首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Projections of future climate change are plagued with uncertainties, causing difficulties for planners taking decisions on adaptation measures. This paper presents an assessment framework that allows the identification of adaptation strategies that are robust (i.e. insensitive) to climate change uncertainties. The framework is applied to a case study of water resources management in the East of England, more specifically to the Anglian Water Services’ 25 year Water Resource Plan (WRP). The paper presents a local sensitivity analysis (a ‘one-at-a-time’ experiment) of the various elements of the modelling framework (e.g., emissions of greenhouse gases, climate sensitivity and global climate models) in order to determine whether or not a decision to adapt to climate change is sensitive to uncertainty in those elements.Water resources are found to be sensitive to uncertainties in regional climate response (from general circulation models and dynamical downscaling), in climate sensitivity and in climate impacts. Aerosol forcing and greenhouse gas emissions uncertainties are also important, whereas uncertainties from ocean mixing and the carbon cycle are not. Despite these large uncertainties, Anglian Water Services’ WRP remains robust to the climate change uncertainties sampled because of the adaptation options being considered (e.g. extension of water treatment works), because the climate model used for their planning (HadCM3) predicts drier conditions than other models, and because ‘one-at-a-time’ experiments do not sample the combination of different extremes in the uncertainty range of parameters. This research raises the question of how much certainty is required in climate change projections to justify investment in adaptation measures, and whether such certainty can be delivered.  相似文献   

2.
The specter of climate change threatens fresh water resources along the U.S.–Mexico border. Water managers and planners on both sides of the border are promoting desalination—the conversion of seawater or brackish groundwater to fresh water—as an adaptation response that can help meet growing water demands and buffer against the negative impacts of climate change on regional water supplies. However, the uneven distribution of costs and benefits of this expensive, energy-intensive technology is likely to exacerbate existing social inequalities in the border zone. In this paper, we examine the discourses employed in the construction of the climate problem and proposed solutions. We focus our analysis on a proposed Arizona–Sonora binational desalination project and use insights from risk and hazards literature to analyze how, why, and to what effect desalination is emerging as a preferred climate change adaptation response. Our risk analysis shows that while desalination technology can reduce some vulnerabilities (e.g., future water supply), it can also introduce new vulnerabilities by compounding the water-energy nexus, increasing greenhouse gas emissions, inducing urban growth, producing brine discharge and chemical pollutants, shifting geopolitical relations of water security, and increasing water prices. Additionally, a high-tech and path-dependent response will likely result in increased reliance on technical expertise, less opportunity for participatory decision-making and reduced flexibility. The paper concludes by proposing alternative adaptation responses that can offer greater flexibility, are less path dependent, incorporate social learning, and target the poorest and most vulnerable members of the community. These alternatives can build greater adaptive capacity and ensure equity.  相似文献   

3.
U.S. Country Studies supported analyses of climate change impacts on water resources have been completed or are underway in the following Central and Eastern European nations: Czech Republic, Slovakia, Poland, Romania, Estonia, Russian Federation, and the Ukraine. Climate change impacts on the hydrologic resources of these countries is being performed at the river basin scale using monthly water balance models using GCM-based climate scenarios. The authors have performed a regional analysis of climate change impacts on the Hydrologic Resources of Europe using the Turc Annual Model. The regional analysis was done with GIS methodolgies using regional climate databases. The regional results were compared to the U.S. Country Studies hydrologic assessmnent results to validiate the use of this simplified methodolgy for making regional climate change assessment. Results from three countries showed acceptable performace of the annual approach . Using GCM-based climate scenarios regional analysis of potential climate change impacts on the hydrologic resources of Europe was conducted and national and regional results are presented.  相似文献   

4.
The case of the Pyramid Lake Paiute Tribe exemplifies tribal vulnerabilities as a result of climate change. Preliminary socio-economic data and analysis reveal that the tribe’s vulnerability to climate change is related to cultural and economic dependence on Pyramid Lake, while external socio-economic vulnerability factors influence adaptive capacity and amplify potential impacts. Reduced water supplies as a consequence of climate change would result in a compounded reduction of inflows to Pyramid Lake, thus potentially impacting the spawning and sustenance of a cultural livelihood, the endangered cui-ui fish (Chasmistes cujus). Meanwhile, limited economic opportunities and dwindling federal support constrain tribal adaptive capacity. Factors that contribute to tribal adaptive capacity include: sustainability-based values, technical capacity for natural resource management, proactive initiatives for the control of invasive-species, strong external scientific networks, and remarkable tribal awareness of climate change.  相似文献   

