首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The most recent eruptive cycle of Tungurahua volcano began in May 2004, and reached its highest level of activity in July 2004. This activity cycle is the last one of a series of four cycles that followed the reawakening and major eruption of Tungurahua in 1999. Between June 30 and August 12, 2004, three temporary seismic and infrasonic stations were installed on the flanks of the volcano and recorded over 2,000 degassing events. The events are classified by waveform character and include: explosion events (the vast majority, spanning three orders of pressure amplitudes at 3.5 km from the vent, 0.1–180 Pa), jetting events, and sequences of repetitive infrasonic pulses, called chugging events. Travel-time analysis of seismic first arrivals and infrasonic waves indicates that explosions start with a seismic event at a shallow depth (<200 m), followed ∼1 s later by an out-flux of gas, ash and solid material through the vent. Cluster analysis of infrasonic signals from explosion events was used to isolate four groups of similar waveforms without apparent correlation to event size, location, or time. The clustering is thus associated with source mechanism and probably spatial distribution. Explosion clusters do not exhibit temporal dependence.  相似文献   

2.
The magmatic plumbing system of Kilauea Volcano consists of a broad region of magma generation in the upper mantle, a steeply inclined zone through which magma rises to an intravolcano reservoir located about 2 to 6 km beneath the summit of the volcano, and a network of conduits that carry magma from this reservoir to sites of eruption within the caldera and along east and southwest rift zones. The functioning of most parts of this system was illustrated by activity during 1971 and 1972. When a 29-month-long eruption at Mauna Ulu on the east rift zone began to wane in 1971, the summit region of the volcano began to inflate rapidly; apparently, blockage of the feeder conduit to Mauna Ulu diverted a continuing supply of mantle-derived magma to prolonged storage in the summit reservoir. Rapid inflation of the summit area persisted at a nearly constant rate from June 1971 to February 1972, when a conduit to Mauna Ulu was reopened. The cadence of inflation was twice interrupted briefly, first by a 10-hour eruption in Kilauea Caldera on 14 August, and later by an eruption that began in the caldera and migrated 12 km down the southwest rift zone between 24 and 29 September. The 14 August and 24–29 September eruptions added about 107 m3 and 8 × 106 m3, respectively, of new lava to the surface of Kilauea. These volumes, combined with the volume increase represented by inflation of the volcanic edifice itself, account for an approximately 6 × 106 m3/month rate of growth between June 1971 and January 1972, essentially the same rate at which mantle-derived magma was supplied to Kilauea between 1952 and the end of the Mauna Ulu eruption in 1971.The August and September 1971 lavas are tholeiitic basalts of similar major-element chemical composition. The compositions can be reproduced by mixing various proportions of chemically distinct variants of lava that erupted during the preceding activity at Mauna Ulu. Thus, part of the magma rising from the mantle to feed the Mauna Ulu eruption may have been stored within the summit reservoir from 4 to 20 months before it was erupted in the summit caldera and along the southwest rift zone in August and September.The September 1971 activity was only the fourth eruption on the southwest rift zone during Kilauea's 200 years of recorded history, in contrast to more than 20 eruptions on the east rift zone. Order-of-magnitude differences in topographic and geophysical expression indicate greatly disparate eruption rates for far more than historic time and thus suggest a considerably larger dike swarm within the east rift zone than within the southwest rift zone. Characteristics of the historic eruptions on the southwest rift zone suggest that magma may be fed directly from active lava lakes in Kilauea Caldera or from shallow cupolas at the top of the summit magma reservoir, through fissures that propagate down rift from the caldera itself at the onset of eruption. Moreover, emplacement of this magma into the southwest rift zone may be possible only when compressive stress across the rift is reduced by some unknown critical amount owing either to seaward displacement of the terrane south-southeast of the rift zone or to a deflated condition of Mauna Loa Volcano adjacent to the northwest, or both. The former condition arises when the forceful emplacement of dikes into the east rift zone wedges the south flank of Kilauea seaward. Such controls on the potential for eruption along the southwest rift zone may be related to the topographic and geophysical constrasts between the two rift zones.  相似文献   

