首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为探索深海孔隙水中稀土元素的生物地球化学循环过程,对太平洋菲律宾海九州-帕劳海脊东、西两侧的两个钻孔沉积物进行了高精度的孔隙水采样工作,分析了主、微量元素和稀土元素的地球化学特征,并对稀土元素的浓度、配分模式以及分馏特征进行了详细的讨论.结果表明:这两个钻孔沉积物均处于氧化环境,表现出海水-沉积物界面和浅层孔隙水(2....  相似文献   

2.
Spatial and seasonal variations of sulphate, dissolved organic carbon (DOC), nutrients and metabolic products were determined down to 5 m sediment depth in pore waters of intertidal flats located in NW Germany. The impact of sediment permeability, pore water flow, and organic matter supply on deep pore water biogeochemistry was evaluated. Low sediment permeability leads to an enrichment of remineralisation products in pore waters of clay-rich sediments. In permeable sandy sediments pore water biogeochemistry differs depending on whether tidal flat margins or central parts of the tidal flat are studied. Pore water flow in tidal flat margins increases organic matter input. Substrate availability and enhanced temperatures in summer stimulate sulphate reducers down to 3.5 m sediment depth. Sulphate, DOC, and nutrient concentrations exhibit seasonal variations in deep permeable sediments of the tidal flat margin. In contrast, seasonal variations are small in deep pore waters of central parts of the sand flat. This study shows for the first time that seasonal variations in pore water chemistry are not limited to surface sediments, but may be observed down to some metres depth in permeable tidal flat margin sediments. In such systems more organic matter seems to be remineralised than deduced from surface sediment studies.  相似文献   

3.
九龙江河口区稀土元素地球化学特征   总被引:1,自引:0,他引:1  
用电感耦合等离子体质谱(ICP-MS)对2007年10月航次采集的九龙江河口区溶解态、悬浮颗粒态、沉积物样品中的稀土元素(REEs)进行了测定,对REEs的地球化学特征进行研究.结果表明,REEs在各相态中的含量范围如下:溶解态的为0.1 ng/dm^3(Eu)~1.96μg/dm^3(Ce),悬浮颗粒态的为0.28(Tm)~142.83(Ce)mg/kg,沉积物的为0.25(Tm)~99.65(Ce)mg/kg;溶解态、悬浮颗粒态及沉积物中REEs球粒陨石标准化配分曲线均表现为负斜率型,九龙江河口为LREE相对HREE富集型河口.九龙江河口溶解态、悬浮颗粒态、沉积物三相态中REEs含量受流域土壤、地表径流等源区因素影响较大.Ce异常值在各相态中表现为负异常.  相似文献   

4.
Authigenic carbonates were collected from methane seeps at Hydrate Hole at 3113 m water depth and Diapir Field at 2417 m water depth on the northern Congo deep-sea fan during RV Meteor cruise M56. The carbonate samples analyzed here are nodules, mainly composed of aragonite and high-Mg calcite. Abundant putative microbial carbonate rods and associated pyrite framboids were recognized within the carbonate matrix. The δ13C values of the Hydrate Hole carbonates range from ?62.5‰ to ?46.3‰ PDB, while the δ13C values of the Diapir Field carbonate are somewhat higher, ranging from ?40.7‰ to ?30.7‰ PDB, indicating that methane is the predominant carbon source at both locations. Relative enrichment of 18O (δ18O values as high as 5.2‰ PDB) are probably related to localized destabilization of gas hydrate. The total content of rare earth elements (REE) of 5% HNO3-treated solutions derived from carbonate samples varies from 1.6 ppm to 42.5 ppm. The shale-normalized REE patterns all display positive Ce anomalies (Ce/Ce* > 1.3), revealing that the carbonates precipitated under anoxic conditions. A sample from Hydrate Hole shows a concentric lamination, corresponding to fluctuations in δ13C values as well as trace elements contents. These fluctuations are presumed to reflect changes of seepage flux.  相似文献   

