首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Constancy of Nb/U in the mantle revisited   总被引:5,自引:0,他引:5  
It has long been proposed that MORB and OIB have constant supra-primitive mantle (PM) Nb/U values identical to each other. This fact together with complementary sub-PM values for the continental crust (CC), are taken as fundamental evidence, linking the mantle sources of MORB and OIB to the formation of the CC. Given that plate subduction at convergent margins is the major known process that dramatically fractionates Nb from U, and consequently that subducted oceanic slabs are the main primary carriers of supra-PM Nb/U, a constant supra-PM Nb/U in MORB mantle implies that the mixing of subducted oceanic crust is essentially finished or the newly recycled oceanic crust has Nb/U close to that of the mantle. The similarity between Nb and U as well as the constancy of Nb/U in MORB are revisited here based on MORB glass data obtained using laser ablation ICP-MS. The result shows that Nb/U is not correlated with Nb/Hf, supporting that Nb and U are similarly incompatible. Further investigation shows that Nb is not perfectly identical to, but is faintly more incompatible than U as indicated by the good correlation between log(U) and log(Nb) with a slope of 0.954, very close to 1. Nonetheless, the similarity between Nb and U is high enough, such that the average Nb/U value of MORB glasses should be very close to that of the MORB mantle. By contrast, the difference between Ce and Pb is more obvious. Ce is more incompatible than Pb with a slope of 1.13 in a log(Pb) versus log(Ce) diagram. Therefore, the Ce/Pb of MORB should be a little bit higher than that of the mantle source. The Nb/U value is not as uniform as expected for the similar incompatibility in studied MORB glasses, but varies by a factor of ∼2, suggesting that MORB mantle source is not yet homogenized in term of Nb/U. This indicates that the mixing back of subducted oceanic crust is still an ongoing process, i.e., subducted oceanic crust is recycling back after staying in the lower mantle for billions of years.  相似文献   

2.
The geologic evolution of the New Zealand microcontinent was characterised by intermittent Cretaceous to Quaternary episodes of intraplate volcanism. To evaluate the corresponding mantle evolution beneath New Zealand with a specific focus on the tectonic evolution, we performed a combined major and trace element and Hf, Nd, Pb, Sr isotope investigation on a suite of representative intraplate volcanic rocks from both main islands and the Chatham Islands. Isotopically, the data set covers a range between “HIMU-like” end member compositions (206Pb/204Pb: 20.57, 207Pb/204Pb: 15.77, 87Sr/86Sr: 0.7030, εHf: + 3.8, εNd: + 4.2), compositions tending towards MORB (206Pb/204Pb: 19.01, 207Pb/204Pb: 15.62, 87Sr/86Sr: 0.7028, εHf: + 9.9, εNd: + 7.0) and compositions reflecting the influence of subducted sediments (206Pb/204Pb: 18.99, 207Pb/204Pb: 15.67, 87Sr/86Sr: 0.7037, εHf: + 4.4, εNd: + 3.9). Whereas volcanism on the Chatham Islands constitutes the HIMU end member of our data set, intraplate volcanic rocks from the North Island are dominated by MORB-like compositions with relatively radiogenic 206Pb/204Pb signatures. Volcanic rocks from the South Island form a trend between the three end members. Assuming a polybaric melting column model, the primary melt compositions reflect variations in the degree of melting, coupled to variable average melting depths. As the three isotope and trace element end members occur throughout the volcanic episodes, the “HIMU-like” and the sediment influenced signatures most likely originate from a heterogeneous subcontinental lithospheric mantle, whereas an asthenospheric origin is inferred for the MORB-like component. For the South Island, affinities to HIMU wane with decreasing average melting depths whereas MORB and sediment-like signatures become more distinct. We therefore propose a polybaric melting model involving upper asthenospheric mantle and a lithospheric mantle source that has been modified by subduction components and veins of fossil “HIMU-like” asthenospheric melts. The proportion of asthenospheric versus lithospheric source components is controlled by variations in lithospheric thickness and heat flow, reflecting the different tectonic settings and rates of extension. Generally, low degree melts preferentially tap enriched vein material with HIMU signatures. The widespread occurrence of old Gondwana-derived lithospheric mantle beneath intraplate volcanic fields in East Gondwana is suggested by overall similarities between New Zealand intraplate volcanic rocks and volcanic rocks in East Australia and Antarctica. The petrogenetic model proposed here may therefore serve as a general model for the petrogenesis of Cretaceous to Recent intraplate volcanic rocks in former East Gondwana. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Average concentrations of incompatible elements and isotopes of radiogenic Sr, Nd and Pb in a 350 km long belt of Central European volcanics (CECV) resemble those in OIB in general and in OIB from the N Atlantic in particular. This similarity allows to infer comparable sources for CECV and OIB which might have been located in the lower mantle according to seismic tomography and chemistry, with the latter unlike a MORB source. The incompatible element contribution of lower mantle origin can be modelled from primitive mantle minus continental crust and upper mantle inventories. Alkali basaltic magmas from the modelled source are close in composition to CECV and OIB. The continental crust contains almost half of the silicate Earth's content of Rb, K, Pb, Ba, Th and U, which were mobilized to a major extent through dehydration of subducted ocean crust. Related losses from the lower mantle had to be replaced by deep subductions of oceanic lithosphere recognized from their isotopic imprint. From a balance based on Nd isotopes it can be concluded that average CECV contains 60% matter from residual primitive mantle and 40% from deeply subducted lithosphere (including some young upper mantle materials). Plume products from separate CECV regions developed, within 45 Ma, from rather depleted to more primitive isotopic signatures. Four periods of volcanism from Eocene to late Quaternary time are explained as four pulses of an almost stationary ultrafast plume uprise as modelled by Larsen and Yuen (1997). Magma production has increased from the first to the third pulse with the peak during Miocene time in the Vogelsberg region. The final pulse produced the Quaternary Eifel volcanoes. Tectonism from the Alpine orogen has probably triggered the synchronous volcanism of CECV, Massif Central etc. The European lithospheric plate has moved under the control of the opening Atlantic almost in an eastern direction with a velocity of 1 cm per year and has shifted extinct volcanoes off their source channels. Received: 10 July 1998 / Accepted: 10 February 1999  相似文献   