3.
Chronology and products of the 2000 eruption of Miyakejima Volcano, Japan   总被引:1,自引:1,他引:0  
Lateral migration of magma away from Miyakejima volcanic island, Japan, generated summit subsidence, associated with summit explosions in the summer of 2000. An earthquake swarm beneath Miyakejima began on the evening of 26 June 2000, followed by a submarine eruption the next morning. Strong seismic activity continued under the sea from beneath the coast of Miyakejima to a few tens of kilometers northwest of the island. Summit eruptive event began with subsidence of the summit on 8 July and both explosions and subsidence continued intermittently through July and August. The most intense eruptive event occurred on 18 August and was vulcanian to subplinian in type. Ash lofted into the stratosphere fell over the entire island, and abundant volcanic bombs were erupted at this time. Another large explosion took place on 29 August. This generated a low-temperature pyroclastic surge, which covered a residential area on the northern coast of the island. The total volume of tephra erupted was 9.3×106 m3 (DRE), much smaller than the volume of the resulting caldera (6×108 m3). Migration of magma away from Miyakejima was associated with crustal extension northwest of Miyakejima and coincident shrinkage of Miyakejima Island itself during July–August 2000. This magma migration probably caused stoping of roof rock into the magma reservoir, generating subsurface cavities filled with hydrothermal fluid and/or magmatic foam and formation of a caldera (Oyama Caldera) at the summit. Interaction of hydrothermal fluid with ascending magma drove a series of phreatic to phreatomagmatic eruptions. It is likely that new magma was supplied to the reservoir from the bottom during waning stage of magmas migration, resulting in explosive discharge on 18 August. The 18 August event and phreatic explosions on 29 August produced a conduit system that allowed abundant SO2 emission (as high as 460 kg s–1) after the major eruptive events were over. At the time of writing, inhabitants of the island (about 3,000) have been evacuated from Miyakejima for more than 3 years.  相似文献   

4.
A small explosive eruption of Kilauea Volcano, Hawaii, occurred in May 1924. The eruption was preceded by rapid draining of a lava lake and transfer of a large volume of magma from the summit reservoir to the east rift zone. This lowered the magma column, which reduced hydrostatic pressure beneath Halemaumau and allowed groundwater to flow rapidly into areas of hot rock, producing a phreatic eruption. A comparison with other events at Kilauea shows that the transfer of a large volume of magma out of the summit reservoir is not sufficient to produce a phreatic eruption. For example, the volume transferred at the beginning of explosive activity in May 1924 was less than the volumes transferred in March 1955 and January–February 1960, when no explosive activity occurred. Likewise, draining of a lava lake and deepening of the floor of Halemaumau, which occurred in May 1922 and August 1923, were not sufficient to produce explosive activity. A phreatic eruption of Kilauea requires both the transfer of a large volume of magma from the summit reservoir and the rapid removal of magma from near the surface, where the surrounding rocks have been heated to a sufficient temperature to produce steam explosions when suddenly contacted by groundwater.  相似文献   

5.
We present a narrative of the eruptive events culminating in the cataclysmic January 15, 2022 eruption of Hunga Tonga-Hunga Ha'apai Volcano by synthesizing diverse preliminary seismic, volcanological, sound wave, and lightning data available within the first few weeks after the eruption occurred. The first hour of eruptive activity produced fast-propagating tsunami waves, long-period seismic waves, loud audible sound waves, infrasonic waves, exceptionally intense volcanic lightning and an unsteady volcanic plume that transiently reached—at 58 ?km—the Earth's mesosphere. Energetic seismic signals were recorded worldwide and the globally stacked seismogram showed episodic seismic events within the most intense periods of phreatoplinian activity, and they correlated well with the infrasound pressure waveform recorded in Fiji. Gravity wave signals were strong enough to be observed over the entire planet in just the first few hours, with some circling the Earth multiple times subsequently. These large-amplitude, long-wavelength atmospheric disturbances come from the Earth's atmosphere being forced by the magmatic mixture of tephra, melt and gasses emitted by the unsteady but quasi-continuous eruption from 0402±1–1800 UTC on January 15, 2022. Atmospheric forcing lasted much longer than rupturing from large earthquakes recorded on modern instruments, producing a type of shock wave that originated from the interaction between compressed air and ambient (wavy) sea surface. This scenario differs from conventional ideas of earthquake slip, landslides, or caldera collapse-generated tsunami waves because of the enormous (~1000x) volumetric change due to the supercritical nature of volatiles associated with the hot, volatile-rich phreatoplinian plume. The time series of plume altitude can be translated to volumetric discharge and mass flow rate. For an eruption duration of ~12 ?h, the eruptive volume and mass are estimated at 1.9 ?km3 and ~2 900 ?Tg, respectively, corresponding to a VEI of 5–6 for this event. The high frequency and intensity of lightning was enhanced by the production of fine ash due to magma—seawater interaction with concomitant high charge per unit mass and the high pre-eruptive concentration of dissolved volatiles. Analysis of lightning flash frequencies provides a rapid metric for plume activity and eruption magnitude. Many aspects of this eruption await further investigation by multidisciplinary teams. It represents a unique opportunity for fundamental research regarding the complex, non-linear behavior of high energetic volcanic eruptions and attendant phenomena, with critical implications for hazard mitigation, volcano forecasting, and first-response efforts in future disasters.  相似文献   