5.
The interstitial water composition ( , alkalinity, Ca2+, Mg2+, Sr2+, Na+, K+) and the cation exchange capacity (CEC) were determined for the muddy sediments of the continental shelf off the Gironde Estuary (France), in the area where the sediment represents the deposit of the muddy suspension of the river. In comparison with seawater concentrations, the pore waters below 10 cm depth, show depletions of and Ca2+ and below a 30 cm depth show depletions of Mg2+. Inversely, the upper 10 cm an enrichment of Ca2+ concentration, and an increase of K+ concentration to a 40 cm depth. High values of are observed at the top 4 cm. Alkalinity enrichment is observed along the length of the core. Applying the alkalinity models for the sediment below a 10 cm depth demonstrates generally that calculated alkalinities are higher than the measured ones. Ca2+ dissolution occurs at the first 10 cm and authigenic carbonate precipitation starts beneath that level. Mg2+ depletion is accompanied by bicarbonate loss. This proves that Mg2+ depletion is due to a Mg-silicate reaction. The result of the CEC does not confirm the Mg2+ uptake by clay minerals in exchangeable site, under reducing conditions. Diffusion and bioturbation play an important role in the pore water concentration at the top of the core.  相似文献   

6.
During an iron-enrichment experiment in the western subarctic Pacific (SEEDS-II), concentrations of dissolved and acid-soluble rare earth elements (REEs) were determined in shallow waters. Detailed vertical profiles of dissolved REEs were compared with those of nutrients in a preliminary survey. The results showed good correlation, except for Ce and Y. Along with phytoplankton growth within the iron-enriched patch, dissolved REEs were decreased in surface waters. The changes in REE concentrations were small but systematic: light REEs were adsorbed preferentially over heavy REEs. This systematic trend is consistent with results of earlier studies of REE adsorption onto biogenic particle surfaces. However, we were unable to detect a decrease of acid-soluble REEs in surface waters. During the phytoplankton bloom decline phase, dissolved REEs were elevated to concentration levels at the preliminary survey, although nutrients were decreased. The liberation of REEs from the suspended particles might be related to disaggregation from large particles to colloid particles, desorption from the particulate phase, and remineralization from organic matter. Outside the Fe-patch, time variations of REEs were also observed during SEEDS-II, indicating that both artificially induced phytoplankton blooms and natural variation of biogenic particles can affect the biogeochemical cycles of REEs in shallow waters within a short time.  相似文献   

7.
The contribution of organic matter (humic compounds) to the alkaline reserve of seawater in the Sea of Japan, in the Razdol’naya River estuarine waters, and in the interstitial waters of the sediments of the Sea of Okhotsk was characterized using two procedures for alkalinity measurements: the method by Bruevich and that of the sample equilibrium with air. It was found that the surface waters of the Sea of Japan contained about 20 μmol/kg of alkalinity of organic origin, and this value twofold decreased with depth. For most of the actual cases of the calculations of the seawater carbonate system, this value may be neglected. Meanwhile, the contribution of organic alkalinity to the Razdol’naya River waters amounts to nearly 120 μmol/kg. It was shown that, if this value in the calculation of the carbonate system of the Razdol’naya River estuary-Amur Bay is neglected, this may cause gross errors in the values of the partial pressure of carbon dioxide (the error might be over 1500 μatm) and in the dissolved inorganic carbon (an error over 150 μmol/kg). The maximum absolute contribution of the humic matter (over 300 μmol/kg) was found for the interstitial waters in selected sediments of the Sea of Okhotsk. In the interstitial waters of these sediments, humic matter concentrations as high as 300 mg/l were detected. The data obtained show that the determination of the amount of humic matter must be an indispensable condition for an adequate analysis of estuarine carbonate systems and of the interstitial water in reduced marine sediments.  相似文献   

