首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We observed active pahoehoe lobes erupted on Kilauea during May-June 1996, and found a range of emplacement styles associated with variations in local effusion rate, flow velocity, and strain rate. These emplacement styles were documented and quantified for comparison with earlier laboratory experiments.At the lowest effusion rates, velocities, and strain rates, smooth-surfaced lobes were emplaced via swelling, where new crust formed along an incandescent lip at the front of the lobe and the rest of the lobe was covered with a dark crust. At higher effusion rates, strain rates and velocities, lobes were emplaced through tearing or cracking. Tearing was characterized by ripping of the ductile crust near the initial breakout point, and most of the lobe surface was incandescent during its emplacement. This mechanism was observed to generate both smooth-surfaced lobes, and, when the lava encountered an obstacle, folded lobes. Cracking lobes were similar to those emplaced via tearing, but involved breaking of a thicker, brittle crust at the initial breakout of the lobe and therefore required somewhat higher flow rates than did tearing. Cracking lobes typically formed ropy folds in the center of the lobe, and smooth margins. At the highest effusion rates, strain rates, and flow velocities, the lava formed open channels with distinct levees.The final lobe morphologies were compared to results from laboratory simulations, which were designed to infer effusion rate from final flow morphology, to quantitatively test the laboratory results on the scale of individual natural pahoehoe lobes. There is general agreement between results from laboratory simulations and natural lavas on the scale of individual pahoehoe lobes, but there are disparities between laboratory flows and lava flows on the scale of an entire pahoehoe lava flow field.Editorial responsibility: A. Woods  相似文献   

2.
The historical records of Kilauea and Mauna Loa volcanoes reveal that the rough-surfaced variety of basalt lava called aa forms when lava flows at a high volumetric rate (>5–10 m3/s), and the smooth-surfaced variety called pahoehoe forms at a low volumetric rate (<5–10 m3/s). This relationship is well illustrated by the 1983–1990 and 1969–1974 eruptions of Kilauea and the recent eruptions of Mauna Loa. It is also illustrated by the eruptions that produced the remarkable paired flows of Mauna Loa, in which aa formed during an initial short period of high discharge rate (associated with high fountaining) and was followed by the eruption of pahoehoe over a sustained period at a low discharge rate (with little or no fountaining). The finest examples of paired lava flows are those of 1859 and 1880–1881. We attribute aa formation to rapid and concentrated flow in open channels. There, rapid heat loss causes an increase in viscosity to a threshold value (that varies depending on the actual flow velocity) at which, when surface crust is torn by differential flow, the underlying lava is unable to move sufficiently fast to heal the tear. We attribute pahoehoe formation to the flowage of lava at a low volumetric rate, commonly in tubes that minimize heat loss. Flow units of pahoehoe are small (usually <1 m thick), move slowly, develop a chilled skin, and become virtually static before the viscosity has risen, to the threshold value. We infer that the high-discharge-rate eruptions that generate aa flows result from the rapid emptying of major or subsidiary magma chambers. Rapid near-surface vesiculation of gas-rich magma leads to eruptions with high discharge rates, high lava fountains, and fast-moving channelized flows. We also infer that long periods of sustained flow at a low discharge rate, which favor pahoehoe, result from the development of a free and unimpeded pathway from the deep plumbing system of the volcano and the separation of gases from the magma before eruption. Achievement of this condition requires one or more episodes of rapid magma excursion through the rift zone to establish a stable magma pathway.  相似文献   

