电模型进行地-井瞬变电磁法三维正演模拟。首先推导了二次磁场的扩散方程,并用有限差分法进行数值计算。通过分析以地-井瞬变电磁异常场为研究对象,认为异常场能反映目标体空间几何位置参数。研究结果表明:在不同钻孔中接收的异常响应随时间推移而衰减减弱,但异常变化特征保持不变;在不同方位布置场源得到的异常响应差异明显,根据其测量结果可判定异常体空间位置信息。最后总结影响地-井瞬变电磁异常的主要因素有:目标体的埋藏深度、目标体与钻孔之间的耦合关系以及场源的位置关系。研究结果为相关资料解释提供理论参考。  相似文献   

8.
覆盖层影响下典型地-井模型瞬变电磁法正演   总被引:1,自引:0,他引:1  
地-井瞬变电磁法是用于地质找矿的有效方法之一,开展该方法的三维正演研究能对资料处理与解释提供帮助。在时间域有限差分算法的基础上,建立了三维地质模型和覆盖层模型,模拟了该模型下的地-井瞬变电磁响应;引入了参数EA,分析了方形低阻体和覆盖层的响应特征以及覆盖层影响因素。结果显示:低阻体位于发射场源下方时,其响应曲线呈现“双高一低”的极值特征,高峰值分别对应低阻体上下边界,低峰值对应低阻体中心;低阻体位于发射场源旁边时,其响应曲线呈现单极值特征,该特征与覆盖层响应特征相同。当覆盖层电阻率较低时,“趋肤效应”作用使覆盖层的响应强度强于低阻体;但当发射场源离钻孔足够远时,覆盖层影响可以忽略,低阻体响应强度更与覆盖层-低阻体电阻率的比值有关。孔中发射能有效降低覆盖层影响。  相似文献   

9.
井中激电地-井方式井旁球体正反演   总被引:2,自引:0,他引:2  
以激发极化法中的地-井方式中的体极化球形体作为研究对象,采用解析法对地下半空间的电位场进行求解,利用提取出的井中二次场异常电位差进行反演,得出极化球体的球心离井的距离和球心的埋深。通过计算机进行正反演模拟,验证了进行正反演计算的解析式的正确性,并从物理意义上对正反演过程中出现的现象进行分析。最后给出该方法的适用条件以及注意事项。研究对激发极化法地下勘探目标的定量分析具有明确意义。  相似文献   

10.
直流电阻率法因效率高、成本低等特点广泛应用于有色金属、煤田等矿产资源勘探和地质调查行业。但在井–地、地–井电阻率法勘探过程中,钻孔因素(井液电阻率和钻孔孔径)对不同探测模式下视电阻率响应的影响尚未明确,是否影响视电阻率资料的解释是值得探讨的一个问题。因此,提出采用混合网格有限元法实现直流电阻率三维正演。给出异常电位法满足的边值问题及有限元变分问题,应用三棱柱和四面体混合网格实现对计算区域的快速离散,并建立2种网格的线性插值基函数和单元系数矩阵;采用SSOR–PCG迭代算法求解异常电位满足的大型线性方程组,得到各观测点的响应。在保证计算精度的前提下,应用混合网格有效地离散钻孔地电模型,探讨钻孔因素对井–地、地–井观测方式视电阻率数据的影响特征。对于井–地观测方式:钻孔附近视电阻率受钻孔因素影响最大,严重影响视电阻率资料的合理解释,但随着测点收发距的增加,视电阻率响应逐渐趋于围岩电阻率;而且随着发射源深度的增加,钻孔对地表视电阻率响应的影响也逐渐减小。对于地–井观测方式:钻孔因素对浅部数据影响较大,对深部数据影响小,相比于井液电阻率,视电阻率响应更易受钻孔孔径的影响。直流电阻率法混合网格有限元三维正演算法的提出,对实际井–地、地–井电阻率法勘探具有理论指导意义,可结合钻孔信息进行正演模拟分析,选择合适的收发距,有效压制钻孔因素对实测资料的影响。   相似文献   

11.
地—井瞬变电磁法作为瞬变电磁法的一种装置形式,由于其接收探头在钻孔或井下巷道中,靠近目标异常体,具有电磁干扰小、有用信号强等优点,越来越多地被国内外学者所研究。本文采用时域有限差分法(FDTD),以回线源为激发源,建立含板状体和矩形低阻体的地质模型,从地面—井筒观测方式和地面—巷道观测方式的角度,计算矩形回线源在半空间中产生的地—井瞬变电磁场响应,并对其响应的特征及规律进行研究,研究结果表明当有多个异常体同时存在时,地—井瞬变电磁能够区分出不同的异常体存在,并且能够对不同异常体的埋深和横向位置准确定位,为地—井瞬变电磁法定量解释异常体埋深和位置提供参考依据。  相似文献   

12.
基于球坐标系下有限差分的地磁测深三维正演   总被引:2,自引:0,他引:2  
为了计算全球尺度电磁感应的响应,本文介绍地磁测深频率域三维正演。正演算法采用球坐标系下的交错网格有限差分方法,从Maxwell方程的积分形式出发,采用PARDISO对离散后的方程组求解,避免了迭代求解的散度校正。为了验证本文结果的正确性和精度,与前人的有限元和有限差分方法进行了对比,一维层状模型的三维交错网格有限差分数值结果和解析解相对误差小于5%,双半球模型的计算结果与前人的计算结果完全吻合。三维"棋盘模型"计算表明磁场分量对异常体的大小和位置具有很好的分辨能力。  相似文献   