8.
Authigenic carbonates from active methane seeps offshore southwest Africa   总被引:2,自引:1,他引:1  
The southwest African continental margin is well known for occurrences of active methane-rich fluid seeps associated with seafloor pockmarks at water depths ranging broadly from the shelf to the deep basins, as well as with high gas flares in the water column, gas hydrate accumulations, diagenetic carbonate crusts and highly diverse benthic faunal communities. During the M76/3a expedition of R/V METEOR in 2008, gravity cores recovered abundant authigenic carbonate concretions from three known pockmark sites—Hydrate Hole, Worm Hole, the Regab pockmark—and two sites newly discovered during that cruise, the so-called Deep Hole and Baboon Cluster. The carbonate concretions were commonly associated with seep-benthic macrofauna and occurred within sediments bearing shallow gas hydrates. This study presents selected results from a comprehensive analysis of the mineralogy and isotope geochemistry of diagenetic carbonates sampled at these five pockmark sites. The oxygen isotope stratigraphy obtained from three cores of 2–5?m length indicates a maximum age of about 60,000–80,000?years for these sediments. The authigenic carbonates comprise mostly magnesian calcite and aragonite, associated occasionally with dolomite. Their very low carbon isotopic compositions (–61.0?<?δ13C ‰ V-PDB?<?–40.1) suggest anaerobic oxidation of methane (AOM) as the main process controlling carbonate precipitation. The oxygen isotopic signatures (+2.4?<?δ18O ‰ V-PDB?<?+6.2) lie within the range in equilibrium under present-day/interglacial to glacial conditions of bottom seawater; alternatively, the most positive δ18O values might reflect the contribution of 18O-rich water from gas hydrate decomposition. The frequent occurrence of diagenetic gypsum crystals suggests that reduced sulphur (hydrogen sulphide, pyrite) from sub-seafloor sediments has been oxidized by oxygenated bottom water. The acidity released during this process can potentially induce the dissolution of carbonate, thereby providing enough Ca2+ ions for pore solutions to reach gypsum saturation; this is thought to be promoted by the bio-irrigation and burrowing activity of benthic fauna. The δ18O–δ13C patterns identified in the authigenic carbonates are interpreted to reflect variations in the rate of AOM during the last glacial–interglacial cycle, in turn controlled by variably strong methane fluxes through the pockmarks. These results complement the conclusions of Kasten et al. in this special issue, based on authigenic barite trends at the Hydrate Hole and Worm Hole pockmarks which were interpreted to reflect spatiotemporal variations in AOM related to subsurface gas hydrate formation–decomposition.  相似文献   

9.
The distributions of dissolved and solid phase Fe and Mn have been variously determined in vertical profiles through the water column and sediments at three stations in Bolstadfjord, S.W. Norway. Elevated concentrations of dissolved and suspended particulate Fe and Mn are associated with restricted deep waters as a result of redox reactions and with river discharge. The basin sediments are anoxic throughout but because of the greatly restricted circulation, remobilized Fe and Mn appear to remain predominantly trapped within the fjord. Differentiation of Fe and Mn occurs to the extent that Fe sulphide precipitation is ubiquitous in the sediments whereas the entrapment of Mn, probably through Mn carbonate precipitation, is found only in the sediments of the more seaward basin (maximum Mn content of 1·5% by weight).  相似文献   

10.
《Marine Chemistry》2002,79(1):37-47
Profiles of dissolved organic carbon (DOC) were measured in the pore water of sediments from 1000, 2000 and 3500 m water depth in the eastern North Atlantic. A net DOC accumulation in the pore waters was observed, which followed closely the zonation of microbial respiration in these sediments. The concentration of pore water DOC in the zone of oxic respiration was elevated relative to that in the bottom ocean water. The resulting upward gradient across the sediment–water interface indicated a steady state diffusive benthic flux, FDOC, of 0.25–0.44 mmol m−2 day−1 from these sediments. Subsequent increase in the concentration of DOC in the pore water occurred only in the sediments from 1000 and 2000 m water depth that supported anoxic respiration, leading to a deep concentration maximum. By contrast, in the sediments from 3500 m water depth, a deep concentration minimum was measured, coincident with minimal postoxic respiration in this near-abyssal setting. The gradient-based FDOC represented approximately 14% of the total remineralized organic carbon (TCR=sum of FDOC and depth-integrated organic carbon oxidation rate) in the sediments from 1000 and 2000 m water depth, while it was 36% of the TCR in the sediments from 3500 m water depth. A covariance of particulate organic carbon (POC) and pore water DOC with depth in the sediments was evident, more consistently at the deepest site. While the covariance can be related to biotic processes in these sediments, an alternative interpretation suggests a possible contribution of sorption to the biotic control on sedimentary organic carbon cycling. The steady state diagenetic conditions in which this may occur can be conceivable for some organic-poor deep-sea locations, but direct evidence is clearly required to validate them.  相似文献   