4.
MORB 是玄武岩中研究得最详细的玄武岩类,可分为N-MORB 和E-MORB 两类。通常认为,N-MORB 和OIB 都是独立的端元,分别来自亏损和富集的地幔源岩,而E-MORB 则是N-MORB 与OIB 混合的结果。本文研究表明,E-MORB 具复杂的成因,洋脊深度、洋脊扩张速率及源区部分熔融程度及压力不是造成E-MORB 富集的主要原因。压力及部分熔融程度对玄武岩成分的影响远小于地幔不均一性的影响。推测E-MORB 可能有两个主要的形成方式:1) 由较深处略富集的地幔发生部分熔融而成;2) 由N-MORB 与OIB 混合形成。玄武岩微量元素频率直方图表明,N-MORB 基本上保持了来自亏损地幔源区的特征;OIB 则多多少少受到外来物质加入或与N-MORB 混合的影响; E-MORB 则是N-MORB 受OIB 影响的产物。OIB 与E-MORB 似乎没有本质上的区别, 仅仅是受影响和混合程度的不同而已。OIB 富集LILE,可能既有继承了来自源区的特征(深部富集地幔、循环的古洋壳、循环的陆壳、大陆岩石圈地幔、LVZ 熔体层或早期交代岩脉等),也可能有外来物质加入的影响(与N-MORB 发生不同程度的混合作用)。3 类玄武岩的87Sr/86Sr 和143Nd/144Nd 同位素频率分布与早先的结论一致,但206Pb/204Pb、207Pb/204Pb和208Pb/204Pb同位素频率分布显示OIB 具有更加复杂的特征。  相似文献   

5.
A Refined Solution to the First Terrestrial Pb-isotope Paradox   总被引:2,自引:2,他引:2  
The first terrestrial Pb-isotope paradox refers to the factthat on average, rocks from the Earth’s surface (i.e.the accessible Earth) plot significantly to the right of themeteorite isochron in a common Pb-isotope diagram. The Earthas a whole, however, should plot close to the meteorite isochron,implying the existence of at least one terrestrial reservoirthat plots to the left of the meteorite isochron. The core andthe lower continental crust are the two candidates that havebeen widely discussed in the past. Here we propose that subductedoceanic crust and associated continental sediment stored asgarnetite slabs in the mantle Transition Zone or mid–lowermantle are an additional potential reservoir that requires consideration.We present evidence from the literature that indicates thatneither the core nor the lower crust contains sufficient unradiogenicPb to balance the accessible Earth. Of all mantle magmas, onlyrare alkaline melts plot significantly to the left of the meteoriteisochron. We interpret these melts to be derived from the missingmantle reservoir that plots to the left of the meteorite isochronbut, significantly, above the mid-ocean ridge basalt (MORB)-sourcemantle evolution line. Our solution to the paradox predictsthe bulk silicate Earth to be more radiogenic in 207Pb/204Pbthan present-day MORB-source mantle, which opens the possibilitythat undegassed primitive mantle might be the source of certainocean island basalts (OIB). Further implications for mantledynamics and oceanic magmatism are discussed based on a previouslyjustified proposal that lamproites and associated rocks couldderive from the Transition Zone. KEY WORDS: Pb isotopes, paradox, mantle Transition Zone, undegassed mantle, core formation  相似文献   

