首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 262 毫秒
1.
变石状(alexandrite-like)矿物的吸收光谱和它们的颜色起因作了概述。变石,是金绿宝石矿物的一个变种,它的颜色被认为是Cr~(3+)出现在金绿宝石结构中的Al~(3+)位置造成的,它进入Al_2位置比进入Al_1位置更为优先,因为它的Al—O间距较大。变石的吸收光谱显示出处于八面体配位的晶格位置中Fe~(3+)和Cr~(3+)的强带。Cr~(3+)光谱中较强组份的数量和偏振强度可用Al_2配位多面体(m对称)的畸变加以解释。在Al_1位置上的Cr~(3+)的谱带强度较低,并且只能看成Cr~(3+)(Al_2)带的台肩。变石状石榴石可被细分为富铬镁铝榴石和富锰铝榴石质的、含钒和(或)铬的镁铝榴石。在两个变石状石榴石族中,Cr~(3+)(4T_2←4A_2)和V~(3+)(3T_2←3T_1)的最大吸收大致位于17500Cm~(-1)的光谱区。这一事实可用两个石榴石族县有近似的晶体场强度解释之。变石状天然刚玉的光谱则用Cr~(3+)(V~(3+))、Fe~(3+)的d-d跃迁以及Fe~(2+)/Ti~(4+)和Fe~(2+)/Fe~(3+)的电荷转移带的迭加来解释。在变石状萤石谱中,可以观察到y~(3+)、Ce~(3+)和Sm~(2+)的吸收带。所有具有颜色变化的矿物和其它变石状相的吸收谱,除了在17300和17800cm~(-1)之间有一个最大的强吸收之外度还在1500和1600cm~(-1)之间以及19700和2IOOOcm~(-1)之间出现最小吸收。比色研究表明,将日光变为人造光时,色,图中主要波长向其红光区位移。在日光中是绿色的晶体,在人造光中通常变成红色,在日光中是蓝绿色或浅蓝色的晶体,在人造光中变成淡红紫色。  相似文献   

2.
3.
4.
5.
Which is more hazardous: avalanche,landslide, or mudslide?   总被引:2,自引:0,他引:2  
  相似文献   

6.
7.
Acta Geochimica - Three monogenetic cones in the Baossi–Warack area, Ngaoundéré, Adamawa Plateau forming part of the Cameroon Volcanic Line (CVL) are documented in this study....  相似文献   

8.
2020年,我国65岁以上老龄人口预计将达到1.67亿。到那时,全世界四个老年人中就有一个是中国老年人……伴随我国人口结构老龄化而来的是一系列棘手的问题:长期执行计划生育政策造成"421"倒三角形的家庭结构,"养儿防老"已经不符合社会的现实;中国老龄住宅和老龄护理设施在数量上还不及发达国家1/10,定位也停留在福利性养老的层次上,远远落后于市场需求;目前住宅及住区的设计少有考虑到"适老"的层面,很难满足老年人居住的需求。  相似文献   

9.
10.
The Montviel 250 Mt carbonatite-hosted REE–Nb deposit is hosted in a Paleoproterozoic alkaline suite located in the Sub-Province of Abitibi, in the Archean Province of the Superior. The alkaline intrusion consists of biotite clinopyroxenites, melano- to leucosyenites, a melteigite–ijolite–urtite series, riebeckite granite, a series of carbonatites and a carbonatite polygenic breccia. The carbonatite series includes silicocarbonatites, calciocarbonatites, rare magnesiocarbonatites, ferrocarbonatites and mixed carbonatites and are cut by a late, high-energy carbonatite polygenic breccia. Diamond drill hole assays and microscope observations indicate that Nb is hosted in pyrochlore from silicocarbonatite whereas the REE mineralization is mainly hosted in ferrocarbonatite, late mixed carbonatites and polygenic breccia, in REE-bearing carbonates and fluorocarbonate minerals. Diamond drill hole underground mapping and systematic assays have shed light on zones enriched in Nd and LREE with preferential Ba and Sr hydrothermal precipitation and zones enriched in Dy, Y and HREE displaying preferential F and P bearing hydrothermal precipitation. Petrographic observations, electron microprobe analyses, LA-ICPMS and X-ray diffraction were used to study the mineralization processes and to identify and quantify the REE-bearing burbankite–(Ce), carbocernaite–(Ce), ewaldite–(Y), huanghoite–(Nd), cordylite–(Ce), cordylite–(Nd), kukharenkoite–(Ce) and synchysite–(Ce). Most minerals are enriched in total LREE with values around 19.3 wt.%, have total MREE values around 2.2 wt.% and extremely variable total HREE values, with very high contents of Dy and Y averaging around 0.3 wt.% and 1.0 wt.%, respectively, and with total HREE reaching up to 10.0 wt.%. A paragenetic sequence is proposed that consists of: (1) a silicocarbonatite Nb stage, and (2) a calciocarbonatite stage, dominated by magmatism but accompanied by hydrothermal fluids, (3) a main ferrocarbonatite stage, dominated by episodes of Ba- and Sr-hydrothermalism and LREE mineralization, F- and P-hydrothermalism and HREE mineralization and evolved ferrocarbonatitic magmatism, (4) a renewed, mixed carbonatite magmatic stage with minor but increasing hydrothermalism, and (5) a terminal stage of fluid pressure buildup and explosion, leading to the creation of a HREE-enriched polygenic breccia. Globular melt inclusions of Ba–Cl–F (± Si–O) may indicate the presence and contribution of barium-bearing chlorofluoride melts during hydrothermal activity and mineralization of the carbonatite.  相似文献   