11.
The abundance of major components (Fe, Ca, K, and organic carbon) and trace elements was analyzed in surface sediments and core samples from the Colorado River delta (CRD) and the Upper Gulf of California (UGC) using instrumental neutron activation analysis.The spatial distribution patterns of the elements studied are consistent with the model of sedimentary dynamics proposed for this area [Mar. Geol. 158 (1999) 125]: intense tidal resuspension of sediments in the delta with subsequent transport of suspended particulate matter in a southerly direction, followed by sedimentation of fine-grained material in a depocenter near the southwestern margin of the UGC. Concentrations of most of the elements are higher in the surface sediments of this depocenter. The gradual mixing of terrigenous and marine biogenic materials, normally expected for the estuarine sediments, was not detected in the CRD–UGC system because of homogenization of the sediments by tides and wind.Vertical profiles of element contents in samples of the sediment core collected in the depocenter area revealed (i) almost no anthropogenic contamination of the area by environmentally important trace elements such as Cr, Co, Sb, and As; (ii) a twofold decrease of Fe, Sc, Cr, and Co in upper core sediments; and (iii) the enrichment of the sediments at 60–62 cm depth in the core, in calcium carbonate, Ca, Sr, and the Eun/Smn shale-normalized ratio along with a depletion in this layer of Fe, Sc, Cr, Co, light rare-earth elements (REEs), and some other elements of terrigenous origin, presumably caused by the dilution of fluvial terrigenous material by biogenic carbonates, which were probably introduced at this level in the sediments by the action of a strong episodic winter storm, followed by the advective transport of shell fragments from the coastal clam banks or as a result of strong planktonic bloom.  相似文献   

12.
北冰洋深海广泛分布的富锰棕色沉积层(棕色层)是海冰、洋流、物源供给等多种因素共同作用的结果,本文基于西北冰洋门捷列夫海岭ARC07-E25岩芯沉积物稀土元素与微量元素含量、颜色反射率参数、粗颗粒组分和无机碳含量的变化特征,对该类沉积层中稀土元素的组成特征、形成机制和物质来源进行了综合分析。结果显示,沉积物稀土元素总含量(∑REE)在122.37×10?6~231.94×10?6之间变化,北美页岩标准化配分模式显示出轻微的中稀土(MREE)富集以及由La、Ce、Nd主导的较强的轻稀土(LREE)优势。沉积物中∑REE随着粗组分颗粒(如冰筏碎屑)的增多而呈现降低趋势,表明门捷列夫海脊沉积物中的稀土元素主要富集在细粒沉积物中。根据∑REE在沉积物中的变化特征将E25岩芯沉积物划分为4种地层,反映出了冰期/间冰期的气候转变过程中温暖条件下形成的棕色层与寒冷条件下形成的浅灰绿色沉积层(灰色层)的岩性旋回中稀土元素组成的差异,由于两种沉积层在形成时受到不同的底层水氧化还原环境的控制,导致了铈(Ce)元素在氧化水体中会由Ce3+氧化为Ce4+并发生沉降,而在还原水体中则由Ce4+还原为Ce3+发生溶解,这一特性使LREE含量产生较大波动,进而影响到∑REE,使之趋于在代表氧化条件的棕色层中升高而在代表还原条件的灰色层中降低。R型因子分析和物质来源判别结果显示,E25岩芯沉积物中稀土元素与亲碎屑元素(Nb、U、Th)有较好的相关性,主要来源于东西伯利亚海和新西伯利亚群岛的近岸侵蚀物质以及勒拿河物质的输入。  相似文献   

