首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fractured rock is often modelled under the assumption of perfect fluid pressure equalization between the fractures and equant porosity. This is consistent with laboratory estimates of the characteristic squirt-flow frequency. However, these laboratory measurements are carried out on rock samples which do not contain large fractures. We consider coupled fluid motion on two scales: the grain scale which controls behaviour in laboratory experiments and the fracture scale. Our approach reproduces generally accepted results in the low- and high-frequency limits. Even under the assumption of a high squirt-flow frequency, we find that frequency-dependent anisotropy can occur in the seismic frequency band when larger fractures are present. Shear-wave splitting becomes dependent on frequency, with the size of the fractures playing a controlling role in the relationship. Strong anisotropic attenuation can occur in the seismic frequency band. The magnitude of the frequency dependence is influenced strongly by the extent of equant porosity. With these results, it becomes possible in principle to distinguish between fracture- and microcrack-induced anisotropy, or more ambitiously to measure a characteristic fracture length from seismic data.  相似文献   

2.
Computing effective medium properties is very important when upscaling data measured at small scale. In the presence of stratigraphic layering, seismic velocities and anisotropy parameters are scale and frequency dependent. For a porous layer permeated by aligned fractures, wave-induced fluid flow between pores and fractures can also cause significant dispersion in velocities and anisotropy parameters. In this study, we compare the dispersion of anisotropy parameters due to fracturing and layering at low frequencies. We consider a two-layer model consisting of an elastic shale layer and an anelastic sand layer. Using Chapman's theory, we introduce anisotropy parameters dispersion due to fractures (meso-scale) in the sand layer. This intrinsic dispersion is added to anisotropy parameters dispersion induced by layering (macro-scale) at low frequencies. We derive the series coefficients that control the behaviour of anisotropy parameters at low frequencies. We investigate the influences of fracture length and fracture density on fracturing effect, layering effect and combined effect versus frequency and volume fraction of sand layer. Numerical modelling results indicate that the frequency dependence due to layering is not always the dominant effect of the effective properties of the medium. The intrinsic dispersion is not negligible compared with the layering effect while evaluating the frequency-dependent properties of the layered medium.  相似文献   

3.
Shear wave splitting is a well-known method for indication of orientation, radius, and length of fractures in subsurface layers. In this paper, a three component near offset VSP data acquired from a fractured sandstone reservoir in southern part of Iran was used to analyse shear wave splitting and frequency-dependent anisotropy assessment. Polarization angle obtained by performing rotation on radial and transverse components of VSP data was used to determine the direction of polarization of fast shear wave which corresponds to direction of fractures. It was shown that correct implementation of shear wave splitting analysis can be used for determination of fracture direction. During frequencydependent anisotropy analysis, it was found that the time delays in shearwaves decrease as the frequency increases. It was clearly demonstrated throughout this study that anisotropy may have an inverse relationship with frequency. The analysis presented in this paper complements the studied conducted by other researchers in this field of research.  相似文献   

4.
When a porous layer is permeated by mesoscale fractures, wave-induced fluid flow between pores and fractures can cause significant attenuation and dispersion of velocities and anisotropy parameters in the seismic frequency band. This intrinsic dispersion due to fracturing can create frequency-dependent reflection coefficients in the layered medium. In this study, we derive the frequency-dependent PP and PS reflection coefficients versus incidence angle in the fractured medium. We consider a two-layer vertical transverse isotropy model constituted by an elastic shale layer and an anelastic sand layer. Using Chapman's theory, we introduce the intrinsic dispersion due to fracturing in the sand layer. Based on the series coefficients that control the behaviour of velocity and anisotropy parameters in the fractured medium at low frequencies, we extend the conventional amplitude-versus-offset equations into frequency domain and derive frequency-dependent amplitude-versus-offset equations at the elastic–anelastic surface. Increase in fracture length or fracture density can enlarge the frequency dependence of amplitude-versus-offset attributes of PP and PS waves. Also, the frequency dependence of magnitude and phase angle of PP and PS reflection coefficients increases as fracture length or fracture density increases. Amplitude-versus-offset type of PP and PS reflection varies with fracture parameters and frequency. What is more, fracture length shows little impact on the frequency-dependent critical phase angle, while the frequency dependence of the critical phase angle increases with fracture density.  相似文献   

