首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Variations in the cosmic ray intensity (specifically, Forbush effects) and in the geomagnetic cutoff rigidity planetary system during powerful geomagnetic disturbances in cycle 23 were studied based on worldwide station network data by the global spectrographic survey method. The cosmic ray variation spectra during these periods and the spectral indices of these variations when the spectrum was approximated by the power function of the particle rigidity varying from 10 to 50 GV during different Forbush effect development phases are presented. It was indicated that the spectral indices of cosmic ray variations during spectrum approximation by the power function of the particle rigidity are larger during the maximal modulation phase than during the cosmic ray intensity decline and recovery phases. The fact that the amplitude of the second harmonic of the cosmic ray pitch angle anisotropy did not increase on November 20, 2003, confirms that the Earth fell into a Sun-independent spheromark magnetic cloud. The increased amplitudes of the second harmonic of the cosmic ray pitch angle anisotropy during other Forbush effects in July 2000, March–April 2001, October 2003, and November 2004 indicate that the Earth was in the coronal mass ejection region, in which the interplanetary magnetic field structure was loop-like during these periods.  相似文献   

2.
We analyze variations in the rigidity spectrum of primary cosmic rays during Forbush effects recorded in cycles 20–24 of solar activity on the basis of data from the global network of neutron monitor stations processed by global survey. We investigate variations in the rigidity spectrum index of Forbush effects as a function of the solar activity level, phases of the effect, polarity the total magnetic field of the Sun, type and parameters of the source of cosmic ray modulation, etc. Comprehensive analysis of our results revealed regularities in the dynamics of the energy spectrum of galactic cosmic rays that reflect the dynamic processes occurring in the interplanetary space.  相似文献   

3.
Based on the multiplied neutron registration with the Magadan neutron monitor, the parameters of the spectrum of variations in the cosmic ray hardness and variation in geomagnetic cutoff rigidity for Forbush decreases and intensity increases, related to registration at a level of solar cosmic ray observation, have been determined using the spectrographic method. Results of an analysis indicate that the spectral index (represented in the power form) increases for Forbush decreases and decreases for increases in CR intensity. In the analyzed cases, geomagnetic cutoff rigidity decreases for intensity increases and Forbush decreases.  相似文献   

4.
Variations in the cosmic ray density during the initial phase of the Forbush effect during the first hours after the arrival of the interplanetary shock wave have been studied with the use of data on variations in the cosmic ray density with a rigidity of 10 GV obtained by the global survey method by the world network of neutron monitors in 1957?2012. It is found that behavior of this parameter after the arrival of the shock wave demonstrates high variability. A small (~1/5 of total number), though distinct, group of Forbush effects, in which the density of the cosmic ray increases (not decreases) after the arrival of the shock wave, is defined. As a whole, the initial variation in cosmic ray density is correlated with the Forbush effect magnitude and the strength of the associated geomagnetic disturbance.  相似文献   

5.
An analytical expression is derived for the cutoff rigidity of cosmic rays arriving at a point in an arbitrary direction, when the main geomagnetic field is approximated by that of an eccentric dipole. This expression is used to determine changes in geomagnetic cutoffs due to secular variation of the geomagnetic field since 1835. Effects of westward drift of the quadrupole field and decrease in the effective dipole moment are seen in the isorigidity contours. On account of the immense computer time required to determine the cutoff rigidities more accurately using the particle trajectory tracing technique, the present formulation may be useful in estimating the transmission factor of the geomagnetic field in cosmic ray studies, modulation of cosmogenic isotope production by geomagnetic secular variation, and the contribution of geomagnetic field variation to long term changes in climate through cosmic ray related modulation of the current flow in the global electric circuit.  相似文献   

6.
Geomagnetism and Aeronomy - Two Forbush effects that occurred during geomagnetic storms in March 1989 and March 1991 are analyzed based on ground-based measurements of cosmic rays at a global...  相似文献   

7.
银河宇宙线是电离层D层的重要电离源之一,它的急剧变化会使D层电子密度发生改变,从而影响VLF波的夜间传播。本文根据在西安接收英国GBR台的VLF波(16kc/s)的相位变化,讨论了在有宇宙线暴(Forbush下降)和强磁暴时,中纬D层电子浓度的变化和相应的VLF波的相位漂移;并根据VLF的相位变化,估计了相应的宇宙线强度变化。由于D层中的宇宙线强度变化通常难于观测,通过VLF波的相位漂移来估计它,这是很有意义的。所以,VLF波的传播效应可能成为间接探测宇宙线强度变化的有用工具。  相似文献   

8.
Using the spectrographic global survey method, variations in the rigidity spectrum and anisotropy of galactic cosmic rays (March 1991) have been studied using data from ground-based observations of cosmic rays (CR) at the worldwide network of stations. Variations in geomagnetic cutoff rigidity (GCR) have been calculated. The paper also presents latitudinal GCR variations at certain moments of the considered period for different geomagnetic field disturbance levels. Calculation results of GCR variations have been compared with those of effect of the westward current flowing with a strength proportional to the latitude cosine along parallels on the sphere, for different radii of the current ring in the dipole field.  相似文献   