13.
Soupy and mousse-like fabrics are disturbance sedimentary features that result from the dissociation of gas hydrate, a process that releases water. During the core retrieval process, soupy and mousse-like fabrics are produced in the gas hydrate-bearing sediments due to changes in pressure and temperature conditions. Therefore, the identification of soupy and mousse-like fabrics can be used as a proxy for the presence of gas hydrate in addition to other evidence, such as pore water freshening or anomalously cool temperature. We present here grain-size results, mineralogical composition and magnetic susceptibility data of soupy and mousse-like samples from the southern Hydrate Ridge (Cascadia accretionary complex) acquired during Leg 204 of the Ocean Drilling Program. In order to study the relationship between sedimentary texture and the presence of gas hydrates, we have compared these results with the main textural and compositional data available from the same area. Most of the disturbed analyzed samples from the summit and the western flank of southern Hydrate Ridge show a mean grain size coarser than the average mean grain size of the hemipelagic samples from the same area. The depositional features of the sediments are not recognised due to disturbance. However, their granulometric statistical parameters and distribution curves, and magnetic susceptibility logs indicate that they correspond to a turbidite facies. These results suggest that gas hydrates in the southern Hydrate Ridge could form preferentially in coarser grain-size layers that could act as conduits feeding gas from below the BSR. Two samples from the uppermost metres near the seafloor at the summit of the southern Hydrate Ridge show a finer mean grain-size value than the average of hemipelagic samples. They were located where the highest amount of gas hydrates was detected, suggesting that in this area the availability of methane gas was high enough to generate gas hydrates, even within low-permeability layers. The mineralogical composition of the soupy and mousse-like sediments does not show any specific characteristic with respect to the other samples from the southern Hydrate Ridge.  相似文献   

14.
The most important feature of the distribution of the alkalinity and calcium in the Sea of Japan—the increase in the potential alkalinity with depth under the conditions when the waters are supersaturated in relation to calcium carbonate—is considered. It is demonstrated that this fact cannot be accounted for by the reaction of the formation-dissolution of calcium carbonate. A new concept explaining the alkalinity distribution in the sea is proposed. According to it, the biological pump is the basic process responsible for the alkalinity transport from the euphotic layer into the interior of the sea. Photosynthesis is the driving force for this process. The role of the active element transporting the alkalinity is not calcium carbonate, as has been claimed elsewhere, but extracellular polysaccharides (EPSs) produced by phytoplankton. EPSs bind to calcium and other cations to form transparent exopolymer particles (TEPs). The proposed conception makes it possible to explain the following: (a) the vertical flux of calcium carbonate that is independent of the super-saturation—undersaturation state of the ambient water regarding calcium carbonate; (b) the existence of the calcium carbonate flux regardless of the nature of the plankton skeletons; (c) the nonstoichiometric ratio between the alkalinity and calcium fluxes.  相似文献   

15.
Pore water chemistry (total dissolved CO2, NH4, NO3, NO2, PO4, Si(OH)4, Ca, Mg, Fe, Mn, SO4, H2S and F, and titration alkalinity), solid phase chemistry (Corg, Porg, CTOT, NTOT, F, SiOPAL and SII), and sediment characteristics (porosity, dry bulk density and formation factors) were determined on a centimeter-scale spacing in the upper 20–40 cm of sediments under intense upwelling areas on the Peru continental shelf. These data demonstrate that carbonate fluorapatite (CFA) is precipitating from pore waters in the upper few centimeters of a gelatinous mud with high organic carbon content (up to 20% Corg), very high porosity ( > 0.96 ml cm−3) and very low dry bulk density (< 0.1 g cm−3). Dissolved phosphate concentrations at the sediment-water interface range from 20 to 100 μM, orders of magnitude higher than bottom-water concentrations, and much higher than predicted from regeneration of organic matter. The mechanism of this interfacial phosphate release is unclear, but is apparently uncoupled from carbon and nitrogen metabolism and thus may be linked either to dissolution of fish debris or to the presence of a microbial mat in surficial sediments. Fluoride is incorporated into CFA by diffusion from the overlying seawater, and carbonate ions are provided from pore-water alkalinity. Magnesium concentrations in this reaction zone are not significantly different from those of seawater, suggesting that magnesium depletion is not a necessary prerequisite for CFA precipitation.