5.
Knowledge about the spatial distribution of the fracture density and the azimuthal fracture orientation can greatly help in optimizing production from fractured reservoirs. Frequency-dependent seismic velocity and attenuation anisotropy data contain information about the fractures present in the reservoir. In this study, we use the measurements of velocity and attenuation anisotropy data corresponding to different seismic frequencies and azimuths to infer information about the multiple fracture sets present in the reservoir. We consider a reservoir model with two sets of vertical fractures characterized by unknown azimuthal fracture orientations and fracture densities. Frequency-dependent seismic velocity and attenuation anisotropy data is computed using the effective viscoelastic stiffness tensor and solving the Christoffel equation. A Bayesian inversion method is then applied to measurements of velocity and attenuation anisotropy data corresponding to different seismic frequencies and azimuth to estimate the azimuthal fracture orientations and the fracture densities, as well as their uncertainties. Our numerical examples suggest that velocity anisotropy data alone cannot recover the unknown fracture parameters. However, an improved estimation of the unknown fracture parameters can be obtained by joint inversion of velocity and attenuation anisotropy data.  相似文献   

6.
The existence of aligned fractures in fluid-saturated rocks leads to obvious attenuation anisotropy and velocity anisotropy. Attenuation anisotropy analysis can be applied to estimate fracture density and scale, which provide important information for reservoir identification. This paper derives P-wave attenuation anisotropy in the ATI media where the symmetry axis is in the arbitrary direction theoretically and modifies the spectral ratio method to measure attenuation anisotropy in the ATI media, thus avoiding a large measurement error when applied to wide azimuth or full azimuth data. Fracture dip and azimuth can be estimated through attenuation anisotropy analysis. For small-scale fractures, fracture scale and fracture density can be determined with enhanced convergence if velocity and attenuation information are both used. We also apply the modified spectralratio method to microseismic field data from an oilfield in East China and extract the fracture dip through attenuation anisotropy analysis. The result agrees with the microseismic monitoring.  相似文献   

7.
Frequency-dependent amplitude variation with offset offers an effective method for hydrocarbon detections and analysis of fluid flow during production of oil and natural gas within a fractured reservoir. An appropriate representation for the frequency dependency of seismic amplitude variation with offset signatures should incorporate influences of dispersive and attenuating properties of a reservoir and the layered structure for either isotropic or anisotropic dispersion analysis. In this study, we use an equivalent medium permeated with aligned fractures that simulates frequency-dependent anisotropy, which is sensitive to the filled fluid of fractures. The model, where pores and fractures are filled with two different fluids, considers velocity dispersion and attenuation due to mesoscopic wave-induced fluid flow. We have introduced an improved scheme seamlessly linking rock physics modelling and calculations for frequency-dependent reflection coefficients based on the propagator matrix technique. The modelling scheme is performed in the frequency-slowness domain and can properly incorporate effects of both bedded structure of the reservoir and velocity dispersion quantified with frequency-dependent stiffness. Therefore, for a dispersive and attenuated layered model, seismic signatures represent a combined contribution of impedance contrast, layer thickness, anisotropic dispersion of the fractured media and tuning and interference of thin layers, which has been avoided by current conventional methods. Frequency-dependent amplitude variation with offset responses was studied via considering the influences of fracture fills, layer thicknesses and fracture weaknesses for three classes amplitude variation with offset reservoirs. Modelling results show the applicability of the introduced procedure for interpretations of frequency-dependent seismic anomalies associated with both layered structure and velocity dispersion of an equivalent anisotropic medium. The implications indicate that anisotropic velocity dispersion should be incorporated accurately to obtain enhanced amplitude variation with offset interpretations. The presented frequency-dependent amplitude variation with offset modelling procedure offers a useful tool for fracture fluid detections in an anisotropic dispersive reservoir with layered structures.  相似文献   