9.
The IZMIRAN database of Forbush effects and interplanetary disturbances has been used to study long-term changes in the number and magnitude of Forbush effects in the last six solar cycles (1957–2016) for cosmic rays of rigidity of 10 GV. Solar activity cycles have been shown to be well expressed in data of Forbush effects, especially in large magnitude events that almost disappear in minima. The changes in the distribution of Forbush effects and the decrease in their average values from solar activity maximum to minimum are explained by the predominance of cosmic-ray variations due to the action of coronal holes at low activity. It should be noted that the current cycle involves fewer and generally weaker Forbush effects than in the previous five cycles. For each month, an FD index combining the magnitude and number of Forbush effects and convenient for studying long-term variations has been proposed and calculated.  相似文献   

10.
All significant events in galactic cosmic rays for the last 55 years have been collected in a Forbush effect database created at the Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radiowave Propagation (hereinafter, IZMIRAN) based on data from the global network of neutron monitors. The solar sources of ~800 of these events have been identified. These events were divided into five groups with respect to the heliolongitudes of the associated X-ray solar flares, and typical behavior of their characteristics such as cosmic ray density and anisotropy, was studied independently for each group. The Forbush effect characteristics, which are the most dependent on the source heliolongitude, have been identified.  相似文献   

11.
We consider the behavior of anisotropy and density of galactic cosmic rays in the first hours of Forbush effects from 1957 to 2014 initiated by the arrival of a shock wave. It has been shown that, as early as the event commencement, the first harmonic of anisotropy tends to increase substantially and its direction changes significantly. The more is powerful the interplanetary disturbance, the greater are the changes. Based on changes in some parameters of anisotropy and density, we can estimate the heliolongitude of the disturbance source, as well as the further development of the Forbush effect and geomagnetic activity.  相似文献   

12.
A search has been made for short-term signatures in the global electric circuit of solar wind modulated inputs into the atmosphere, using atmospheric electricity observations made at Mauna Loa, Hawaii, in 1976–1984. The short-term events were Forbush decreases of the galactic cosmic ray flux (characterized by decreases in neutron monitor count rates); geomagnetic disturbances (characterized by the Ap index); and ring current changes (characterized by the Dst index). Each set of events was designated by a set of key days, which were used in superposed epoch analyses of the time-series of daily averages of the atmospheric electricity parameters.The observations consisted of measurements of air-earth current density, potential gradient, positive conductivity, and negative conductivity. The Mauna Loa observatory is at an altitude of 3.4 km in a relatively clean and dust free oceanic environment. The meteorologically-induced electrical noise there is less than at most other atmospheric electricity observatories, with the exception of high altitude sites on the polar ice caps. Nevertheless the noise level was still a problem even after making superposed epoch analyses using several tens of events. We find responses similar to those expected from solar wind inputs but of marginal statistical significance. Diurnal and annual variations were found to be well defined, and consistent with those found by others.  相似文献   

13.
The effects of the geomagnetic storms of November 8 and 10, 2004, in variations in the strength and power spectra of the electric field in the near-Earth’s atmosphere in Kamchatka were studied, together with the meteorological and geophysical phenomena observed simultaneously. A sequence of strong solar flares was shown to cause an anomalous increase in air temperature and humidity. This resulted in the excitation of anomalously strong thunderstorm processes in the atmosphere during the storm of November 8 and made it impossible to distinguish the effects associated with cosmic rays on this background. During the storm of November 10, on the background of weak variations in meteorological parameters, an increase in the strength and intensity of power spectra of the electric field on the day before the storm of November 10 was detected; it was followed by an attenuation of these parameters on the date of the storm. These effects were supposed to be associated with the action of cosmic rays on currents of the global electric circuit. It was shown that the influence of the Forbush effect of galactic cosmic rays in the power spectrum of the electric field first of all shows as the amplification of the component with the period T ~ 48 h; in variations in humidity, the effect shows as the amplification of the component with T ~ 24 h. Cause-and-effect relationships between variations in the electric field strength and the horizontal component of the geomagnetic field were shown to be absent both under the conditions of “fair weather” and during the storm of November 10. A diurnal negative-difference atmospheric pressure was detected on the second day after the geomagnetic storms of November 8 and 10.  相似文献   

14.
The effect of solar and galactic cosmic ray variations on the duration of elementary synoptic processes (ESPs) in the Atlantic-European sector of the Northern Hemisphere has been studied. It has been found that solar cosmic ray (SCR) bursts result in an increase in the duration of ESPs, which belong to the western and meridional forms of atmospheric circulation. Forbush decreases in galactic cosmic rays (GCRs) are accompanied by an increase in the duration of ESPs, which belong to the meridional atmospheric circulation form, and in a decrease in the duration of ESPs, which are related to the western and eastern circulation forms. It has been assumed that the observed variations in the ESP duration are caused by the effect of short-period cosmic ray variations on the intensity of cyclonic processes at middle and high latitudes, namely, the regeneration of cyclones near the southeastern coast of Greenland after SCR bursts and the development of blocking anticyclones over the northeastern Atlantic, Europe, and Scandinavia during GCR Forbush decreases.  相似文献   