3.
During the 1969–1974 Mauna Ulu eruption on Kilauea's upper east rift zone, lava tubes were observed to develop by four principal processes: (1) flat, rooted crusts grew across streams within confined channels; (2) overflows and spatter accreted to levees to build arched roofs across streams; (3) plates of solidified crust floating downstream coalesced to form a roof; and (4) pahoehoe lobes progressively extended, fed by networks of distributaries beneath a solidified crust. Still another tube-forming process operated when pahoehoe entered the ocean; large waves would abruptly chill a crust across the entire surface of a molten stream crossing through the surf zone. These littoral lava tubes formed abruptly, in contrast to subaerial tubes, which formed gradually. All tube-forming processes were favored by low to moderate volume-rates of flow for sustained periods of time. Tubes thereby became ubiquitous within the pahoehoe flows and distributed a very large proportionof the lava that was produced during this prolonged eruption. Tubes transport lava efficiently. Once formed, the roofs of tubes insulate the active streams within, allowing the lava to retain its fluidity for a longer time than if exposed directly to ambient air temperature. Thus the flows can travel greater distances and spread over wider areas. Even though supply rates during most of 1970–1974 were moderate, ranging from 1 to 5 m3/s, large tube systems conducted lava as far as the coast, 12–13 km distant, where they fed extensive pahoehoe fields on the coastal flats. Some flows entered the sea to build lava deltas and add new land to the island. The largest and most efficient tubes developed during periods of sustained extrusion, when new lava was being supplied at nearly constant rates. Tubes can play a major role in building volcanic edifices with gentle slopes because they can deliver a substantial fraction of lava erupted at low to moderate rates to sites far down the flank of a volcano. We conclude, therefore, that the tendency of active pahoehoe flows to form lava tubes is a significant factor in producing the common shield morphology of basaltic volcanoes.  相似文献   

4.
FLOWGO: a kinematic thermo-rheological model for lava flowing in a channel   总被引:2,自引:0,他引:2  
We present a kinematic, self-adaptive, numerical model to describe the down-flow thermal and rheological evolution of channel-contained lava. As our control volume of lava advances down a channel it cools and crystallizes, an increasingly thick and extensive surface crust grows, and its heat budget and rheology evolve. By estimating down-flow heat and velocity loss, our model calculates the point at which the control volume becomes stationary, giving the maximum distance lava flowing in the channel can extend. Modeled effusion rates, velocities, widths, surface crust parameters, heat budget, cooling, temperature, crystallinity, viscosity, and yield strength all compare well with field data collected during eruptions at Mauna Loa, KOlauea, and Etna. Modeled lengths of 25-27, 2.5-5.7, and 0.59-0.83 km compare with measured lengths of 25-27, 4, and 0.75 km for the three flows, respectively. Over proximal flow portions we calculate cooling, crystallization, viscosity, and yield strength of 1-10°C km-1, 0.001-0.01 volume fraction km-1, 103-104 Pa s, and 10-3-102 Pa, respectively. At the flow front, cooling, crystallization, viscosity, and yield strength increase to >100°C km-1, 0.1 volume fraction km-1, 106-107 Pa s, and 103-104 Pa, respectively, all of which combine to cause the lava to stop flowing. Our model presents a means of (a) analyzing lava flow thermo-rheological relationships; (b) identifying important factors in determining how far a channel-fed flow can extend; (c) assessing lava flow hazard; and (d) reconstructing flow regimes at prehistoric, unobserved, or remote flows.  相似文献   

5.
The regularly spaced surface structure observed on ropy pahoehoe basalt flows may be interpreted as folds which develop at the surface of a fluid whose viscosity decreases with depth. Folds form by the selective amplification of an irregular waviness in surface shape during shortening of the flow surface. The development of a regular fold arc length, predicted by folding theory, is reflected in the length scale of pahoehoe ropes. Pahoehoe fold arc lengths and the strength of the folding instability are determined by: (1) the ratio of the surface viscosity to the interior viscosity; (2) the thickness of the thermal boundary layer across which the viscosity changes; and (3) the ratio of the surface compressive stress to a stress related to the weight of the lava.The braided appearance of many ropy pahoehoe flows can be explained by a superposition of two episodes of folding.  相似文献   

6.
The 1614–1624 lava flow of Mt. Etna was formed during a long-duration flank eruption involving predominantly pahoehoe flows which produced unusual surface features including mega-tumuli (here defined) and terraces. Detailed mapping of the flow units, surface features, and associated tubes reveals a complex sequence of emplacement for the field. The stair-stepped terraces appear to have been formed as a consequence of self-damming of tube-fed flows which developed «perched» ponds of lava. Surges of lava through tubes elevated sections of crusted lava at the distal ends of the flow to generate tumuli, some as high as 130 m, as a consequence of pressure via «hydrostatic head» conditions within the tube. Although pahoehoe lavas and the related features described here are atypical of Mt. Etna, they may reflect styles of eruption and lava emplacement found on volcanoes elsewhere.  相似文献   