6.
The 161 ka explosive eruption of the Kos Plateau Tuff (KPT) ejected a minimum of 60 km3 of rhyolitic magma, a minor amount of andesitic magma and incorporated more than 3 km3 of vent- and conduit-derived lithic debris. The source formed a caldera south of Kos, in the Aegean Sea, Greece. Textural and lithofacies characteristics of the KPT units are used to infer eruption dynamics and magma chamber processes, including the timing for the onset of catastrophic caldera collapse.The KPT consists of six units: (A) phreatoplinian fallout at the base; (B, C) stratified pyroclastic-density-current deposits; (D, E) volumetrically dominant, massive, non-welded ignimbrites; and (F) stratified pyroclastic-density-current deposits and ash fallout at the top. The ignimbrite units show increases in mass, grain size, abundance of vent- and conduit-derived lithic clasts, and runout of the pyroclastic density currents from source. Ignimbrite formation also corresponds to a change from phreatomagmatic to dry explosive activity. Textural and lithofacies characteristics of the KPT imply that the mass flux (i.e. eruption intensity) increased to the climax when major caldera collapse was initiated and the most voluminous, widespread, lithic-rich and coarsest ignimbrite was produced, followed by a waning period. During the eruption climax, deep basement lithic clasts were ejected, along with andesitic pumice and variably melted and vesiculated co-magmatic granitoid clasts from the magma chamber. Stratigraphic variations in pumice vesicularity and crystal content, provide evidence for variations in the distribution of crystal components and a subsidiary andesitic magma within the KPT magma chamber. The eruption climax culminated in tapping more coarsely crystal-rich magma. Increases in mass flux during the waxing phase is consistent with theoretical models for moderate-volume explosive eruptions that lead to caldera collapse.  相似文献   

7.
The 5 April 2003 paroxysmal explosion at Stromboli volcano was one of the strongest explosive events of the last century. It occurred while the effusive eruption, begun on 28 December 2002 and finished on 22 July 2003, was still on going and the summit craters of the volcano were obstructed. In this paper, we present a reconstruction of the sequence of events based on thermal and visual images collected from helicopter before, during and immediately after the paroxysm. One month before the blast, ash emission and temperature increase at the bottom of the summit craters were observed. An increasing amount of juvenile components in the emitted ash during March suggested that the magma level within the crater was rising accordingly. Hot degassing vents at the bottom of the summit craters were not persistent, and the craters remained almost entirely obstructed by talus accumulation until the paroxysm occurred. Three minutes before the explosion, we recorded a significant increase in temperature inside Crater 1, accompanied by a thicker gas plume. Thirty-two seconds before the blast, reddish ash was emitted from Crater 1. The paroxysm produced a vulcanian explosion that opened the feeder conduit, obstructed for over three months. The blast was accompanied by a shock wave recorded by the INGV seismic network at 07:13:37 GMT. Explosions with hot material started from Crater 1, and after 15 s propagated to Crater 3, about 100 m away. The velocity of ejecta was ∼80 m s 1, and increased when the eruptive plumes from both craters merged together during the vulcanian phase. An eruptive column rose 1 km above the top of the volcano, and explosions continued mainly at Crater 3. The paroxysm lasted about 9 min, with bombs up to 4 m wide falling on the village of Ginostra, on the west flank of the island, and destroying two houses. This event signalled the start of the declining phase of the effusive eruption, suggesting that the feeder conduit was returning to its former steady conditions, with open vents and continuous, mild strombolian activity.  相似文献   