8.
The study of seismic anisotropy in exploration seismology is gaining interest as it provides valuable information about reservoir properties and stress directions. In this study we estimate anisotropy in a petroleum field in Oman using observations of shear‐wave splitting from microseismic data. The data set was recorded by arrays of borehole geophones deployed in five wells. We analyse nearly 3400 microearthquakes, yielding around 8500 shear‐wave splitting measurements. Stringent quality control reduces the number of reliable measurements to 325. Shear‐wave splitting modelling in a range of rock models is then used to guide the interpretation. The difference between the fast and slow shear‐wave velocities along the raypath in the field ranges between 0–10% and it is controlled both by lithology and proximity to the NE‐SW trending graben fault system that cuts the field formations. The anisotropy is interpreted in terms of aligned fractures or cracks superimposed on an intrinsic vertical transversely isotropic (VTI) rock fabric. The highest magnitudes of anisotropy are within the highly fractured uppermost unit of the Natih carbonate reservoir. Anisotropy decreases with depth, with the lowest magnitudes found in the deep part of the Natih carbonate formation. Moderate amounts of anisotropy are found in the shale cap rock. Anisotropy also varies laterally with the highest anisotropy occurring either side of the south‐eastern graben fault. The predominant fracture strikes, inferred from the fast shear‐wave polarizations, are consistent with the trends of the main faults (NE‐SW and NW‐SE). The majority of observations indicate subvertical fracture dip (>70° ). Cumulatively, these observations show how studies of shear‐wave splitting using microseismic data can be used to characterize fractures, important information for the exploitation of many reservoirs.  相似文献   

9.
结合地震岩石物理技术,研究了叠前频变AVO反演在四川盆地龙马溪组页岩储层含气性识别中的应用.首先,应用Backus平均理论将测井数据粗化为地震尺度储层模型,应用传播矩阵理论进行高精度地震正演及井震标定,分析页岩气储层地震响应特征.其次,基于岩心观测结果,应用Chapman多尺度裂缝理论设计页岩气储层理论模型,研究储层衰减、频散以及对应的地震反射特征.应用该理论模型测试频变AVO反演方法,计算结果表明:对于研究区地层结构和地震数据,区分流体类型的优势频率不是地震子波的主频,还受层间调谐干涉等储层结构因素控制,也进一步说明理论模型测试和标定的重要性.最后,将频变AVO反演技术应用到四川盆地龙马溪组页岩地层,计算得到的频散属性为页岩气储层含气性识别提供依据.  相似文献   

10.
裂缝广泛分布于地球介质中并且具有多尺度的特点,裂缝尺度对于油气勘探和开发有着重要的意义.本文制作了一组含不同长度裂缝的人工岩样,其中三块含裂缝岩样中的裂缝直径分别为2 mm、3 mm和4 mm,裂缝的厚度都约为0.06 mm,裂缝密度大致相同(分别为4.8%、4.86%和4.86%).在岩样含水的条件下测试不同方向上的纵横波速度,实验结果表明,虽然三块裂缝岩样中的裂缝密度大致相同,但是含不同直径裂缝岩样的纵横波速度存在差异.在各个方向上,含数量众多的小尺度裂缝的岩样中纵横波速度都明显低于含少量的大尺度裂缝的岩样中纵横波速度.尤其是对纵波速度和SV波速度,在不同尺度裂缝岩样中的差异更明显.在含数量多的小尺度裂缝的岩样中纵波各向异性和横波各向异性最高,而含少量的大尺度的裂缝的岩样中的纵波各向异性和横波各向异性较低.实验测量结果与Hudson理论模型预测结果进行了对比分析,结果发现Hudson理论考虑到了裂缝尺度对纵波速度和纵波各向异性的影响,但是忽略了其对横波速度和横波各向异性的影响.  相似文献   

11.
Fluid identification in fractured reservoirs is a challenging issue and has drawn increasing attentions. As aligned fractures in subsurface formations can induce anisotropy, we must choose parameters independent with azimuths to characterize fractures and fluid effects such as anisotropy parameters for fractured reservoirs. Anisotropy is often frequency dependent due to wave-induced fluid flow between pores and fractures. This property is conducive for identifying fluid type using azimuthal seismic data in fractured reservoirs. Through the numerical simulation based on Chapman model, we choose the P-wave anisotropy parameter dispersion gradient (PADG) as the new fluid factor. PADG is dependent both on average fracture radius and fluid type but independent on azimuths. When the aligned fractures in the reservoir are meter-scaled, gas-bearing layer could be accurately identified using PADG attribute. The reflection coefficient formula for horizontal transverse isotropy media by Rüger is reformulated and simplified according to frequency and the target function for inverting PADG based on frequency-dependent amplitude versus azimuth is derived. A spectral decomposition method combining Orthogonal Matching Pursuit and Wigner–Ville distribution is used to prepare the frequency-division data. Through application to synthetic data and real seismic data, the results suggest that the method is useful for gas identification in reservoirs with meter-scaled fractures using high-qualified seismic data.  相似文献   