5.
Forty-nine countries participating in the U.S. Country Studies Program (USCSP) assessed climate change impacts in one or more of eight sectors: coastal resources, agriculture, grasslands/livestock, water resources, forests, fisheries, wildlife, and health. The studies were generally limited to analysis of first order biophysical effects, e.g., coastal inundation, crop yield, and runoff changes. There were some limited studies of adaptation. We review and synthesize the results of the impact assessments conducted under the USCSP. The studies found that sea level rise could cause substantial inundation and erosion of valuable lands, but, protecting developed areas would be economically sound. The studies showed mixed results for changes in crop yields, with a tendency toward decreased yields in African and Asian countries, particularly southern Asian countries, and mixed results in European and Latin American countries. Adaptation could significantly affect yields, but it is not clear whether the adaptations are affordable or feasible. The studies tend to show a high sensitivity of runoff to climate change, which could result in increases in droughts or floods. The impacts on grasslands and livestock are mixed, but there appears to be a large capacity for adaptation. Human health problems could increase, particularly for populations in low-latitude countries with inadequate access to health care. The USCSP assessments found that the composition of forests is likely to change, while biomass could be reduced. Some wildlife species were estimated to have reduced populations. The major contribution of the USCSP was in building capacity in developing countries to assess potential climate impacts. However, many of the studies did not analyze the implications of biophysical impacts of climate change on socioeconomic conditions, cross-sectoral integration of impacts, autonomous adaptation, or proactive adaptation. Follow-on work should attempt to develop capacity in developing and transition countries to conduct more integrated studies of climate change impacts.  相似文献   

6.
To study the impacts of climate change on water resources in the western U.S., global climate simulations were produced using the National Center for Atmospheric Research/Department of Energy (NCAR/DOE) Parallel Climate Model (PCM). The Penn State/NCAR Mesoscale Model (MM5) was used to downscale the PCM control (20 years) and three future(2040–2060) climate simulations to yield ensemble regional climate simulations at 40 km spatial resolution for the western U.S. This paper describes the regional simulations and focuses on the hydroclimate conditions in the Columbia River Basin (CRB) and Sacramento-San Joaquin River (SSJ) Basin. Results based on global and regional simulations show that by mid-century, the average regional warming of 1 to 2.5 °C strongly affects snowpack in the western U.S. Along coastal mountains, reduction in annual snowpack was about70% as indicated by the regional simulations. Besides changes in mean temperature, precipitation, and snowpack, cold season extreme daily precipitation increased by 5 to 15 mm/day (15–20%) along theCascades and the Sierra. The warming resulted in increased rainfall at the expense of reduced snowfall, and reduced snow accumulation (or earlier snowmelt) during the cold season. In the CRB, these changes were accompanied by more frequent rain-on-snow events. Overall, they induced higher likelihood of wintertime flooding and reduced runoff and soil moisture in the summer. Changes in surface water and energy budgets in the CRB and SSJ basin were affected mainly by changes in surface temperature, which were statistically significant at the 0.95 confidence level. Changes in precipitation, while spatially incoherent, were not statistically significant except for the drying trend during summer. Because snow and runoff are highly sensitive tospatial distributions of temperature and precipitation, this study shows that (1) downscaling provides more realistic estimates of hydrologic impacts in mountainous regions such as the western U.S., and (2) despite relatively small changes in temperature and precipitation, changes in snowpack and runoff can be much larger on monthly to seasonal time scales because the effects of temperature and precipitation are integrated over time and space through various surface hydrological and land-atmosphere feedback processes. Although the results reported in this study were derived from an ensemble of regional climate simulations driven by a global climate model that displays low climate sensitivity compared with most other models, climate change was found to significantly affect water resources in the western U.S. by the mid twenty-first century.  相似文献   

7.
自IPCC第四次评估报告以来,对城市和农村地区气候变化影响、脆弱性、适应和风险管理文献都在增加。第五次评估报告取得了进展。主要包括:气候变化风险、脆弱性与所受的影响在全球范围不同规模、不同经济水平和地理位置的城市中心均在增加。改善基本服务不足的状况以及建设有恢复力的基础设施系统,可以显著降低城市地区的脆弱性和暴露度,特别是对于风险和脆弱性最高的人群来说。气候变化对农村地区的主要影响将体现在对淡水供应、粮食安全和农业收入的影响等方面。发展中国家农村人口更容易遭受多种非气候压力,包括农业投入不足、土地与自然资源政策问题和环境退化。包括增加可再生能源的供给、鼓励生物燃料种植或发展中国家减少砍伐森林和森林退化而造成的碳排放(REDD+)项目等在内的气候政策,将对有些农村地区有重要的间接影响,既有正面的影响(增加就业机会),也有负面的影响(景观变化和稀有资源冲突增多)。  相似文献   