15.
The variations in the rigidity spectrum and anisotropy of cosmic rays in December 2006 have been studied based on the surface measurements of the cosmic ray intensity at the global network of stations, using the method of global spectrographic survey. It has been indicated that the highest degree of anisotropy (to ~50%) with the maximal intensity of particles with a rigidity of 4 GV in the direction from the Sun (an asymptotic direction of about ?25° and 160°) was observed at 0400 UT on December 13. The parameters of the cosmic ray rigidity spectrum, which reflect the electromagnetic characteristics of the heliospheric fields during the studied period, have been determined when the surface and satellite measurements of protons in the energy range from several megaelectronvolts to several tens of gigaelectronvolts were jointly analyzed. The observed anisotropy and variations in cosmic rays in a wide energy range have been explained based on an analysis of the results.  相似文献   

16.
地磁截止刚度是定量衡量地球磁场对高能粒子屏蔽效应的参数,描述了高能粒子穿越磁层到达指定观测点的带电粒子刚度阈值.人们一直研究垂直方向上的截止刚度,但对作为方向函数的截止刚度,缺少详细研究.我们使用单粒子方法,倒向追踪粒子的运动状态,计算了近地空间不同投掷角度的高能粒子地磁截止刚度,研究发现:(1)天顶方向或者垂直方向的...  相似文献   

17.
For a comprehensive study of the Forbush effects and their relation to solar and geomagnetic activity, a database of transient phenomena in cosmic rays and the interplanetary medium has been created, which is continuously updated with data on new events. Based on these data, we study the dependence of the Forbush effects on various internal and external parameters, as well as select different groups of events. In this paper, we consider recurrent (caused by high-speed solar wind streams from coronal holes) and sporadic (associated with coronal mass ejections) events. We investigate groups of events with a sudden and gradual onset. We show that the resulting dependencies of the Forbush effects (on the parameters of interplanetary disturbances, geomagnetic activity indices, etc.) are substantially different for the above-mentioned groups. Most likely, these differences are caused by different sources of solar wind disturbances.  相似文献   

18.
The period of interplanetary, geomagnetic and solar disturbances of September 7–15, 2005, is characterized by two sharp increases of solar wind velocity to 1000 km/s and great Dst variation of the geomagnetic field (~140 nT). The time variations of theoretical and experimental geomagnetic thresholds observed during this strong geomagnetic storm, their connection with solar wind parameters and the Dst index, and the features of latitudinal behavior of geomagnetic thresholds at particular times of the storm were studied. The theoretical geomagnetic thresholds were calculated with cosmic ray particle tracing in the magnetic field of the disturbed magnetosphere described by Ts01 model. The experimental geomagnetic thresholds were specified by spectrographic global survey according to the data of cosmic ray registration by the global station network.  相似文献   

19.
Direct and indirect data on variations in cosmic rays, solar activity, geomagnetic dipole moment, and climate from the present to 10–12ka ago (the Holocene Epoch), registered in different natural archives (tree rings, ice layers, etc.), have been analyzed. The concentration of cosmogenic isotopes, generated in the Earth’s atmosphere under the action of cosmic ray fluxes and coming into the Earth archives, makes it possible to obtain valuable information about variations in a number of natural processes. The cosmogenic isotopes 14C in tree rings and 10Be in ice layers, as well as cosmic rays, are modulated by solar activity and geomagnetic field variations, and time variations in these concentrations gives information about past solar and geomagnetic activities. Since the characteristics of natural reservoirs with cosmogenic 14C and 10Be vary with climate changes, the concentrations of these isotopes also inform about climate changes in the past. A performed analysis indicates that cosmic ray flux variations are apparently the most effective natural factor of climate changes on a large time scale.  相似文献   

20.
The solar wind modulates the flux of galactic cosmic rays impinging on Earth inversely with solar activity. Cosmic ray ionisation is the major source of air's electrical conductivity over the oceans and well above the continents. Differential solar modulation of the cosmic ray energy spectrum modifies the cosmic ray ionisation at different latitudes, varying the total atmospheric columnar conductance. This redistributes current flow in the global atmospheric electrical circuit, including the local vertical current density and the related surface potential gradient. Surface vertical current density and potential gradient measurements made independently at Lerwick Observatory, Shetland, from 1978 to 1985 are compared with modelled changes in cosmic ray ionisation arising from solar activity changes. Both the lower troposphere atmospheric electricity quantities are significantly increased at cosmic ray maximum (solar minimum), with a proportional change greater than that of the cosmic ray change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号