8.
Soputan is a high-alumina basalt stratovolcano located in the active North Sulawesi-Sangihe Islands magmatic arc. Although immediately adjacent to the still geothermally active Quaternary Tondono Caldera, Soputan’s magmas are geochemically distinct from those of the caldera and from other magmas in the arc. Unusual for a basalt volcano, Soputan produces summit lava domes and explosive eruptions with high-altitude ash plumes and pyroclastic flows—eight explosive eruptions during the period 2003–2011. Our field observations, remote sensing, gas emission, seismic, and petrologic analyses indicate that Soputan is an open-vent-type volcano that taps basalt magma derived from the arc-mantle wedge, accumulated and fractionated in a deep-crustal reservoir and transported slowly or staged at shallow levels prior to eruption. A combination of high phenocryst content, extensive microlite crystallization and separation of a gas phase at shallow levels results in a highly viscous basalt magma and explosive eruptive style. The open-vent structure and frequent eruptions indicate that Soputan will likely erupt again in the next decade, perhaps repeatedly. Explosive eruptions in the Volcano Explosivity Index (VEI) 2–3 range and lava dome growth are most probable, with a small chance of larger VEI 4 eruptions. A rapid ramp up in seismicity preceding the recent eruptions suggests that future eruptions may have no more than a few days of seismic warning. Risk to population in the region is currently greatest for villages located on the southern and western flanks of the volcano where flow deposits are directed by topography. In addition, Soputan’s explosive eruptions produce high-altitude ash clouds that pose a risk to air traffic in the region.  相似文献   

9.
The ring fractures that form most collapse calderas are steeply inward-dipping shear fractures, i.e., normal faults. At the surface of the volcano within which the caldera fault forms, the tensile and shear stresses that generate the normal-fault caldera must peak at a certain radial distance from the surface point above the center of the source magma chamber of the volcano. Numerical results indicate that normal-fault calderas may initiate as a result of doming of an area containing a shallow sill-like magma chamber, provided that the area of doming is much larger than the cross-sectional area of the chamber and that the internal excess pressure in the chamber is smaller than that responsible for doming. This model is supported by the observation that many caldera collapses are preceded by a long period of doming over an area much larger than that of the subsequently formed caldera. When the caldera fault does not slip, eruptions from calderas are normally small. Nearly all large explosive eruptions, however, are associated with slip on caldera faults. During dip slip on, and doming of, a normal-fault caldera, the vertical stress on part of the underlying chamber suddenly decreases. This may lead to explosive bubble growth in this part of the magma chamber, provided its magma is gas rich. This bubble growth can generate an excess fluid pressure that is sufficiently high to drive a large fraction of the magma out of the chamber during an explosive eruption. Received: 2 January 1997 / Accepted: 22 April 1998  相似文献   

10.
Vulcanian-type eruptive activity has occurred from the summit crater of Sakurajima volcano, Japan, since 1955. Over this period, harmonic tremors have commonly occurred either several hours after swarms of B-type earthquakes (herein termed HTB: Harmonic Tremor following B-type earthquake swarm) or immediately after explosive eruptions (herein termed HTE: Harmonic Tremor after an Eruption). In this study, we analyzed the spectra and particle motions of HTBs and HTEs. Both HTBs and HTEs have spectra with peaks at fundamental frequencies and higher frequencies that are integer multiples of the fundamental frequencies. The peak frequencies of HTBs remained within a certain range, whereas those of HTEs showed a gradual increase. The spectra of an HTB that occurred on 20 July 1990 had stable fundamental frequencies of 1.46–1.66 Hz and at least 9 peaks of higher modes; in contrast, the HTE that occurred 3 minutes after an explosive eruption at 11 h 15 m (JST) on 11 October 2002 showed clear frequency gliding from 0.8 to 3.7 Hz in the fundamental mode. The peak frequencies of higher modes of the HTE also showed an increase corresponding to the shift of the fundamental mode towards a higher frequency. Particle motion analysis mainly identified Rayleigh waves from the prograde elliptical motion at the deepest borehole station (HAR) and retrograde motions at the other shallower stations. Love waves were dominant at the stations north and south of the crater. The distribution patterns of Rayleigh and Love waves of HTBs are similar to those of HTEs. The nature of the dominant surface waves of both HTBs and HTEs suggest that the sources of harmonic tremors are located at a shallow depth, corresponding to a gas pocket in the uppermost part of the volcanic conduit. Differences in the temporal characteristics of the HTB and HTE spectra reflect the internal condition of the gas pocket: HTBs are associated with inflation of the conduit, whereas HTEs occur following an eruption, associated with deflationary ground deformation. HTBs are caused by resonance of the gas pocket embedded beneath the lava dome. Although HTEs occur within the open conduit, the small size of vents enables resonance within the bubbly magma conduit. The positive gliding of dominant peaks toward higher frequencies is interpreted to result from shortening of the bubbly magma conduit due to a rise in the bubble nucleation level; this rise results from the re-pressurization that accompanies the ascent of magma from deep within the reservoir.  相似文献   