6.
Clinopyroxene/melt pairs in strongly potassic silicate and carbonatite melts exhibit unusually high U/Th partitioning ratios of ˜ 3 and ˜ 2, respectively. These values are much higher than those found for aluminous clinopyroxenes in peridotite, and have the potential to cause significant (230Th)/(238U) isotope enrichment in volcanics. The potassic silicate (lamproite) and carbonatite melts correspond closely to the main agents of mantle metasomatism, indicating that clinopyroxene in metasomatized regions of the mantle may greatly affect U/Th disequilibria. Recycling of alkali pyroxenite veins in the oceanic lithosphere formed by solidification of melt in the extremities of the MORB melting region presents an alternative to eclogite recycling in MORB and OIB genesis.  相似文献   

7.
The effects of source composition and source evolution duringprogressive partial melting on the chemistry of mantle-derivedmid-ocean ridge basalt (MORB) melts were tested using a comprehensivegeochemical and Sr–Nd–Pb isotopic dataset for fresh,magnesian basaltic glasses from the Miocene Macquarie Islandophiolite, SW Pacific. These glasses: (1) exhibit clear parent–daughterrelationships; (2) allow simple reconstruction of primary meltcompositions; (3) show exceptional compositional diversity (e.g.K2O/TiO2 0·09–0·9; La/Yb 1·5–22;206Pb/204Pb 18·70–19·52); (4) preserve changesin major element and isotope compositions, which are correlatedwith the degree of trace element enrichment (e.g. La/Sm). Conventionalmodels for MORB genesis invoke melting of mantle that is heterogeneouson a small scale, followed by binary mixing of variably lithophileelement-enriched melt batches. This type of model fails to explainthe compositions of the Macquarie Island glasses, principallybecause incompatible element ratios (e.g. Nb/U, Sr/Nd) and Pbisotope ratios vary non-systematically with the degree of enrichment.We propose that individual melt batches are produced from instantaneous‘parental’ mantle parageneses, which change continuouslyas melting and melt extraction proceeds. This concept of a ‘dynamicsource’ combines the models of small-scale mantle heterogeneitiesand fractional melting. A dynamic source is an assemblage oflocally equilibrated mantle solids and a related melt fraction.Common MORB magmas that integrate the characteristics of numerousmelt batches therefore tend to conceal the chemical and isotopicidentity of a dynamic source. This study shows that isotoperatios of poorly mixed MORB melts are a complex function ofthe dynamic source evolution, and that the range in isotoperatios within a single MORB suite does not necessarily requiremixing of diverse components. KEY WORDS: mid-ocean ridge basalt; Macquarie Island; radiogenic isotopes; mantle; geochemistry  相似文献   

8.
Late Cenozoic intraplate basaltic rocks in northeastern China have been interpreted as being derived from a mantle source composed of DMM and EM1 components. To constrain the origin of the enriched mantle component, we have now determined the geochemical compositions of basaltic rocks from the active Baekdusan volcano on the border of China and North Korea. The samples show LREE-enriched patterns, with positive Eu and negative Ce anomalies. On a trace element distribution diagram, they show typical oceanic island basalt (OIB)-like LILE enrichments without significant Nb or Ta depletions. However, compared with OIB, they show enrichments in Ba, Rb, K, Pb, Sr, and P. The Nb/U ratios are generally within the range of OIB, but the Ce/Pb ratios are lower than those of OIB. Olivine phenocrysts are characterized by low Ca and high Ni contents. The radiogenic isotopic characteristics (87Sr/86Sr = 0.70449 to 0.70554; εNd = −2.0 to +1.8; εHf = −1.7 to +6.1; 206Pb/204Pb = 17.26 to 18.12) suggest derivation from an EM1-like source together with an Indian MORB-like depleted mantle. The Mg isotopic compositions (δ26Mg = −0.39 ± 0.17‰) are generally lower than the average upper mantle, indicating carbonates in the source. The 87Sr/86Sr ratios decrease with decreasing δ26Mg values whereas the 143Nd/144Nd and (Nb/La)N ratios increase. These observations suggest the mantle source of the Baekdusan basalts contained at least two components that resided in the mantle transition zone (MTZ): (1) recycled subducted ancient (∼2.2–1.6 Ga) terrigenous silicate sediments, possessing EM1-like Sr–Nd–Pb–Hf isotopic signatures and relatively high values of δ26Mg; and (2) carbonated eclogites with relatively MORB-like radiogenic isotopic compositions and low values of δ26Mg. These components might have acted as metasomatizing agents in refertilizing the asthenosphere, eventually influencing the composition of the MTZ-derived plume that produced the Baekdusan volcanism.  相似文献   