7.
This study focuses on Middle Miocene tholeiitic flood basalt lava flows from the Oregon Plateau, northwestern USA (Steens Basalt), and is the first to comprehensively document and evaluate their morphology. Field observations of flows from several sections within and proximal to the main exposures at Steens Mountain have been supplemented with textural and geochemical data, and are used to offer preliminary insights into their emplacement. Compound pahoehoe flows of variable thickness appear to be common throughout the study area, laterally and vertically. These tend to be plagioclase phyric and the morphology and disposition of constituent flow lobes are quite similar to those from other provinces such as Hawaii and the Snake River Plain. Classic a’a flows with brecciated upper and basal crusts are not abundant, but by no means uncommon. Flows with characters different from typical pahoehoe and a’a are also common. Such flows display a range in morphology; flows with preserved upper crusts but brecciated basal crusts, as well as those displaying well-developed flow-top breccias and preserved basal crusts (rubbly pahoehoe) are observed. The Steens Basalt appears to display greater morphological and textural diversity at the outcrop scale than that described for some other flood basalt provinces. The abundant compound pahoehoe flows (often rich in plagioclase phenocrysts) were likely emplaced during slow but sustained eruptive episodes; their constituent lobes show clear evidence for endogenous growth. The relatively aphyric flows with brecciated surfaces (including a’a) hint at higher strain rates and/or higher viscosity, probably caused by higher effusion rates. A couple of sections are characterized by compositionally similar, but morphologically different flows that were possibly part of the same eruption. While differences in pre-eruptive topography could explain this, it is also possible that certain physical parameters changed substantially and abruptly during eruption and that such changes were accompanied by differentiation processes within the plumbing system. It is possible that such observations indicate temporal fluctuations within complex magmatic and eruptive systems, and deserve closer scrutiny.  相似文献   

8.
Thermal contraction joints form in the upper and lower solidifying crusts of basaltic lava flows and grow toward the interior as the crusts thicken. Lava flows are thus divided by vertical joints that, by changes in joint spacing and form, define horizontal intraflow layers known as tiers. Entablatures are tiers with joint spacings less than about 40 cm, whereas colonnades have larger joint spacings. We use structural and petrographic methods to infer heat-transfer processes and to constrain environmental conditions that produce these contrasting tiers. Joint-surface morphology indicates overall joint-growth direction and thus identifies the level in a flow where the upper and lower crusts met. Rock texture provides information on relative cooling rates in the tiers of a flow. Lava flows without entablature have textures that develop by relatively slow cooling, and two joint sets that usually meet near their middles, which indicate mostly conductive cooling. Entablature-bearing flows have two main joint sets that meet well below their middles, and textures that indicate fast cooling of entablatures and slow cooling of colonnades. Entablatures always occur in the upper joint sets and sometimes alternate several times with colonnades. Solidification times of entablature-bearing flows, constrained by lower joint-set thicknesses, are much less than those predicted by a purely conductive cooling model. These results are best explained by a cooling model based on conductive heat transfer near a flow base and water-steam convection in the upper part of an entablature-bearing flow. Calculated solidification rates in the upper parts of such flows exceed that of the upper crust of Kilauea Iki lava lake, where water-steam convection is documented. Use of the solidification rates in an available model of water-steam convection yields permeability values that agree with measured values for fractured crystalline rock. We conclude, therefore, that an entablature forms when part of a flow cools very rapidly by water-steam convection. Flooding of the flow top by surface drainage most likely induces the convection. Colonnades form under conditions of slower cooling by conductive heat transfer in the absence of water.  相似文献   

9.
10.
In an attempt to model the effect of slope on the dynamics of lava flow emplacement, four distinct morphologies were repeatedly produced in a series of laboratory simulations where polyethylene glycol (PEG) was extruded at a constant rate beneath cold sucrose solution onto a uniform slope which could be varied from 1° through 60°. The lowest extrusion rates and slopes, and highest cooling rates, produced flows that rapidly crusted over and advanced through bulbous toes, or pillows (similar to subaerial “toey” pahoehoe flows and to submarine pillowed flows). As extrusion rate and slope increased, and cooling rate decreased, pillowed flows gave way to rifted flows (linear zones of liquid wax separated by plates of solid crust, similar to what is observed on the surface of convecting lava lakes), then to folded flows with surface crusts buckled transversely to the flow direction, and, at the highest extrusion rates and slopes, and lowest cooling rates, to leveed flows, which solidified only at their margins. A dimensionless parameter, Ψ, primarily controlled by effusion rate, cooling rate and flow viscosity, quantifies these flow types. Increasing the underlying slope up to 30° allows the liquid wax to advance further before solidifying, with an effect similar to that of increasing the effusion rate. For example, conditions that produce rifted flows on a 10° slope result in folded flows on a 30° slope. For underlying slopes of 40°, however, this trend reverses, slightly owing to increased gravitational forces relative to the strength of the solid wax. Because of its significant influence on heat advection and the disruption of a solid crust, slope must be incorporated into any quantitative attempt to correlate eruption parameters and lava flow morphologies. These experiments and subsequent scaling incorporate key physical parameters of both an extrusion and its environment, allowing their results to be used to interpret lava flow morphologies on land, on the sea floor, and on other planets.  相似文献   