12.
13.
Monitoring of induced seismicity is gaining importance in a broad range of industrial operations from hydrocarbon reservoirs to mining to geothermal fields. Such passive seismic monitoring mainly aims at identifying fractures, which is of special interest for safety and productivity reasons. By analysing shear‐wave splitting it is possible to determine the anisotropy of the rock, which may be caused by sedimentary layering and/or aligned fractures, which in turn offers insight into the state of stress in the reservoir. We present a workflow strategy for automatic and effective processing of passive microseismic data sets, which are ever increasing in size. The automation provides an objective quality control of the shear‐wave splitting measurements and is based on characteristic differences between the two independent eigenvalue and cross‐correlation splitting techniques. These differences are summarized in a quality index for each measurement, allowing identification of an appropriate quality threshold. Measurements above this threshold are considered to be of good quality and are used in further interpretation. We suggest an automated inversion scheme using rock physics theory to test for best correlation of the data with various combinations of fracture density, its strike and the background anisotropy. This fully automatic workflow is then tested on a synthetic and a real microseismic data set.  相似文献   

14.
We present the analysis of a multi-azimuth vertical seismic profiling data set that has been acquired in a tight gas field with the objective of characterizing fracture distributions using seismic anisotropy. We investigate different measurements of anisotropy, which are shear-wave splitting, P-wave traveltime anisotropy and azimuthal amplitude variation with offset. We find that for our field case shear-wave splitting is the most robust measure of azimuthal anisotropy, which is clearly observed over two distinct intervals in the target. We compare the results of the vertical seismic profiling analysis with other borehole data from the same well. Cross-dipole sonic and Formation MicroImager data from the reservoir section suggest that no open fractures intersect the well or are present within half a metre of the borehole wall. Furthermore, a detailed dispersion analysis of the sonic scanner data provides no indication of stress-induced seismic anisotropy along the logged borehole section. We therefore explain the azimuthal anisotropy measured in the vertical seismic profiling data with a model that contains discrete fracture corridors, which do not intersect the well itself but lie within the vertical seismic profiling investigation radius. We show that such a model can reproduce some basic characteristics of azimuthal anisotropy observed in the vertical seismic profiling data. The model is also consistent with well test data that suggest the presence of a fracture corridor away from the well. With this study we demonstrate the necessity of integrating different data types that investigate different scales of rock volume and can provide complementary information for understanding the characteristics of fracture networks in the subsurface.  相似文献   

15.
Elastic wave propagation and attenuation in porous rock layers with oriented sets of fractures, especially in carbonate reservoirs, are anisotropic owing to fracture sealing, fracture size, fracture density, filling fluid, and fracture strike orientation. To address this problem, we adopt the Chapman effective medium model and carry out numerical experiments to assess the variation in P-wave velocity and attenuation, and the shear-wave splitting anisotropy with the frequency and azimuth of the incident wave. The results suggest that velocity, attenuation, and anisotropy vary as function of azimuth and frequency. The azimuths of the minimum attenuation and maximum P-wave velocity are nearly coincident with the average strike of the two sets of open fractures. P-wave velocity is greater in sealed fractures than open fractures, whereas the attenuation of energy and anisotropy is stronger in open fractures than sealed fractures. For fractures of different sizes, the maximum velocity together with the minimum attenuation correspond to the average orientation of the fracture sets. Small fractures affect the wave propagation less. Azimuth-dependent anisotropy is low and varies more than the other attributes. Fracture density strongly affects the P-wave velocity, attenuation, and shear-wave anisotropy. The attenuation is more sensitive to the variation of fracture size than that of velocity and anisotropy. In the seismic frequency band, the effect of oil and gas saturation on attenuation is very different from that for brine saturation and varies weakly over azimuth. It is demonstrated that for two sets of fractures with the same density, the fast shear-wave polarization angle is almost linearly related with the orientation of one of the fracture sets.  相似文献   