9.
 Geochemical data have been interpreted as requiring that a significant fraction of the melting in MORB source regions takes place in the garnet peridotite field, an inference that places the onset of melting at ≥80 km. However, if melting begins at such great depths, most models for melting of the suboceanic mantle predict substantially more melting than that required to produce the 7±1 km thickness of crust at normal ridges. One possible resolution of this conflict is that MORBs are produced by melting of mixed garnet pyroxenite/spinel peridotite sources and that some or all of the “garnet signature” in MORB is contributed by partial melting of garnet pyroxenite layers or veins, rather than from partial melting of garnet peridotite. Pyroxenite layers or veins in peridotite will contribute disproportionately to melt production relative to their abundance, because partial melts of pyroxenite will be extracted from a larger part of the source region than peridotite partial melts (because the solidus of pyroxenite is at lower temperature than that of peridotite and is encountered along an adiabat 15–25 km deeper than the solidus of peridotite), and because melt productivity from pyroxenite during upwelling is expected to be greater than that from peridotite (pyroxenite melt productivity will be particularly high in the region before peridotite begins melting, owing to heating from the enclosing peridotite). For reasonable estimates of pyroxenite and peridotite melt productivities, 15–20% of the melt derived from a source region composed of 5% pyroxenite and 95% peridotite will come from the pyroxenite. Most significantly, garnet persists on the solidus of pyroxenite to much lower pressures than those at which it is present on the solidus of peridotite, so if pyroxenite is present in MORB source regions, it will probably contribute a garnet signature to MORB even if melting only occurs at pressures at which the peridotite is in the spinel stability field. Partial melting of a mixed spinel peridotite/garnet pyroxenite mantle containing a few to several percent pyroxenite can explain quantitatively many of the geochemical features of MORB that have been attributed to the onset of melting in the stability field of garnet lherzolite, provided that the pyroxenite compositions are similar to the average composition of mantle-derived pyroxene-rich rocks worldwide or to reasonable estimates of the composition of subducted oceanic crust. Sm/Yb ratios of average MORB from regions of typical crustal thickness are difficult to reconcile with derivation by melting of spinel peridotite only, but can be explained if MORB sources contain ∼5% garnet pyroxenite. Relative to melting of spinel peridotite alone, participation of model pyroxenite in melting lowers aggregate melt Lu/Hf without changing Sm/Nd ratios appreciably. Lu/Hf-Sm/Nd systematics of most MORB can be accounted for by melting of a spinel peridotite/garnet pyroxenite mantle provided that the source region contains 3–6% pyroxenite with ≥20% modal garnet. However, Lu/Hf-Sm/Nd systematics of some MORB appear to require more complex melting regimes and/or significant isotopic heterogeneity in the source. Another feature of the MORB garnet signature, (230Th)/(238U)>1, can also be produced under these conditions, although the magnitude of (230Th)/(238U) enrichment will depend on the rate of melt production when the pyroxenite first encounters the solidus, which is not well-constrained. Preservation of high (230Th)/(238U) in aggregated melts of mixed spinel peridotite/garnet pyroxenite MORB sources is most likely if the pyroxenites have U concentrations similar to that expected in subducted oceanic crust or to pyroxenite from alpine massifs and xenoliths. The abundances of pyroxenite in a mixed source that are required to explain MORB Sm/Yb, Lu/Hf, and (230Th)/(238U) are all similar. If pyroxenite is an important source of garnet signatures in MORB, then geochemical indicators of pyroxenite in MORB source regions, such as increased trace element and isotopic variability or more radiogenic Pb or Os, should correlate with the strength of the garnet signature. Garnet signatures originating from melts of the garnet pyroxenite components of mixed spinel peridotite/garnet pyroxenite sources would also be expected to be stronger in regions of thin crust. Received: 15 February 1995/Accepted: 7 February 1996  相似文献   