The environment of precipitation is interface-linked rather than driven by organic diagenesis of phosphorus deeper in the sediment. Most of the cores display a wide range of diagenetic characteristics below the immediate interfacial region, but almost all show the precipitation signature near the interface. This interface-linked early diagenetic porewater environment for the precipitation of CFA explains many of the geochemical characteristics of phosphorites and provides a “testable” model to compare the modern phosphogenic analog with ancient phosphorite deposits. Two of the cores display very high solid phase phosphorus and fluoride contents reflecting the presence of apparently modern pelletal apatites.  相似文献   


16.
New light-stable carbonate-carbon isotope and lattice-bound CO2 data from Quaternary Peru-Chile margin phosphatic nodules, crusts and pelletal grains, and from associated dolomicritic concretions, are presented, which provide constraints on the timing and mechanisms of growth of these phases in organic carbon-rich sediments. Comparison of δ13C values from carbonate fluorapatite (CFA) nodules and pelletal grains (−4.8 to 0.0‰ and −2.9 to +1.0‰ PDB, respectively) with pore-water total dissolved δ13C values from these sediments suggests early authigenic CFA precipitation from pore waters within a few centimeters of the sediment-water interface in association with suboxic to perhaps anoxic microbial degradation of organic matter. In contrast, the dolomicritic cores of nodules recovered from about 12°S display both strongly negative to positive δ13C values (−10.8 to +6.1‰) characteristic of formation deeper in the sediments in association with methanogenic and perhaps sulfate reduction microbial processes.

The amount of structural carbonate in CFA suggests that carbonate substitution generally increases as δ13C in CFA decreases, a probable consequence of increasing carbonate and accompanying charge-balancing substitutions in the CFA lattice in response to increasing pore-water carbonate ion concentrations with depth below the sediment-water interface. In one buried upward-growing nodule, decreasing CFA δ13C and increasing structural CO2 also correspond to decreasing CFA growth rates. These data suggest that in addition to other constraints such as pore-water phosphorus and fluoride availability, the lower limit of CFA precipitation in suboxic to anoxic sediments may be controlled by lattice poisoning due to excessive dissolved carbonate ion concentrations. In organic-rich Peru-Chile margin sediments this depth threshold appears to be at approximately 5–10 cm below the sediment-water interface where maximum CFA CO2 contents of about 6 Wt.% occur; in less organic-rich settings, greater depths of precipitation of CFA may be anticipated. Below this relatively shallow depth of CFA precipitation on the Peru shelf, high pore-water alkalinity and associated elevated total dissolved carbon and carbonate ion concentration apparently favor the precipitation of authigenic carbonates.  相似文献   