11.
The dynamics of a lava flow is studied by a two-dimensional model describing a viscous fluid with Bingham rheology, flowing down a slope. The temperature in the flow is calculated assuming that heat is transferred through the plug by conduction and is lost by radiation to the atmosphere at the top of the flow. Taken into account is that the increasing crystallization takes place in the flow as a consequence of cooling. The lava viscosity and yield stress are expressed as a function of crystallization degree as well as of temperature: in particular it is assumed that yield stress reaches a maximum value above the solidus temperature, according to experimental data. Dynamical variables, such as velocity and thickness of the flow, are calculated for different values of the maximum crystallization degree and the flow rate. The model shows how the lava flow dynamics is affected by cooling and crystallization. The cooling of the flow is controlled by the increase of yield stress, which produces a thicker plug and makes the heat loss slower. The increasing crystallization has two opposing effects on viscosity: it produces an increase of viscosity, but at the same time produces an increase of yield stress and hence reduces the heat loss and keeps the internal temperature high. As a consequence, lava flows are significantly affected by the dependence of yield stress on temperature and scarcely by the maximum crystallization degree.  相似文献   

12.
We studied the anisotropy of magnetic susceptibility (AMS) of 22 basaltic flow units, including S-type pahoehoe, P-type pahoehoe, toothpaste lava and 'a' emplaced over different slopes in two Hawaiian islands. Systematic differences occur in several aspects of AMS (mean susceptibility, degree of anisotropy, magnetic fabric and orientation of the principal susceptibilities) among the morphological types that can be related to different modes of lava emplacement. AMS also detects systematic changes in the rate of shear with position in a unit, allowing us to infer local flow direction and some other aspects of the velocity field of each unit. 'A' flows are subject to stronger deformation than pahoehoe, and also their internal parts behave more like a unit. According to AMS, the central part of pahoehoe commonly reveals a different deformation history than the upper and lower extremes, probably resulting from endogenous growth.  相似文献   

13.
The 1990 Kalapana flow field is a complex patchwork of tube-fed pahoehoe flows erupted from the Kupaianaha vent at a low effusion rate (approximately 3.5 m3/s). These flows accumulated over an 11-month period on the coastal plain of Kilauea Volcano, where the pre-eruption slope angle was less than 2°. the composite field thickened by the addition of new flows to its surface, as well as by inflation of these flows and flows emplaced earlier. Two major flow types were identified during the development of the flow field: large primary flows and smaller breakouts that extruded from inflated primary flows. Primary flows advanced more quickly and covered new land at a much higher rate than breakouts. The cumulative area covered by breakouts exceeded that of primary flows, although breakouts frequently covered areas already buried by recent flows. Lava tubes established within primary flows were longer-lived than those formed within breakouts and were often reoccupied by lava after a brief hiatus in supply; tubes within breakouts were never reoccupied once the supply was interrupted. During intervals of steady supply from the vent, the daily areal coverage by lava in Kalapana was constant, whereas the forward advance of the flows was sporadic. This implies that planimetric area, rather than flow length, provides the best indicator of effusion rate for pahoehoe flow fields that form on lowangle slopes.  相似文献   