10.
 Mohns Ridge lavas between 71 and 72°30′N (∼360 km) have heterogeneous compositions varying between alkali basalts and incompatible-element-depleted tholeiites. On a large scale there is a continuity of incompatible element and isotopic compositions between the alkali basalts from the island Jan Mayen and Mohns Ridge tholeiites. The variation in isotopes suggests a heterogeneous mantle which appears to be tapped preferentially by low degree melts (∼5%) close to Jan Mayen but also shows its signature much further north on Mohns Ridge. Three lava types with different incompatible element compositions [e.g. chondrite-normalized (La/Sm)N<1 to >2] occur in the area at 72°N and were generated from this heterogeneous mantle. The relatively depleted tholeiitic melts were mixed with a small degree melt from an enriched source. The elements Ba, Rb and K of the enriched melt were probably buffered in the mantle by residual amphibole or phlogopite. That such a residual phase is stable in this region of oceanic mantle suggests both high water contents and low mantle temperatures, at odds with a hotspot origin for Jan Mayen. Instead we suggest that the melting may be induced by the lowered solidus temperature of a “wet” mantle. Mohns MORB (mid ocean ridge basalt) and Jan Mayen area alkali basalts have high contents of Ba and Rb compared to other incompatible elements (e.g. Ba/La >10). These ratios reflect the signature of the mantle source. Ratios of Ce/Pb and Rb/Cs are normal MORB mantle ratios of 25 and 80, respectively, thus the enrichments of Ba and Rb are not indicative of a sedimentary component added to the mantle source but were probably generated by the influence of a metasomatizing fluid, as supported by the presence of hydrous phases during the petrogenesis of the alkali basalts. Geophysical and petrological models suggest that Jan Mayen is not the product of hotspot activity above a mantle plume, and suggest instead that it owes its existence to the unique juxtaposition of a continental fragment, a fracture zone and a spreading axis in this part of the North Atlantic. Received: 3 May 1995 / Accepted: 6 November 1995  相似文献   

11.
South Korea separates two mantle source domains for Late Cenozoic intraplate volcanism in East Asia: depleted mid-ocean-ridge basalt (MORB) mantle-enriched mantle type 1 (DMM-EM1) in the north and DMM-EM2 in the south. We determined geochemical compositions, including Sr, Nd, Pb, and Hf isotopes for the Jeongok trachybasalts (∼0.51 to 0.15 Ma K–Ar ages) from northernmost South Korea, to better constrain the origin and distribution of the enriched mantle components. The Jeongok basalts exhibit light rare earth element (LREE)-enriched patterns ([La/Yb]N = 9.2–11.6). The (La/Yb)N ratios are lower than that of typical oceanic island basalt (OIB). On a primitive mantle-normalized incompatible element plot, the Jeongok samples show OIB-like enrichment in highly incompatible elements. However, they are depleted in moderately incompatible elements (e.g., La, Nd, Zr, Hf, etc.) compared with the OIB and exhibit positive anomalies in K and Pb. These anomalies are also prime characteristics of the Wudalianchi basalts, extreme EM1 end-member volcanics in northeast China. We have compared the geochemistry of the Jeongok basalts with those of available Late Cenozoic intraplate volcanic rocks from East Asia (from north to south, Wudalianchi, Mt. Baekdu and Baengnyeong for DMM-EM1, and Jeju for DMM-EM2). The mantle source for the Jeongok volcanics contains an EM1 component. The contribution of the EM1 component to East Asian volcanism increases toward the north, from Baengnyeong through Jeongok to Mt. Baekdu and finally to Wudalianchi. Modeling of trace element data suggests that the Jeongok basalts may have been generated by mixing of a Wudalianchi-like melt (EM1 end-member) and a melt that originated from a depleted mantle source, with some addition of the lithospheric mantle beneath the Jeongok area. In Nd–Hf isotope space, the most enriched EM1-component-bearing Jeongok sample shows elevation of 176Hf/177Hf at a given 143Nd/144Nd compared with OIB. Recycled pelagic sediments may explain the EM1-end-member component of northeastern Asian volcanism, possibly from the mantle transition zone.  相似文献   

12.
 The Urach volcanic field is unique within the Tertiary–Quaternary European volcanic province (EVP) due to more than 350 tuffaceous diatremes and only sixteen localities with extremely undersaturated olivine melilitite. We report representative Pb-Sr-Nd isotopic compositions and incompatible trace element data for twenty-two pristine augite, Cr-diopside, hornblende, and phlogopite megacryst samples from the diatremes, and seven melilitite whole rocks. The Pb isotopic compositions for melilitites and comagmatic megacrysts have very radiogenic 206Pb/204Pb ratios of 19.4 to 19.9 and plot on the northern hemisphere mantle reference line (NHRL). The data indicate absence of an old crustal component as reflected in the high 207Pb/204Pb ratios of many basalts from the EVP. This inference is supported by 206Pb/204Pb ratios of ∼17.6 to 18.3 and ɛNd of ∼−7.8 to +1.6 for five phlogopite xenocryst samples reflecting a distinct and variably rejuvenated lower Hercynian basement. The 87Sr/86Sr ratios of 0.7033 to 0.7035 in the comagmatic megacrysts are low relative to their moderately radiogenic Nd isotopic compositions (ɛNd +2.2 to +5.1) and consistent with a long-term source evolution with a low Rb/Sr ratio and depletion in light rare-earth elements (LREE). The melilitite whole-rock data show a similar range in Nd isotopic ratios as determined for the megacrysts but their Sr isotopic compositions are often much more radiogenic due to surface alteration. The REE patterns and incompatible trace element ratios of the melilitites (e.g. Nb/Th, Nb/U, Sr/Nd, P/Nd, Ba/Th, Zr/Hf) are similar to those in ocean island basalts (OIB); negative anomalies for normalized K and Rb concentrations support a concept of melt evolution in the lithospheric mantle. Highly variable Ce/Pb ratios of 29 to 66 are positively correlated with La/Lu, La/K2O, and Ba/Nd and interpreted to reflect melting in the presence of residual amphibole and phlogopite. The data suggest an origin of the melilitites from a chemical boundary layer very recently enriched by melts from old OIB sources. We suggest that the OIB-like mantle domains represent low-temperature melting heterogeneities in an upwelling asthenosphere under western Europe. Received: 9 March 1995/Accepted: 24 July 1995  相似文献   