8.
Climate change related impacts, such as increased frequency and intensity of wildfires, higher temperatures, extreme changes to ecosystem processes, forest conversion and habitat degradation are threatening tribal access to valued resources. Climate change is and will affect the quantity and quality of resources tribes depend upon to perpetuate their cultures and livelihoods. Climate impacts on forests are expected to directly affect culturally important fungi, plant and animal species, in turn affecting tribal sovereignty, culture, and economy. This article examines the climate impacts on forests and the resulting effects on tribal cultures and resources. To understand potential adaptive strategies to climate change, the article also explores traditional ecological knowledge and historical tribal adaptive approaches in resource management, and contemporary examples of research and tribal practices related to forestry, invasive species, traditional use of fire and tribal-federal coordination on resource management projects. The article concludes by summarizing tribal adaptive strategies to climate change and considerations for strengthening the federal-tribal relationship to address climate change impacts to forests and tribal valued resources.  相似文献   

9.
American Indian and Alaska Native tribes are uniquely affected by climate change. Indigenous peoples have depended on a wide variety of native fungi, plant and animal species for food, medicine, ceremonies, community and economic health for countless generations. Climate change stands to impact the species and ecosystems that constitute tribal traditional foods that are vital to tribal culture, economy and traditional ways of life. This paper examines the impacts of climate change on tribal traditional foods by providing cultural context for the importance of traditional foods to tribal culture, recognizing that tribal access to traditional food resources is strongly influenced by the legal and regulatory relationship with the federal government, and examining the multi-faceted relationship that tribes have with places, ecological processes and species. Tribal participation in local, regional and national climate change adaption strategies, with a focus on food-based resources, can inform and strengthen the ability of both tribes and other governmental resource managers to address and adapt to climate change impacts.  相似文献   

10.
IPCC第五次评估报告(AR5)第二工作组(WGII)报告认为,气候变化对世界上大部分区域的自然和人类系统的影响将进一步加剧,其对非洲最大的影响预计发生在半干旱的环境,增加现有的水资源可利用量和农业系统的压力;气候变化已导致北欧地区的谷物产量增加而南欧地区的产量降低,未来的变化将增加欧洲的灌溉需求;在亚洲的许多地区,气候变化将导致农业生产率下降;气候、大气CO2和海洋酸化的进一步变化预计将对大洋洲的水资源、海岸生态系统、基础设施、健康、农业和生物多样性产生实质性的影响;在北美,许多带来风险的气候压迫力的频率和强度将在未来几十年增加;中美洲和南美洲许多国家的持续高水平贫困导致了对气候变率和变化的高脆弱性;在北极,气候变化与非气候相关驱动在确定的物理、生物和社会经济风险上交互作用,变化率可能超过了社会系统适应的速率;在气候和非气候因素的影响下,小岛屿具有高度的脆弱性,同时,气候变暖将增加海洋生态系统的风险。  相似文献   

11.
In this paper, we propose a scenario framework that could provide a scenario “thread” through the different climate research communities (climate change – vulnerability, impact, and adaptation - and mitigation) in order to support assessment of mitigation and adaptation strategies and climate impacts. The scenario framework is organized around a matrix with two main axes: radiative forcing levels and socio-economic conditions. The radiative forcing levels (and the associated climate signal) are described by the new Representative Concentration Pathways. The second axis, socio-economic developments comprises elements that affect the capacity for mitigation and adaptation, as well as the exposure to climate impacts. The proposed scenarios derived from this framework are limited in number, allow for comparison across various mitigation and adaptation levels, address a range of vulnerability characteristics, provide information across climate forcing and vulnerability states and span a full century time scale. Assessments based on the proposed scenario framework would strengthen cooperation between integrated-assessment modelers, climate modelers and vulnerability, impact and adaptation researchers, and most importantly, facilitate the development of more consistent and comparable research within and across these research communities.  相似文献   