11.
12.
Most flank eruptions within a central stratovolcano are triggered by lateral draining of magma from its central conduit, and only few eruptions appear to be independent of the central conduit. In order to better highlight the dynamics of flank eruptions in a central stratovolcano, we review the eruptive history of Etna over the last 100 years. In particular, we take into consideration the Mount Etna eruption in 2001, which showed both summit activity and a flank eruption interpreted to be independent from the summit system. The eruption started with the emplacement of a ~N-S trending peripheral dike, responsible for the extrusion of 75% of the total volume of the erupted products. The rest of the magma was extruded through the summit conduit system (SE crater), feeding two radial dikes. The distribution of the seismicity and structures related to the propagation of the peripheral dike and volumetric considerations on the erupted magmas exclude a shallow connection between the summit and the peripheral magmatic systems during the eruption. Even though the summit and the peripheral magmatic systems were independent at shallow depths (<3 km b.s.l.), petro-chemical data suggest that a common magma rising from depth fed the two systems. This deep connection resulted in the extrusion of residual magma from the summit system and of new magma from the peripheral system. Gravitational stresses predominate at the surface, controlling the emplacement of the dikes radiating from the summit; conversely, regional tectonics, possibly related to N-S trending structures, remains the most likely factor to have controlled at depth the rise of magma feeding the peripheral eruption.  相似文献   

13.
An explosive eruption occurred at the summit of Bezymianny volcano (Kamchatka Peninsula, Russia) on 11 January 2005 which was initially detected from seismic observations by the Kamchatka Volcanic Eruption Response Team (KVERT). This prompted the acquisition of 17 Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite images of the volcano over the following 10 months. Visible and infrared data from ASTER revealed significant changes to the morphology of the summit lava dome, later seen with field based thermal infrared (TIR) camera surveys in August 2005. The morphology of the summit lava dome was observed to have changed from previous year’s observations and historical accounts. In August 2005 the dome contained a new crater and two small lava lobes. Stepped scarps within the new summit crater suggest a partial collapse mechanism of formation, rather than a purely explosive origin. Hot pyroclastic deposits were also observed to have pooled in the moat between the current lava dome and the 1956 crater wall. The visual and thermal data revealed a complex eruption sequence of explosion(s), viscous lava extrusion, and finally the formation of the collapse crater. Based on this sequence, the conduit could have become blocked/pressurized, which could signify the start of a new behavioural phase for the volcano and lead to the potential of larger eruptions in the future.  相似文献   

14.
Campi Flegrei is a caldera complex located west of Naples, Italy. The last eruption occurred in 1538, although the volcano has produced unrest episodes since then, involving rapid and large ground movements (up to 2 m vertical in two years), accompanied by intense seismic activity. Surface ground displacements detected by various techniques (mainly InSAR and levelling) for the 1970 to 1996 period can be modelled by a shallow point source in an elastic half-space, however the source depth is not compatible with seismic and drill hole observations, which suggest a magma chamber just below 4 km depth. This apparent paradox has been explained by the presence of boundary fractures marking the caldera collapse. We present here the first full 3-D modelling for the unrest of 1982–1985 including the effect of caldera bordering fractures and the topography. To model the presence of topography and of the complex caldera rim discontinuities, we used a mixed boundary elements method. The a priori caldera geometry is determined initially from gravimetric modelling results and refined by inversion. The presence of the caldera discontinuities allows a fit to the 1982–1985 levelling data as good as, or better than, in the continuous half-space case, with quite a different source depth which fits the actual magma chamber position as seen from seismic waves. These results show the importance of volcanic structures, and mainly of caldera collapses, in ground deformation episodes.  相似文献   