13.
The major, trace (including rare earth) element abundances, and Sr-Nd-Pb isotopic compositions, have been analysed for andesitic basalt and andesitic sills and lavas of the Jurassic Ferrar Magmatic Province, Prince Albert Mountains, Antarctica. The typical “crustal signature” of the Ferrar magmatism, characterized by relatively high SiO2, LREE and LILE contents in these samples, is associated with high 87Sr/86Sr and low 143Nd/144Nd. Systematic correlations of major and trace elements indicate that fractional crystallization was important. However, increases in incompatible elements are positively correlated with initial 87Sr/86Sr, suggestive of crustal assimilation processes. The observed correlations between initial 87Sr/86Sr and LREE enrichments have been modelled by an AFC process, starting from the least evolved sample and assuming the compositions of the orthogranulites of Victoria Land as contaminants. The REE patterns of the least evolved Ferrar rocks approach those of E-type MORB, differing only by higher LREE/IREE. The enrichment in LREE, accompanying high initial 87Sr/86Sr, 207Pb/204Pb and low 143Nd/144Nd compared with E-type MORB, can be explained by interaction of “primary Ferrar basalt” with crystalline basement. We propose a petrological model whereby Ferrar magmas were generated through high degrees of melting of an E-type MORB mantle source, and subsequently these “primary” melts underwent AFC processes inheriting a crustal signature. The Sr-Nd-Pb isotopic compositions required by the AFC model for the primary Ferrar basalt are similar to those of the Dupal signature of the oceanic basalts of the Southern Hemisphere (Hart 1984). Transantarctic Mountains would have been located inside the Dupal anomaly in pre-Gondwana dispersion times. Received: 21 April 1998 / Accepted: 25 January 1999  相似文献   

14.
The concentrations of Ir, Ru, Pt and Pd have been determined in 29 Mid-Oceanic Ridge basaltic (MORB) glasses from the Pacific (N = 7), the Atlantic (N = 10) and the Indian (N = 11) oceanic ridges and the Red Sea (N = 1) spreading centers. The effect of sulfide segregation during magmatic differentiation has been discussed with sample suites deriving from parental melts produced by high (16%) and low (6%) degrees of partial melting, respectively. Both sample suites define positive and distinct covariation trends in platinum-group elements (PGE) vs. Ni binary plots. The high-degree melting suite displays, for a given Ni content, systematically higher PGE contents relative to the low-degree melting suite. The mass fraction of sulfide segregated during crystallization (Xsulf), the achievement of equilibrium between sulfide melt and silicate melts (Reff), and the respective proportions between fractional and batch crystallization processes (Sb) are key parameters for modeling the PGE partitioning behavior during S-saturated MORB differentiation. Regardless of the model chosen, similar sulfide melt/silicate melt partition coefficients for Ir, Ru, Pt and Pd are needed to model the sulfide segregation process, in agreement with experimental data. When corrected for the effect of magmatic differentiation, the PGE data display coherent variations with partial melting degrees. Iridium, Ru and Pt are found to be compatible in nonsulfide minerals whereas the Pd behaves as a purely chalcophile element. The calculated partition coefficients between mantle sulfides and silicate melts (assuming a PGE concentration in the oceanic mantle at ∼0.007 × CI-chondritic abundances) increase from Pd (∼103) to Ir (∼105). This contrasting behavior of PGE during S-saturated magmatic differentiation and mantle melting processes can be accounted for by assuming that Monosufide Solid Solution (Mss) controls the PGE budget in MORB melting residues whereas MORB differentiation processes involve Cu-Ni-rich sulfide melt segregation.  相似文献   