12.
INFORM Risk Index is a global indicator-based disaster risk assessment tool that combines hazards, exposure, vulnerability and lack of coping capacity indicators with the purpose to support humanitarian crisis management decisions considering the current climate and population. In this exploratory study, we extend the Index to include future climate change and population projections using RCP 8.5 climate projections of coastal flood, river flood and drought, and SSP3 and SSP5 population projections for the period 2036 to 2065. For the three hazards considered, annually 1.3 billion people (150% increase), 1.8 billion people (249% increase) and 1.5 billion people (197% increase) in the mid-21st century are projected to be exposed under the 2015, SSP3 and SSP5 population estimates, respectively. Drought shows the highest exposure levels followed by river flood and then coastal flood, with some regional differences. The largest exposed population is projected in Asia, while the largest percent changes are projected in Africa and Oceania. Countries with largest current and projected risk including non-climatic factors are generally located in Africa, West and South Asia and Central America. An uncertainty analysis of the extended index shows that it is generally robust and not influenced by the methodological choices. The projected changes in risk and coping capacity (vulnerability) due to climate change are generally greater than those associated with population changes. Countries in Europe, Western and Northern Asia and Africa tend to show higher reduction levels in vulnerability (lack of coping capacity) required to nullify the adverse impacts of the projected amplified hazards and exposure. The required increase in coping capacity (decreased vulnerability) can inform decision-making processes on disaster risk reduction and adaptation options to maintain manageable risk levels at global and national scale. Overall, the extended INFORM Risk Index is a means to integrate Disaster Risk Reduction and Climate Change Adaptation policy agendas to create conditions for greater policy impact, more efficient use of resources and more effective action in protecting life, livelihoods and valuable assets.  相似文献   

13.
Floods, windstorms, drought and wildfires have major implications for human health. To date, conceptual advances in analysis of vulnerability and adaptation to climatic hazards from the environmental and social sciences have not been widely applied in terms of health, though key progress is being made particularly in relation to climate change. This paper seeks to take this conceptual grounding further, examining how key themes relate to health concerns, exploring connections with existing health literatures, and developing an organising framework to aid analysis of how vulnerability to health impacts varies within society and how actors make decisions and take action in relation to climatic hazards and health. Social science research on this theme is challenging in part because of the complex mechanisms that link hazard events to health outcomes, and the many-layered factors that shape differential vulnerability and response within changing societal and environmental contexts (including the dual effect of hazards on human health and health systems, and the combination of ‘external’, ‘personal’ and ‘internal’ elements of vulnerability). Tracing a ‘health impact pathway’ from hazard event through health risk effects to health outcomes can provide a research tool with which to map out where the different factors that contribute to vulnerability/coping capacity come into effect.  相似文献   

14.
气候变化对中国水资源影响的适应性评估与管理框架   总被引:8,自引:0,他引:8  
 通过论述气候变化对中国水资源影响的适应性评估与管理框架,提出一个气候变化影响决策评估工具,它包括:未来气候变化对中国水资源潜在影响的定性描述分析、半定量与定量分析以及适应性对策评估。由于不同气候区域所面临的水资源问题不同,选择中国4个典型案例区域,并确定不同的目标进行气候变化适应性管理综合研究,提出了甄别气候变化影响和适应性管理的新的思路、框架与方法论。该项研究为应对未来气候变化影响的水资源规划与风险管理提供了途径与方法。  相似文献   

15.
The Yakima River Basin (Basin) in south-central Washington is a prime example of a place where competing water uses, coupled with over-allocation of water resources, have presented water managers with the challenge of meeting current demand, anticipating future demand, and preparing for potential impacts of climate change. We took a decision analysis approach that gathered diverse stakeholders to discuss their concerns pertaining to climate change effects on the Basin and future goals that were collectively important. One main focus was centered on how climate change may influence future salmon populations. Salmon have played a prominent role in the cultures of Basin communities, especially for tribal communities that have social, cultural, spiritual, subsistence, and economic ties to them. Stakeholders identified the need for a better understanding on how the cultural, spiritual, subsistence, and economic aspects of the Confederated Tribes and Bands of the Yakama Nation could be affected by changes in salmon populations. In an attempt to understand the complexities of these potential effects, this paper proposes a conceptual model which 1) identifies cultural values and components and the interactions between those components that could influence tribal well-being, and 2) shows how federal natural resource managers could incorporate intangible tribal cultural components into decision-making processes by understanding important components of tribal well-being. Future work includes defining the parameterization of the cultural components in order for the conceptual model to be incorporated with biophysical resource models for scenario simulations.  相似文献   