17.
Copper concentrations have been measured in more than 200 samples collected from an Alaskan fjord and continental shelf and slope regions in the northwestern Gulf of Alaska. Concentrations were lowest (2·1 nmol kg−1) at depths of 400–1000 m in the continental slope waters of the Gulf of Alaska. Copper increased systematically with decreasing salinities shoreward to concentrations >30 nmol kg−1 in fjord surface waters during summer months of high freshwater runoff. Copper concentrations increased with depth at an inner fjord station where deep basin waters have restricted circulation, and these data together with surface (<5 cm) pore water copper concentrations (mean=122 nmol kg−1) about an order of magnitude higher than bottom water copper concentrations are indicative of a flux of copper across the sediment-seawater interface. This latter was estimated at 32±12 nmol cm−2 annually, and represented less than 20% of the annual input to fjord surface water (228–411 nmol cm−2) added during summer months. Mass balances in bottom waters indicate a vigorous recycling of copper with a residence time estimated at 21±11 days. Most copper that is remobilized in surface sediments is returned to bottom waters and little (3%) is removed by subsequent diagenetic reaction in the buried sediments. However, an estimate of copper accumulating in anoxic fjord sediments was comparable with copper added to fjord surface waters suggesting that input-removal reactions rather than internal cycling controls copper geochemistry in this estuary.  相似文献   

18.
东海内陆架泥质区表层沉积物稀土元素的分布特征   总被引:3,自引:0,他引:3  
通过对东海内陆架泥质区30个表层沉积物样品中的稀土元素、主微量元素、TOC、CaCO3、沉积物粒度进行了分析,讨论了影响稀土元素分布的原因。结果显示东海内陆架中ΣREEs为182.8~221μg/g,均值为206.5μg/g,明显高于黄土、黄河及雅鲁藏布江中稀土元素的含量,与长江、瓯江中稀土元素含量接近。稀土元素的球粒陨石标准化配分模式及(La/Yb)N比值显示,轻稀土显著富集,存在显著的δEu异常。稀土元素上地壳标准化配分模式显示稀土元素与上地壳之间不存在显著的分馏,稀土元素存在显著的"四分性"。稀土元素与粒径、有机质、CaCO3之间不存在相关性,表明研究区中稀土元素含量不受上述3个因素的控制。元素比值及稀土元素上地壳标准化配分模式显示研究区稀土元素主要源于长江。  相似文献   

19.
Closed system equilibration experiments between natural seawater and shallow water calcium carbonate-rich sediments from the Bahamas yielded steady-state calcium carbonate ion activity products (CCIAP). Results obtained from initially supersaturated and undersaturated solutions were in good agreement. Experiments conducted with the addition of a biocide and/or the destruction of sediment organic matter gave results similar to those obtained in systems where these treatments were not used. Excellent agreement was also found between CCIAP values for 8 day and more than 50 day equilibration times. Our results, therefore, meet the major criteria for at least metastable equilibrium between the solution and carbonate sediment.Fine-grained samples produced a CCIAP close to the value predicted for aragonite, which is the major carbonate phase in all samples. Coarse-grained sediments produced larger CCIAP values of up to 2.8 times that predicted for aragonite equilibrium. The CCIAP for the coarse-grained sediments is probably produced by high-Mg calcite which is a significant component of these sediments. Oolite samples were among the coarse-grained sediment samples studied. They also produced results much greater than expected for aragonite equilibrium. This brings into question their use as material for measuring aragonite solubility as has been done in the past.The CCIAP measured in the laboratory experiments are in good agreement with field observations of pore-water CCIAP values from the fine-grained sediments. Coarse-grained sediments showed greater variability, with higher CCIAP values generally occurring in the pore waters than in the laboratory experiments. Since the overlying waters were always at a higher CCIAP than the pore waters, the major factor causing this difference is believed to be the short residence time of pore waters in the coarse-grained sediments, which is the result of the high-energy hydrodynamic environments in which they reside.  相似文献   

20.
Framvaren, a super-anoxic fjord in southern Norway, contains 7–8 mmoll−1 of sulphide and a total carbonate concentration of 18.5 mmol kg−1 in the bottom water. The chemistry of calcium has been studied, considering sources, biogenic and chemical processes and sedimentary sinks. Calcium associated with the bacteria biomass at the redox interface (18m depth) appears to be the primary source of dissolved calcium in the deep, anoxic water. Excess calcium and high total carbonate cause supersaturation of calcite, which is precipitated chemogenically. Calcite (and presumably some aragonite) is identified both in sediment trap material and the bottom sediments below the depth of supersaturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号