13.
三维地电断面激发极化法有限元数值模拟   总被引:5,自引:0,他引:5  
用有限单元法求解三维地电断面激发极化法正演模拟算法.首先给出了三维构造中点源电场异常电位的边值问题与变分问题, 简化无穷远边界上的边界条件以提高计算速度及计算精度.以此为基础计算视电阻率对模型电阻率的偏导数矩阵, 并进行三维地电断面激发极化法正演模拟, 与等效电阻率法相比节约了计算时间.对几例较典型的地电模型进行计算, 结果表明本方法是正确可行的.   相似文献   

14.
油气资源和矿产资源勘探中,常需要较大的勘探深度和高的深部分辨能力,充分利用现有钻孔的三维井地电阻率成像技术能够适应于这种要求。通过设计一个高阻水平板状体模型,利用Ansys有限元软件对模型进行三维井地电阻率法有限元正演计算,并将模拟的响应视电阻率作为反演的输入,结合平滑约束最小二乘反演,分析了异常特征和分布规律,其结论和认识具有一定实用价值。  相似文献   

15.
地-井瞬变电磁法(SHTEM)是指场源在地面激发, 接收线圈在钻井中观测瞬变响应, 用以勘查深部矿产资源的勘探方法. 从等效涡流环方法原理出发, 计算了等效涡流环与Rx之间的互感系数以及感应电压. 通过建立组合薄板导体的数学模型, 计算模拟地下存在多个薄板状良导体组合情况下的起响应叠加场, 以研究组合导体的地-井瞬变电磁异常响应, 并分析这些异常响应的特征及规律. 认为钻孔在距离多个组合薄板状矿体较近的情况下, 通过地-井瞬变电磁测量能够进行分辨.  相似文献   

16.
为了研究地下异常体几何及物性参数变化对井地电位法地表响应的影响规律,对垂直线源激励下的变物性参数地下异常体,采用三维有限单元法进行了正演模拟。经模拟结果表明,在浅部时异常形态清晰,随深度的增加,异常响应的形态变得模糊;地表异常响应对厚度反应不灵敏;对水平规模大小变化反应非常灵敏。这些规律将对油气田剩余油分布和注水推进前沿的确定,以及井地电位仪器分辨率的设计提供指导作用,并为井地电位法反演成像奠定相关基础。  相似文献   

17.
井间电磁波层析成像中的高精度时间域正演计算   总被引:1,自引:0,他引:1  
林树海  赵立英 《地球科学》2007,32(4):469-473
为提高井间电磁波层析成像的分辨率, 正演计算中需保持较高的计算精度.本文正演计算中采用时间域伪谱(PSTD) 法模拟井间电磁波的传播.该算法在时间域有限差分(FDTD) 法的基础上采用快速傅立叶变换(FFT) 计算麦克斯韦方程中的空间导数.该算法除了具备时间域有限差分法的优点外, 在计算条件完全相同的情况下, 计算精度明显高于时间域有限差分法.时间域伪谱法的正演计算为井间电磁波高分辨率层析成像奠定了重要基础.   相似文献   

18.
为更好地解决井旁矿体的勘探及盲矿的预测问题,探讨了地-井方式激发极化法对于井旁的规则形体(矿体)的激电影响;采用解析投影法,以球体和板状体两种模型为例,遵循"单井—多井"的激电规律来判别矿体的空间位置。最后,归纳总结出地-井方式激电在实际工作中的使用条件,能够快速判别井旁盲矿体的空间位置。结论指出,合理的施工方式以及适量的观测数据对预测矿体的产状具有积极作用。  相似文献   

19.
三维电阻率法对反演的精度和速度的要求越来越高,而正演是反演的基础,因此直流电阻率三维正演计算的速度和精度是三维电阻率反演实用化的关键。这里利用对称超松弛预条件共轭梯度法(SSOR-PCG),求解有限差分法离散生成的大型稀疏线性方程组,预条件矩阵的选择大大降低了系数矩阵的条件数,结合矩阵的一维非零元素压缩存储模式,使得正演计算速度得以提高,而内存占用量明显减小。在直流电阻率三维正演中采用异常场法,提高了电源点附近的解的精度。利用编制的有限差分正演程序,对两层模型、垂直接触带模型和低阻异常体模型进行了数值模拟,计算结果表明该算法是可行的,且可以明显提高正演计算的速度和精度。  相似文献   

20.
针对目前地面直流电阻率法所面临的勘探深度有限的问题,开展了基于TV井地2.5D直流电阻率正则化反演研究。首先从井地直流电满足的边值问题出发,采用三角单元二次插值有限元法推导了2.5D井地电阻率正演公式。为了提高计算效率,对边界采用近似处理、以及利用图论理论的矩阵重排与填入元分析方法,实现了稀疏矩阵的直接解法,大大提高了计算效率。为了能够提高反演结果的稳定以及对异常边界分辨能力,采用L曲线法求取正则化因子、TV的稳定因子以及共轭梯度方法进行反演目标函数的求解,研究表明,反演结果高效、准确。最后对不同井地观测方式的反演结果进行对比分析,得出井地直流电阻率异常特征和分布规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号