14.
Since the mechanical properties of lava change over time, lava flows represent a challenge for physically based modeling. This change is ruled by a temperature field which needs to be modeled. MAGFLOW Cellular Automata (CA) model was developed for physically based simulations of lava flows in near real-time. We introduced an algorithm based on the Monte Carlo approach to solve the anisotropic problem. As transition rule of CA, a steady-state solution of Navier-Stokes equations was adopted in the case of isothermal laminar pressure-driven Bingham fluid. For the cooling mechanism, we consider only the radiative heat loss from the surface of the flow and the change of the temperature due to mixture of lavas between cells with different temperatures. The model was applied to reproduce a real lava flow that occurred during the 2004–2005 Etna eruption. The simulations were computed using three different empirical relationships between viscosity and temperature.  相似文献   

15.
The present study is probably the first of its kind in the Deccan Volcanic Province (DVP) that deals in detail with the morphology and emplacement of the Deccan Trap flows, and employs modern terminology and concepts of flow emplacement. We describe in detail the two major types of flows that occur in this province. Compound pahoehoe flows, similar to those in Hawaii and the Columbia River Basalts (CRB) constitute the older stratigraphic Formations. These are thick flows, displaying the entire range of pahoehoe morphology including inflated sheets, hummocky flows, and tumuli. In general, they show the same three-part structure associated with pahoehoe flows from other provinces. However, in contrast to the CRB, pahoehoe lobes in the DVP are smaller, and hummocky flows are quite common. 'Simple' flows occur in the younger Formations and form extensive sheets capped by highly vesicular, weathered crusts, or flow-top breccias. These flows have few analogues in other provinces. Although considered to be a'a flows by previous workers, the present study clearly reveals that the simple flows differ considerably from typical a'a flows, especially those of the proximal variety. This is very significant in the context of models of flood basalt emplacement. At the same time, they do not display direct evidence of endogenous growth. Understanding the emplacement of these flows will go a long way in determining whether all extensive flows are indeed inflated flows, as has recently been postulated.Most of the studies relating to the emplacement of Continental Flood Basalt (CFB) lavas have relied on observations of flows from the CRB. Much of the current controversy surrounding the emplacement of CFB flows centers around the comparison of Hawaiian lava flows to those from the CRB. We demonstrate that the DVP displays a variety of lava features that are similar to those from the CRB as well as those from Hawaii. This suggests that there may have been more than one mechanism or style for the emplacement of CFB flows. These need to be taken into account before arriving at any general model for flood basalt emplacement.Editorial responsibility: T. Druitt  相似文献   

16.
Field studies in Hawaii aimed at providing a radiocarbon-based chronology of prehistoric eruptive activity have led to a good understanding of the processes that govern the formation and preservation of charcoal beneath basaltic lava flows. Charcoal formation is a rate-dependent process controlled primarily by temperature and duration of heating, as well as by moisture content, density, and size of original woody material. Charcoal will form wherever wood buried by lava is raised to sufficiently high temperatures, but owing to the availability of oxygen it is commonly burned to ash soon after formation. Wherever oxygen circulation is sufficiently restricted, however, charcoal will be preserved, but where atmospheric oxygen circulates freely, charcoal will only be preserved at lower temperature, below that required for charcoal ignition or catalytic oxidation. These factors cause carbonized wood, especially that derived from living roots, to be commonly preserved beneath all parts of pahoehoe flows (where oxygen circulation is restricted), but only under margins of aa. Pratical guidelines are given for the recovery of datable charcoal beneath pahoehoe and aa. Although based on Hawaiian basaltic flows, the guidelines should be applicable to other areas.  相似文献   

17.
Inflated and compound pahoehoe flows have been identified within the central Paraná Continental Flood Basalts based upon their morphology, surface features, and internal zonation. Pahoehoe flow features have been studied at five localities in the western portion of Paraná State, Brazil: Ponte Queimada, Toledo, Rio Quitéria, Matelandia and Cascavel. We have interpreted the newly recognized flow features using concepts of Hawaiian pahoehoe formation and emplacement that have been previously applied to the Columbia River Basalt and Deccan Plateau. Surface features and/or internal structure typical from pahoehoe lavas are observed in all studied areas and features like inflation clefts, squeeze-ups, breakouts, and P-type lobes with two levels of pipe vesicles are indicative of inflation in these flows. The thinner, compound pahoehoe flows are predominantly composed of P-type lobes and probably emerged at the end of large inflated flows on shallow slopes. The presence of vesicular cores in the majority of compound lobes and the common occurrence of segregation structures suggests high water content in the pahoehoe lavas from the central PCFB. More volcanological studies are necessary to determinate the rheology of lavas and refine emplacement models.Editorial responsibility: C. Kilburn  相似文献   

