首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Through the introduction of a term at each order of the generating function dependent only on the long-period variables, a technique is shown whereby both short- and long-period variables in a degenerate Hamiltonian can be eliminated simultaneously in one transformation with the von Zeipel method, rather than the traditionally separate transformations. The technique is applied to the lunar theory as an example.  相似文献   

2.
The analytical solution for the perturbations of an artificial satellite due to the zonal part of the geopotential is presented. The Hamiltonian is fully normalized up to the second order by a single averaging transformation and the generating function is given explicitly. The formulas allow an arbitrarily high degree of geopotential harmonics to be included. The transformation from mean to osculating variables or vice versa is performed by means of a numerical method proposed by the author in a previous paper (Breiter,1997): periodic perturbations are computed by means of a Runge-Kutta method of order 2 instead of being explicitly derived from a generator. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Using the elimination of the parallax followed by the Delaunay normalization, we present a procedure for calculating a normal form of the main problem (J 2 perturbation only) in satellite theory. This procedure is outlined in such a way that an object-oriented automatic symbolic manipulator based on a hierarchy of algebras can perform this computation. The Hamiltonian after the Delaunay normalization is presented to order six explicitly in closed form, that is, in which there is no expansion in the eccentricity. The corresponding generating function and transformation of coordinates, too lengthy to present here to the same order; the generator is given through order four. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Once the generating function of a Lie-type transformation is known, canonical variables can be transformed numerically by application of a Runge-Kutta type integration method or any other appropriate numerical integration algorithm. The proposed approach avails itself of the fact, that the transformation is defined by a system of differential equations with a small parameter as the independent variable. The integration of such systems arising in the perturbation theories of Hori and Deprit is discussed. The method allows to compute numerical values of periodic perturbations without deriving explicitly the perturbation series. This saving of an algebraic work is achieved at the expense of multiple evaluations of the generator's derivatives.  相似文献   

5.
A new approach to the librational solution of the Ideal Resonance Problem has been devised--one in which a non-canonical transformation is applied to the classical Hamiltonian to bring it to the form of the simple harmonic oscillator. Although the traditional form of the canonical equations of motion no longer holds, a quasi-canonical form is retained in this single-degree-of-freedom system, with the customary equations being multiplied by a non-constant factor. While this makes the resulting system amenable to traditional transformation techniques, it must then be integrated directly. Singularities of the transformation in the circulation region limit application of the method to the librational region of motion.Computer-assisted algebra has been used in all three stages of the solution to fourth order of this problem: using a general-purpose FORTRAN program for the quadratic analytical solution of Hamiltonians in action-angle variables, the initial transformation is carried out by direct substitution and the resulting Hamiltonian transformed to eliminate angular variables. The resulting system of differential equations, requiring the expected elliptic functions as part of their solution, is currently in the process of being integrated using the LISP-based REDUCE software, by programming the required recursive rules for elliptic integration.Basic theory of this approach and the computer implementation of all these techniques is described. Extension to higher order of the solution is also discussed.  相似文献   

6.
The regularization of a new problem, namely the three-body problem, using ‘similar’ coordinate system is proposed. For this purpose we use the relation of ‘similarity’, which has been introduced as an equivalence relation in a previous paper (see Roman in Astrophys. Space Sci. doi:, 2011). First we write the Hamiltonian function, the equations of motion in canonical form, and then using a generating function, we obtain the transformed equations of motion. After the coordinates transformations, we introduce the fictitious time, to regularize the equations of motion. Explicit formulas are given for the regularization in the coordinate systems centered in the more massive and the less massive star of the binary system. The ‘similar’ polar angle’s definition is introduced, in order to analyze the regularization’s geometrical transformation. The effect of Levi-Civita’s transformation is described in a geometrical manner. Using the resulted regularized equations, we analyze and compare these canonical equations numerically, for the Earth-Moon binary system.  相似文献   