15.
During the early part of a seismic swarm preceding eruption and caldera formation at Miyakejima Volcano, discoloured sea surfaces were observed 1.5 km off the western coast of Miyakejima on 27 June 2000. A later survey of the area using a multi-beam side scan sonar and a remotely operated small submarine revealed four craters of 20–30 m diameter aligned east-west in a 100×10–30 m area on the seafloor, with hot water at 140°C being released from one of the centres. Each crater consists of submarine spatter overlain in part by scoria lapilli. Dredged spatter from the craters was fresh, and there was no evidence of activity of marine organisms on the spatter surface, indicating that the discoloured sea surface resulted from magmatic eruption on the seafloor. This eruption occurred when a westward-propagating seismic swarm, initiated beneath Miyakejimas summit, passed through the area. Finding new magma on the seafloor demonstrates that this seismic swarm was associated with intruding magma, moving outward from beneath Miyakejima. Submarine spatter shows flattened shapes with a brittle crust formed by cooling in water, and its composition is aphyric andesite of 54 wt% SiO2. The spatter is similar in whole rock and mineral composition to spatter erupted in 1983. However, the wide range of Cl in melt inclusions in plagioclase of the 27 June submarine spatter shows that it is not simply a remnant of the 1983 magma, which has only high Cl melt inclusions in plagioclase. The mixed character of melt inclusions suggests involvement of a magma with low Cl melt inclusions. The magma erupted explosively on 18 August from Miyakejimas summit, considered as the second juvenile magma in this eruption, contains low Cl melt inclusions in plagioclase. Based on these observations and the eruption sequence, we present the following model: (1) A shallow magma chamber was filled with a remnant of 1983 magma that had evolved to a composition of 54–55 wt% SiO2. (2) Injection of the 18 August magma into this chamber generated a mixed magma having a wide range of Cl in melt inclusions contained plagioclase. The magma mixing might have occurred shortly before the submarine eruption and could have been a trigger for the initiation of the removal of magma from the chamber as an extensive dyke, which eventually led to caldera subsidence.Editorial responsibility: S Nakada, T Druitt  相似文献   

16.
Karymskii Volcano typically shows explosive activity with great variations in the frequency and energy of explosions. This is demonstrated here for three time segments of the volcano’s activity (1970–1973, 1976–1980, and 1996–2000). We examine various types of seismic and acoustic emission as controlled by crater morphology and the character of activity. The explosion funnels migrated over the crater area, and the 1976 effusive-explosive eruption occurred at two centers of lava flow effusion; this is here explained by the fact that magma as it was moving along the conduit was stratified to form a set of vertical filaments. The shape of shock waves in air recorded in August 2011 favors the hypothesis that the leading explosive mechanism during that period was a fragmentation wave that was produced in a gas-charged, viscous, porous magma during decompression. One notices that the shape of some shock waves in air recorded in 2011 indicates the occurrence of air blasts above the crater. The air blasts may have been caused by combustible volcanic gases such as carbon monoxide and hydrogen (CO and H2), which entered the atmosphere in sufficient amounts.  相似文献   

17.
The meaning of the large variety of seismic waveforms showing different frequencies associated with volcanic activity is still uncertain. No definitive model for source dynamics has been proposed yet. At present, seismic models explaining the origin of the spectral content of the seismic signal are mainly linked to geometrical features of the volcanic conduit and to resonant effects induced by pressure fluctuations in a fluid-filled conduit. Such models assume the physical system to be in a steady state over a long interval of time. At Stromboli, the seismicity produced by each of the three active vents is not stable and can suddenly change in time. Therefore, the application of stable resonator models appears to be unwarranted.On the basis of infrared image analyses, atmospheric pressure, and seismic wavefield signals, we show that different frequency contents and different explosive styles occur at Stromboli at the same time at different vents. Moreover, we give evidence to support the idea that seismicity and explosivity are both controlled by a variable gas flow regime released during explosions at the top of the magma column. We have recognized two main pressure regimes, controlling the explositivity at Stromboli: one is impulsive, short and possibly produced by a gas accumulation beneath a cap rock; the other has an intermittent regime feature, and lasts longer. We demonstrate how the first one generates a monochromatic low-frequency wavefield, while the second shows a high-frequency spectrum where the frequency content depends on pressure fluctuations and on pressure gradient. We suggest different pressure growth and gas flow in the magma as the common source for both explosive style and seismic wavefield.  相似文献   