15.
 New Sr- Nd- and Pb-isotopic and trace element data are presented on basalts from the Sulu and Celebes Basins, and the submerged Cagayan Ridge Arc (Western Pacific), recently sampled during Ocean Drilling Program Leg 124. Drilling has shown that the Sulu Basin developed about 18 Ma ago as a backarc basin, associated with the now submerged Cagayan Ridge Arc, whereas the Celebes Basin was generated about 43 Ma ago, contemporaneous with a general plate reorganisation in the Western Pacific, subsequently developing as an open ocean receiving pelagic sediments until the middle Miocene. In both basins, a late middle Miocene collision phase and the onset of volcanic activity on adjacent arcs in the late Miocene are recorded. Covariations between 87Sr/86Sr and 143Nd/144Nd show that the seafloor basalts from both the Sulu and Celebes Basins are isotopically similar to depleted Indian mid-ocean ridge basalts (MORB), and distinct from East Pacific Rise MORB, defining a single negative correlation. The Cagayan Arc volcanics are different, in that they have distinctly lower ɛNd(T) for a given ɛSr(T), compared to Sulu and Celebes basalts. In the 207Pb/204Pb and 208Pb/204Pb versus 206Pb/204Pb diagrams, the Celebes, Sulu and Cagayan rocks all plot distinctly above the Northern Hemisphere Reference Line, with high Δ7/4 Pb (5.3–9.3) and D8/4 Pb (46.3–68.1) values. They define a single trend of radiogenic lead enrichment from Celebes through Sulu to Cagayan Ridge, within the Indian Ocean MORB data field. The data suggest that the overall chemical and isotopic features of the Sulu, Cagayan and Celebes rocks may be explained by partial melting of a depleted asthenospheric N-MORB-type (“normal”) mantle source with isotopic characteristics similar to those of the Indian Ocean MORB source. This asthenospheric source was slightly heterogeneous, giving rise to the Sr-Nd isotopic differences between the Celebes and Sulu basalts, and the Cagayan Ridge volcanics. In addition, a probably slab-derived component enriched in LILE and LREE is required to generate the elemental characteristics and low Nd(T) of the Cagayan Ridge island arc tholeiitic and calcalkaline lavas, and to contribute to a small extent in the backarc basalts of the Sulu Sea. The results of this study confirm and extend the widespread Indian Ocean MORB signature in the Western Pacific region. This signature could have been inherited by the Indian Ocean mantle itself during the rupture of Gondwanaland, when fragments of this mantle could have migrated towards the present position of the Celebes, Sulu and Cagayan sources. Received: 23 May 1995/Accepted: 12 October 1995  相似文献   

16.
Site 1201D of Ocean Drilling Program Leg 195 recovered basalticand volcaniclastic units from the West Philippine Basin thatdocument the earliest history of the Izu–Bonin–Marianaconvergent margin. The stratigraphic section recovered at Site1201D includes 90 m of pillow basalts, representing the WestPhilippine Basin basement, overlain by 459 m of volcaniclasticturbidites that formed from detritus shed from the Eocene–Oligoceneproto-Izu–Bonin–Mariana island arc. Basement basaltsare normal mid-ocean ridge basalt (N-MORB), based on their abundancesof immobile trace elements, although fluid-mobile elements areenriched, similar to back-arc basin basalts (BABB). Sr, Nd,Pb and Hf isotopic compositions of the basement basalts aresimilar to those of basalts from other West Philippine Basinlocations, and show an overall Indian Ocean MORB signature,marked by high 208Pb/204Pb for a given 206Pb/204Pb and high176Hf/177Hf for a given 143Nd/144Nd. Trace element and isotopicdifferences between the basement and overlying arc-derived volcaniclasticsare best explained by the addition of subducted sediment orsediment melt, together with hydrous fluids from subducted oceaniccrust, into the mantle source of the arc lavas. In contrastto tectonic models suggesting that a mantle hotspot was a sourceof heat for the early Izu–Bonin–Mariana arc magmatism,the geochemical data do not support an enriched, ocean islandbasalt (OIB)-like source for either the basement basalts orthe arc volcanic section. KEY WORDS: back-arc basalts; Izu–Bonin–Marianas; Philippine Sea; subduction initiation; Ocean Drilling Program Leg 195  相似文献   

17.
During partial melting in the earth’s mantle, the noble metals become fractionated. Os, Ir, Ru, and Rh tend to remain in the mantle residue whereas Pt, Pd, and Re behave mildly incompatible and are sequestered to the silicate melt. There is consensus that sulfide plays a role in the fractionation process; the major noble metal repository in the mantle is sulfide, and most primitive mantle melts are sulfide-saturated when they leave their mantle sources. However, with sulfide–silicate partitioning, the fractionation cannot be modeled properly. All sulfide–silicate partition coefficients are so extremely high that a silicate melt segregating from a mantle source with residual sulfide should be largely platinum-group elements free. We offer a physical alternative to sulfide–silicate chemical partitioning and provide a mechanism of generating a noble metal-rich melt from a sulfide-saturated source: Because sulfide is at least partially molten at asthenospheric temperature, it will behave physically incompatible during melt segregation, and a silicate melt segregating from a mantle residue will entrain molten residual sulfide in suspension and incorporate it in the basaltic pool melt. The noble metal abundances of a basalt then become independent of sulfide–silicate chemical partitioning. They reflect the noble metal abundances in the drained sulfide fraction as well as the total amount of sulfide entrained. Contrary to convention, we suggest that a fertile, sulfide-rich mantle source has more potential to generate a noble metal-enriched basaltic melt than a refractory mantle source depleted by previous partial melting events.  相似文献   