7.
The motion of two massive particles is considered within the framework of the first post-Newtonian approximation. The system Hamiltonian is constructed and normalized through first order using a canonical transformation method of implicit variables. Closed-form solutions for the Delaunay elements in the phase space are obtained. The bridge between the phase space and the state space of the Lagrangian of the motion is provided by a velocity-dependent Legendre transformation. By explicit inversion of this transformation, expressions for the Keplerian elements in the state space are obtained from the Delaunay element solutions.  相似文献   

8.
The Vinti problem, motion about an oblate spheroid, is formulated using the extended phase space method. The new independent variable, similar to the true anomaly, decouples the radius and latitude equations into two perturbed harmonic oscillators whose solutions toO(J 2 4 ) are obtained using Lindstedt's method. From these solutions and the solution to the Hamilton-Jacobi equation suitable angle variables, their canonical conjugates and the new Hamiltonian are obtained. The new Hamiltonian, accurate toO(J 2 4 ) is function of only the momenta.  相似文献   

9.
A new method of simultaneously regularizing the three types of binary collisions in the planar problem of three bodies is developed: The coordinates are transformed by means of certain fourth degree polynomials, and a new independent variable is introduced, too. The proposed transformation is in each binary collision locally equivalent to Levi-Civita's transformation, whereas the singularity corresponding to a triple collision is mapped into infinity. The transformed Hamiltonian is a polynomial of degree 12 in the regularized variables.Presented before the Division of Dynamical Astronomy at the 133rd meeting of the American Astronomical Society, Tampa, Florida, December 6–9, 1970.Department of Aerospace Engineering and Engineering Mechanics.  相似文献   

10.
The problem of the critical inclination is treated in the Hamiltonian framework taking into consideration post-Newtonian corrections as well as the main correction term of sectorial harmonics for an earth-like planet. The Hamiltonian is expressed in terms of Delaunay canonical variables. A canonical transformation is applied to eliminate short period terms. A modified critical inclination is obtained due to relativistic and the first sectorial harmonics corrections.  相似文献   

11.
We show that time scaling transformations for Hamiltonian systems are infinitesimal canonical transformations in a suitable extended phase space constructed from geometrical considerations. We compute its infinitesimal generating function in some examples: regularization and blow up in celestial mechanics, classical mechanical systems with homogeneous potentials and Scheifele theory of satellite motion.Research partially supported by CONACYT (México), Grant PCCBBNA 022553 and CICYT (Spain).  相似文献   

12.
If the undisturbed Hamiltonian F0 is a function of the momenta only, then a variant of the Hori-Lie series perturbation method achieves a solution to any order with a single canonical transformation, without the use of the pseudo-time.  相似文献   

13.
We consider an algorithm to construct averaged motion equations for four-planetary systems by means of the Hori–Deprit method. We obtain the generating function of the transformation, change-variable functions and right-hand sides of the equations of motion in elements of the second Poincaré system. Analytical computations are implemented by means of the Piranha echeloned Poisson processor. The obtained equations are to be used to investigate the orbital evolution of giant planets of the Solar system and various extrasolar planetary systems.  相似文献   

14.
An analytical theory is presented for determining the motion described by a Hamiltonian of two degrees of freedom. Hamiltonians of this type are representative of the problem of an artificial Earth satellite in a near-circular orbit or a near-equatorial orbit and in resonance with a longitudinal dependent part of the geopotential. Using the classical Bohlin-von Zeipel procedure the variation of the elements is developed through a generating function expressed as a trigonometrical series. The coefficients of this series, determined in ascending powers of an auxiliary parameter, are the solutions of paired sets of ordinary differential equations and involve elliptic functions and quadrature. The first order solution accounts for the full variation of the resonance terms with the second coordinate.  相似文献   