18.
Large silicic explosive eruptions are the most catastrophic volcanic events. Yet, the intratelluric mechanisms underlying are not fully understood. Here we report a field and laboratory study of the Kos Plateau Tuff (KPT, 161 ka, Aegean Volcanic Arc), which provides an excellent geological example of conduit processes that control magma vesiculation and fragmentation during intermediate- to large-scale caldera-forming eruptions. A prominent feature of the KPT is the occurrence of quite unusual platy-shaped tube pumice clasts in pyroclastic fall and current deposits from the early eruption phases preceding caldera collapse. On macroscopic and SEM observations, flat clast faces are elongated parallel to tube vesicles, while transverse surfaces often occur at ~ 45° to vesicle elongation. This peculiar pumice texture provides evidence of high shear stresses related to strong velocity gradients normal to conduit walls, which induced vesiculation and fragmentation of the ascending magma. Either an increasing mass discharge rate without adequate enlargement of a narrow central feeder conduit or a developing fissure-like feeder system related to incipient caldera collapse provided suitable conditions for the generation of plate tube pumice within magma volumes under high shear during the pre-climactic KPT eruption phases. This mechanism implies that the closer to the conduit walls (where the stronger are the velocity gradients) the larger was the proportion of plate vs. conventional (lensoid) juvenile fragments in the ascending gas–pyroclast mixture. Consequently, plate pumice clasts were mainly entrained in the outer portions of the jet and convecting regions of a sustained, Plinian-type, eruption column, as well as in occasional lateral blast currents generated at the vent. As a whole, plate pumice clasts in the peripheral portions of the column were transported at lower altitudes and deposited by fallout or partial collapse closer to the vent relative to lensoid ones that dominated in the inner column portions. The plate tube pumice proportion decreased abruptly up to disappearance during the emplacement of the main pyroclastic currents and lithic-rich breccias related to extensive caldera collapse at the eruption climax, as a consequence of an overall widening of the magma feeder system through the opening of multiple conduits and eruptive vents, along with fissure erosion, concomitant to the disruption of the collapsing block.  相似文献   

19.
The Las Cañadas caldera wall and the outer slopes of the caldera provide three-dimensional exposures of numerous proximal-welded fallout deposits and have been mapped in detail. As a result, some parts of the Ucanca and Guajara Formations of the stratigraphy of Martí et al. (1994) have been divided into members that correspond to individual eruptions. Mapping has also revealed the occurrence of conduit-vent structures associated with proximal-welded fallout deposits. Conduit-vent structures consist of an upper flaring area and a lower narrow conduit. Conduit-vent geometry and dimensions include cylindrical plugs and eruptive fissures steeply dipping towards the caldera depression and elongated vents. The flaring area can be rather asymmetric and is usually filled by down-vent rheomorphic flow of the proximal fallout deposit. The lower conduits are filled by lava plug, agglutination of juveniles onto conduit walls and dyke intrusion with eventual dome extrusion. The eruption dynamics of welded fallout deposits and magma fragmentation within the conduit are consistent with an evolution from explosive to effusive. In this context conduit flow regimes evolve from turbulent to annular flow in which the conduit is progressively choked, and laminar flow leading to the final conduit closure.  相似文献   

20.
Volcanic gas samples were collected from July to November 1985 from a lava pond in the main eruptive conduit of Pu'u O'o from a 2-week-long fissure eruption and from a minor flank eruption of Pu'u O'o. The molecular composition of these gases is consistent with thermodynamic equilibrium at a temperature slightly less than measured lava temperatures. Comparison of these samples with previous gas samples shows that the composition of volatiles in the magma has remained constant over the 3-year course of this episodic east rift eruption of Kilauea volcano. The uniformly carbon depleted nature of these gases is consistent with previous suggestions that all east rift eruptive magmas degas during prior storage in the shallow summit reservoir of Kilauea. Minor compositional variations within these gas collections are attributed to the kinetics of the magma degassing process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号