18.
Gas accumulation in magma may be aided by coalescence of bubbles because large coalesced bubbles rise faster than small bubbles. The observed size distribution of gas bubbles (vesicles) in lava flows supports the concept of post-eruptive coalescence. A numerical model predicts the effects of rise and coalescence consistent with observed features. The model uses given values for flow thickness, viscosity, volume percentage of gas bubbles, and an initial size distribution of bubbles together with a gravitational collection kernel to numerically integrate the stochastic collection equation and thereby compute a new size spectrum of bubbles after each time increment of conductive cooling of the flow. Bubbles rise and coalesce within a fluid interior sandwiched between fronts of solidification that advance inward with time from top and bottom. Bubbles that are overtaken by the solidification fronts cease to migrate. The model predicts the formation of upper and lower vesicle-rich zones separated by a vesicle-poor interior. The upper zone is broader, more vesicular, and has larger bubbles than the lower zone. Basaltic lava flows in northern California exhibit the predicted zonation of vesicularity and size distribution of vesicles as determined by an impregnation technique. In particular, the size distribution at the tops and bottoms of flows is essentially the same as the initial distribution, reflecting the rapid initial solidification at the bases and tops of the flows. Many large vesicles are present in the upper vesicular zones, consistent with expected formation as a result of bubble coalescence during solidification of the lava flows. Both the rocks and model show a bimodal or trimodal size distribution for the upper vesicular zone. This polymodality is explained by preferential coalescence of larger bubbles with subequal sizes. Vesicularity and vesicle size distribution are sensitive to atmospheric pressure because bubbles expand as they decompress during rise through the flow. The ratio of vesicularity in the upper to that in the lower part of a flow therefore depends not only on bubble rise and coalescence, but also on flow thickness and atmospheric pressure. Application of simple theory to the natural basalts suggests solidification of the basalts at 1.0±0.2 atm, consistent with the present atmospheric pressure. Paleobathymetry and paleoaltimetry are possible in view of the sensitivity of vesicle size distributions to atmospheric pressure. Thus, vesicular lava flows can be used to crudely estimate ancient elevations and/or sea level air pressure.  相似文献   

19.
Whale-back-shaped uplifts called "tumuli" are common in the pahoehoe flows of the western Deccan Volcanic Province (DVP). Although they usually occur in hummocky flows, they are also associated with thicker sheet lobes. They have been subjected to a detailed morphometric and petrographic study for the first time. The tumuli are characterised by positive relief and "lava-inflation clefts" occupied by squeeze-ups. They display elongate as well as equant forms; some are constituted of a single flow lobe, whereas others display multiple flow lobes. Some tumuli appear to have developed along anastomosing tube systems. The detailed study of one of the tumuli reveals considerable petrographic and textural variations among the constituent flow units. Some of these, such as the enrichment of phenocrysts in squeeze-ups and breakouts, could be related to the emplacement dynamics of the tumulus. All the observed tumuli display much evidence of inflation or endogenous growth. Field observations and measurements reveal that the tumuli and associated pahoehoe features display a close similarity with their Hawaiian counterparts. This is a very significant observation since it points out to a similarity in nature and style of eruptions in Hawaii and at least in the western part of the DVP. This has an important bearing on determining the short, medium and long-term effusion rates in the Deccan; however, any concrete inference will have to await systematic volcanological studies of the lava features in the DVP.  相似文献   

20.
Processes generating block and ash flows by gravitational dome collapse (Merapi-type pyroclastic flow) were observed in detail during the 1990–1995 eruption of Unzen volcano, Japan. Two different types were identified by analysis of video records and observations during helicopter flights. Most of the block and ash flows erupted during the 1991–1993 exogenous dome growth stage initially involved crack propagation due to cooling and flowage of the dome lava lobes. The mass around the crack became unstable, locally decreasing in tensile strength. Finally, a slab separated from the lobe front, fragmented progressively from the base to the top within a few seconds, and became a block and ash flow. Rock falls immediately followed, in response to local instability of the lobe front. Clasts in these rock falls fragmented and merged with the preceding flow. In contrast, block and ash flows during the endogenous dome growth stage in 1994 were generated due to local bulge of the dome. Unstable lava blocks collapsed and subsequently fragmented to produce block and ash flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号