15.
Action-angle variables for the Levi-Civita regularized planar Kepler problem were introduced independently first by Chenciner and then by Deprit and Williams. The latter used explicitly the so-called Lissajous variables. When applied to the transformed Keplerian Hamiltonian, the Lissajous transformation encounters the difficulty of being defined in terms of the constant frequency parameter, whereas the Kepler problem transformed into a harmonic oscillator involves the frequency as a function of an energy-related canonical variable. A simple canonical transformation is proposed as a remedy for this inconvenience. The problem is circumvented by adding to the physical time a correcting term, which occurs to be a generalized Kepler’s equation. Unlike previous versions, the transformation is symplectic in the extended phase space and allows the treatment of time-dependent perturbations. The relation of the extended Lissajous–Levi-Civita variables to the classical Delaunay angles and actions is given, and it turns out to be a straightforward generalization of the results published by Deprit and Williams.  相似文献   

16.
In the author's treatment of the ideal resonance problem (1988), a non-canonical transformation was employed to bring the original Hamiltonian to a form amenable to the use of standard action-angle variables. Though the strictly Hamiltonian form of equations of motion was thus compromised, their general form was maintained, allowing transformation of the system to arbitrary order and forestalling the introduction of elliptic functions until a final explicit integration required in this approach. The general theory of such transformations is presented, and some points regarding their application are discussed, leading to the conclusion that the approach is practically limited to systems with a single degree of freedom only.  相似文献   

17.
In the present paper, we used the Hori-Deprit method to construct the averaged Hamiltonian of the two-planetary problem accurate to the second order of a small parameter, the generating function of the transform, the change of variables formulas, and the right-hand sides of the equations in average elements. The evolution of the two-planet Sun-Jupiter-Saturn system was investigated by numerical integration over 10 billion years. The motion of the planets has an almost periodic character. The eccentricities and inclinations of Jupiter’s and Saturn’s orbits remain small but different from zero. The short-term disturbances remain small over the entire period considered in the study.  相似文献   

18.
In this paper, we analyze the linear stabilities of several symplectic integrators, such as the first-order implicit Euler scheme, the second-order implicit mid-point Euler difference scheme, the first-order explicit Euler scheme, the second-order explicit leapfrog scheme and some of their combinations. For a linear Hamiltonian system, we find the stable regions of each scheme by theoretical analysis and check them by numerical tests. When the Hamiltonian is real symmetric quadratic, a diagonalizing by a similar transformation is suggested so that the theoretical analysis of the linear stability of the numerical method would be simplified. A Hamiltonian may be separated into a main part and a perturbation, or it may be spontaneously separated into kinetic and potential energy parts, but the former separation generally is much more charming because it has a much larger maximum step size for the symplectic being stable, no matter this Hamiltonian is linear or nonlinear.  相似文献   

19.
This short paper gives a brief overview of the manifestly covariant canonical gauge gravity (CCGG) that is rooted in the De Donder-Weyl Hamiltonian formulation of relativistic field theories, and the proven methodology of the canonical transformation theory. That framework derives, from a few basic physical and mathematical assumptions, equations describing generic matter and gravity dynamics with the spin connection emerging as a Yang Mills-type gauge field. While the interaction of any matter field with spacetime is fixed just by the transformation property of that field, a concrete gravity ansatz is introduced by the choice of the free (kinetic) gravity Hamiltonian. The key elements of this approach are discussed and its implications for particle dynamics and cosmology are presented. New insights: Anomalous Pauli coupling of spinors to curvature and torsion of spacetime, spacetime with (A)dS ground state, inertia, torsion and geometrical vacuum energy, Zero-energy balance of the Universe leading to a vanishing cosmological constant and torsional dark energy.  相似文献   

20.
In this paper the first variational equations of motion about the triangular points in the elliptic restricted problem are investigated by the perturbation theories of Hori and Deprit, which are based on Lie transforms, and by taking the mean equations used by Grebenikov as our upperturbed Hamiltonian system instead of the first variational equations in the circular restricted problem. We are able to remove the explicit dependence of transformed Hamiltonian on the true anomaly by a canonical transformation. The general solution of the equations of motion which are derived from the transformed Hamiltonian including all the constant terms of any order in eccentricity and up to the periodic terms of second order in eccentricity of the primaries is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号