11.
The origin and sources of the Il’mensky-Vishnevogorsky miaskite-carbonatite complex, one of the world’s largest alkaline complexes, with unique rare-metal and colored-stone mineralization and Nb, Zr, and REE deposits, are discussed in this paper. Geochemical and isotopic studies, including of Nd, Sr, C, and O isotopes, as well as estimation of PT formation conditions, of miaskites and carbonatites from various deposits of the Il’mensky-Vishnevogorsky Complex have been carried out. The Vishnevogorsky, Potaninsky, and Buldym Nb-REE deposits and the Il’mensky, Baidashevo, and Uvil’dy occurrences related to carbonatites were investigated. Their geological setting, composition, and ore resource potential are characterized. The genetic models and typical features of the Il’mensky-Vishnevogorsky Complex are considered. The rocks of the Il’mensky-Vishnevogorsky Complex were formed at T = 1000?230°C and P = 2–5 kbar. Carbonated miaskite melt was divided into immiscible silicate and carbonate liquids at T = 1000°C and P = 5 kbar. Miaskite crystallized at T = 850?700°C and P = 3.5–2.5 kbar. The formation temperature of carbonatite I of the Vishnevogorsky pluton was close to the temperature of miaskite crystallization (700–900°C). The crystallization temperature of carbonate-silicate rock and carbonatite I in the Central alkaline tract was 650–600°C. The formation temperature of carbonatite II varied from 590 to 490°C. Dolomite-calcite carbonatite III and dolomite carbonatite IV of the Buldym massif were formed at T = 575?410°C and T = 315?230°C, respectively. The geochemical features of carbonatites belonging to the Il’mensky-Vishnevogorsky Complex differ from those of carbonatites related to alkaline ultramafic rocks and are close to those of carbonatites related to nepheline syenite or carbonatites localized in linear fracture zones. A high Sr content in early carbonatites along with relatively low Ba, Nb, Ta, Ti, Zr, and Hf contents and a certain enrichment in HREE (a low La/Yb ratio) in comparison with carbonatites of the alkaline ultramafic association are typical. The geochemistry of carbonatites of the Il’mensky-Vishnevogorsky Complex corresponds to the trend of geochemical evolution of carbonatitic melts and their fluid derivatives. The Sr, Nd, C, and O isotopic compositions indicate a mantle magmatic source of the Il’mensky-Vishnevogorsky Complex and participation of moderately depleted mantle (DM) and enriched mantle EM1 in magma generation. Carbonatite and miaskite of the Vishnevogorsky pluton are related to the DM magma source, and carbonatite of the Buldym massif, to the EM1 source, probably, involved in the plume ascent.  相似文献   

12.
13.
14.
15.
16.
The equation describing the conduction of heat in solids has, over the past two centuries, proved to be a powerful tool for analyzing the dynamic motion of heat as well as for solving an enormous array of diffusion-type problems in physical sciences, biological sciences, earth sciences, and social sciences. This equation was formulated at the beginning of the nineteenth century by one of the most gifted scholars of modern science, Joseph Fourier of France. A study of the historical context in which Fourier made his remarkable contribution and the subsequent impact his work has had on the development of modern science is as fascinating as it is educational. This paper is an attempt to present a picture of how certain ideas initially led to Fourier’s development of the heat equation and how, subsequently, Fourier’s work directly influenced and inspired others to use the heat diffusion model to describe other dynamic physical systems. Conversely, others concerned with the study of random processes found that the equations governing such random processes reduced, in the limit, to Fourier’s equation of heat diffusion. In the process of developing the flow of ideas, the paper also presents, to the extent possible, an account of the history and personalities involved. Reprinted by permission from theAmerican Geophysical Union, @ 1999. Originally published inReviews of Geophysics as “Fourier’s Heat Conduction Equation: History, Influence and Connections,” Vol. 37, issue 1, pages 151–172, February 1999. Appended here are eight figures of historical importance.  相似文献   

17.
18.
19.
This article continues and expands the conversation initiated by Jørgensen on the need to rethink rewilding, which elicited a response from Prior and Ward. To spur further conversation, my response to both papers argues for two modes of discourse expansion: geographical and disciplinary. Although both articles gesture toward global rewilding sites, their discussions remain focused on European geographies. I offer James Feldman’s environmental history of the Apostle Islands to extend a geographical purview beyond European contexts. Secondly, I take up these papers’ implicit call for humanities scholars to join this conversation, and I argue for the relevance and importance of fictional writings to a debate regarding rewilding. I briefly introduce two recent fictional works and argue for their place in rewilding conversations based on the ability of imaginary writings to develop empathy.  相似文献   

20.
This article explores the role of geographical context in generating a stigmatised identity among residents of Tara rural subdivisions in the coal seam gas fields in Queensland’s Western Downs. The research was based on qualitative interviews with Tara ‘Blockies’, as these residents are commonly referred to, that revealed how their existence in the middle of an agrarian region resulted in the assignation of a stigma that has marked them as different, and subsequently devalued their status. We explain that this distinction and category division of the normals, referring to Tara’s Agrarian residents, from the ‘stigmatised’ led to an antagonistic relationship that prevented successful socio-cultural assimilation. We demonstrate how an immoral place becomes disadvantaged, resulting in poor well-being, and how imposed labels threaten the self-esteem of its occupants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号