18.
The REE and Pb, Sr, Nd isotopes in three xenoliths from limburgite and scoria-breccias, including spinel-lherzolite, spinel-garnet-lherzolite and phlogopite-gamet-lherzolite, were analysed. The REE contents of the xenoliths are 1.3 to 3.3 times those of the chondrites with their REE patterns characterized by weak LREE depletion. The143Nd/144Nd values of whole rocks and minerals range from 0.51306 to 0.51345 with εNd=+ 8.2− +15.8,206Pb/204 Pb < 18.673, and207Pb/204Pb < 15.574. All this goes to show that the upper mantle in Mingxi at the depth of 67–82 km is a depleted mantle of MORB type, with87Sr/86 Sr ratios 0.70237–0.70390. In Nd-Sr diagram the data points of whole rocks are all out of the mantle array, implying that the xenoliths from Mingxi have more radiogenic Sr isotopes than those of the mantle array.  相似文献   

19.
牦牛坪稀土矿床碳酸岩Pb同位素地球化学   总被引:11,自引:1,他引:11  
四川牦牛坪稀土矿床与稀土矿化时空密切共生的碳酸岩一正长岩碱性杂岩体的成岩时代为喜山期,碳酸岩呈脉状沿正长岩岩体中心侵入。两者具有相似的^206Pb/^204Pb和^208Pb/^204Pb比值,但碳酸岩^207Ph/^204Ph比值变化较大,且低于正长岩。这种差异并不能归因于地壳物质的混染作用,而是反映了地幔源区的特征。在Ph、Sr和Nd同位素图解中,矿区碳酸岩和正长岩显示低Ph,高Sr同位素的特征,部份碳酸岩Ph同位素落在MORB内,而Sr和Nd同位素明显不同于MORB,相对接近洋岛玄武岩的Ⅰ型富集地幔(EM1)。喜山期扬子板块呈楔形体插入龙门山地壳之中,受挤压的中下部地壳向前陆深处发生俯冲,并延伸至攀西裂谷顶部富集地幔体中,被交代的富集地幔经不同程度的和不连续的部份熔融作用形成碱性岩浆,整个演化过程导致了源区成份的不均一性。  相似文献   

20.
Major and trace element and Sr, Nd and Pb isotope analyses are presented for thirteen olivine-melilitites from Namaqualand, South Africa. Major element variations are consistent with derivation from carbonated garnet-peridotite at depths of at least 100 km and trace element abundances indicate melt fractions of 4%. Ubiquitous negative K anomalies and low, buffered K2O concentrations are interpreted to reflect the effect of residual phlogopite during melting. It is suggested that phlogopite stability and low melt potassium saturation concentrations are enhanced by high CO2/(CO2 + H2O) conditions. Residual phlogopite can also account for low measured Rb/Sr, Ba/Sr and Th/U ratios in the melilitites. REE abundances are controlled by residual garnet and hence Sm/Nd ratios are low (0.13–0.18). U/Pb ratios vary from 0.05 to 5 and are a function of Pb concentration which is in turn controlled by residual Pb-rich phase (probably sulphide). Nd and Sr isotopes are comparable with OIB from St. Helena, although two samples extend to higher 87Sr/86Sr ratios. Present day Pb isotopes are much more variable and partly reflect radiogenic growth since emplacement as a result of the highly variable U/Pb ratios.

Many of the trace element characteristics of the melilitites are distinct from those of within-plate potassic magmas despite both being derived from phlogopite-bearing, enriched mantle source regions. This can be attributed to the depth at which source enrichment occurred and the subsequent control exerted by phlogopite and carbonate during melting. In contrast to melilitites, potassic magmas are derived from shallower depths under low CO2/(CO2 + H2O) conditions and at higher temperatures at which phlogopite melts more readily.

The incompatible element ratios of the melilitites are also similar to those both observed in HIMU ocean island basalts (OIB) and inferred for HIMU OIB source regions from isotope variations (viz, low Sm/Nd, Rb/Sr, K/Nb, Th/U and high U/Pb and Ce/Pb). It is suggested that HIMU OIB's may be derived from sources that have been subject to enrichment by a melt generated in the presence of residual phlogopite.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号