16.
气候变化对中国水资源影响的适应性评估与管理框架   总被引:1,自引:0,他引:1  
通过论述气候变化对中国水资源影响的适应性评估与管理框架,提出一个气候变化影响决策评估工具,它包括:未来气候变化对中国水资源潜在影响的定性描述分析、半定量与定量分析以及适应性对策评估。由于不同气候区域所面临的水资源问题不同,选择中国4个典型案例区域,并确定不同的目标进行气候变化适应性管理综合研究,提出了甄别气候变化影响和适应性管理的新的思路、框架与方法论。该项研究为应对未来气候变化影响的水资源规划与风险管理提供了途径与方法。  相似文献   

17.
极端事件对人类系统的影响   总被引:1,自引:0,他引:1  
在IPCC特别报告《管理极端事件和灾害风险,推进气候变化适应》中,极端天气气候事件对人类系统的影响是最重要的影响评估内容之一,其评估结果为:极端影响可能缘于极端天气气候事件,但也可能并非极端事件的后果。暴露度和脆弱性是灾害风险的重要决定因素;极端和非极端天气气候事件的严重程度和影响在很大程度上取决于对这些事件的脆弱性和暴露度水平;人居模式、城市化和社会经济状况的变化已经影响观测到的脆弱性和暴露度的变化趋势;无论在发达国家还是发展中国家,沿海人居环境均暴露于极端事件,并受其影响,如小岛屿国家和亚洲大三角洲地区;脆弱人口还包括难民、国内流离失所的人和那些生活在边远地区的人;极端事件将极大地影响与气候联系密切的部门,如水、农业、食物安全、健康和旅游业。  相似文献   

18.
We provide an assessment of surface temperature changes in mountainous areas of the world using a set of climate projections at a 0.5° resolution for two 30-year periods (2040–2069 and 2070–2099), using four Intergovernmental Panel for Climate Change (IPCC) emission scenarios and five AOGCM. Projected average temperature changes varied between +3.2 °C (+0.4 °C/per decade) and +2.1 °C (+0.26 °C/per decade) for 2055 and +5.3 °C (+0.48 °C/per decade) and +2.8 °C for 2085 (+0.25 °C/per decade). The temperature is expected to rise by a greater amount in higher northern latitude mountains than in mountains located in temperate and tropical zones. The rate of warming in mountain systems is projected to be two to three times higher than that recorded during the 20th century. The tendency for a greater projected warming in northern latitude mountain systems is consistent across scenarios and is in agreement with observed trends. In light of these projections, warming is considered likely to affect biodiversity (e.g., species extinctions, changes in the composition of assemblages), water resources (e.g., a reduction in the extent of glaciated areas and snow pack), and natural hazards (e.g., floods). Accurate estimate of the effects of climate change in mountain systems is difficult because of uncertainties associated with the climate scenarios and the existence of non-linear feedbacks between impacts.  相似文献   

19.
News organizations constitute key sites of science communication between experts and lay audiences, giving many individuals their basic worldview of complex topics like climate change. Previous researchers have studied climate change news coverage to assess accuracy in reporting and potential sources of bias. These studies typically rely on manually coding articles from a handful of prestigious outlets, not allowing comparisons with smaller newspapers or providing enough diversity to assess the influence of partisan orientation or localized climate vulnerability on content production. Making these comparisons, this study indicates that partisan orientation, scale of circulation, and vulnerability to climate change correlate with several topics present in U.S. newspaper coverage of climate change. After assembling a corpus of over 78,000 articles covering two decades from 52 U.S. newspapers that are diverse in terms of geography, partisan orientation, scale of circulation, and objectively measured climate risk, a coherent set of latent topics were identified via an automated content analysis of climate change news coverage. Topic model results indicate that while outlet bias does not appear to impact the prevalence of coverage for most topics surrounding climate change, differences were evident for some topics based on partisan orientation, scale, or vulnerability status, particularly those relating to climate change denial, impacts, mitigation, or resource use. Overall, this paper provides a comprehensive study of U.S. newspaper coverage of climate change and identifies specific topics where outlet bias constitutes an important contextual factor.  相似文献   

20.
Adjusting water resources management to climate change   总被引:3,自引:1,他引:3  
The nature of climate impacts and adjustment in water supply and flood management is discussed, and a case study of water manager response to climate fluctuation in California's Sacramento Basin is presented. The case illuminates the effect on climate impact and response of traditional management approaches, the dynamic qualities of maturing water systems, socially imposed constraints, and climate extremes. A dual pattern of crisisresponse and gradual adjustment emerges, and specific mechanisms for effecting adjustment of water management systems are identified. The case study, and broader trends in U.S. water development, suggest that oversized structural capacity, the traditional adjustment to climate variability in water resources, may prove less feasible in the future as projects become smaller and new facilities are delayed by economic and environmental concerns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号