16.
The hydrocarbon industry is moving increasingly towards tight sandstone and shale gas resources – reservoirs that require fractures to be produced economically. Therefore, techniques that can identify sets of aligned fractures are becoming more important. Fracture identification is also important in the areas of coal bed methane production, carbon capture and storage (CCS), geothermal energy, nuclear waste storage and mining. In all these settings, stress and pore pressure changes induced by engineering activity can generate or reactivate faults and fractures. P‐ and S‐waves are emitted by such microseismic events, which can be recorded on downhole geophones. The presence of aligned fracture sets generates seismic anisotropy, which can be identified by measuring the splitting of the S‐waves emitted by microseismic events. The raypaths of the S‐waves will have an arbitrary orientation, controlled by the event and geophone locations, meaning that the anisotropy system may only be partly illuminated by the available arrivals. Therefore to reliably interpret such splitting measurements it is necessary to construct models that compare splitting observations with modelled values, allowing the best fitting rock physics parameters to be determined. Commonly, splitting measurements are inverted for one fracture set and rock fabrics with a vertical axis of symmetry. In this paper we address the challenge of identifying multiple aligned fracture sets using splitting measured on microseismic events. We analyse data from the Weyburn CCS‐EOR reservoir, which is known to have multiple fracture sets, and from a hydraulic fracture stimulation, where it is believed that only one set is present. We make splitting measurements on microseismic data recorded on downhole geophone arrays. Our inversion technique successfully discriminates between the single and multiple fracture cases and in all cases accurately identifies the strikes of fracture sets previously imaged using independent methods (borehole image logs, core samples, microseismic event locations). We also generate a synthetic example to highlight the pitfalls that can be encountered if it is assumed that only one fracture set is present when splitting data are interpreted, when in fact more than one fracture set is contributing to the anisotropy.  相似文献   

17.
流体在断裂和岩石骨架间的交换被认为是影响岩石弹性参数各向异性的主要原因,理论研究表明断裂尺度同样对弹性参数的各向异性也有影响.为了说明两者对各向异性影响以实现多尺度断裂裂隙的识别,本文在等效介质模型的基础上,应用数值分析的方法研究速度和衰减(1/Q)随多尺度断裂、频率和流体因子变化规律.结果表明介质弹性参数是频率依赖的,并且参数中存在衰减项,而这种频率依赖性与介质物性参数中的断裂尺度及流体性质存在一定的联系;当断裂定向分布时,参数结果显示为各向异性;不同断裂尺度具有不同的波速频散特性,剪切波分裂程度依赖于频率,断裂尺度起着控制作用,高频时对小尺度的敏感,低频段对大尺度敏感.在地震频段Thomsen参数随着频率的增大而减小,随着断裂尺寸的增大而减小.因此地震数据可能区分断裂和微裂隙引起各向异性,从而可测量断裂尺度.  相似文献   

18.
In this paper, we present results from the analysis of a multicomponent VSP from a fractured gas reservoir in the Bluebell-Altamont Field, Utah. Our analysis is focused on frequency-dependent anisotropy. The four-component shear-wave data are first band-pass filtered into different frequency bands and then rotated to the natural coordinates so that the fast and slow shear-waves are effectively separated. We find that the polarisations of the fast shear-waves are almost constant over the whole depth interval, and show no apparent variation with frequency. In contrast, the time delays between the split shear-waves decrease as the frequency increases. A linear regression is then applied to fit the time-delay variations in the target and we find that the gradients of linear fits to time delays show a decrease as frequency increases. Finally, we apply a time-frequency analysis method based on the wavelet transform with a Morlet wavelet to the data. The variation of shear-wave time delays with frequency is highlighted in the time-delay and frequency spectra. We also discuss two mechanisms giving rise to dispersion and frequency-dependent anisotropy, which are likely to explain the observation. These are scattering of seismic waves by preferentially aligned inhomogeneneities, such as fractures or fine layers, and fluid flow in porous rocks with micro-cracks and macro-fractures.  相似文献   

19.
利用新方法制作出含可控裂缝的双孔隙人工砂岩物理模型,具有与天然岩石更为接近的矿物成分、孔隙结构和胶结方式,其中裂缝密度、裂缝尺寸和裂缝张开度等裂缝参数可以控制以得到实验所需要的裂缝参数,岩样具有真实的孔隙和裂缝空间并可以在不同饱和流体状态下研究流体性质对于裂缝介质性质的影响.本次实验制作出一组具有不同裂缝密度的含裂缝人工岩样,对岩样利用SEM扫描电镜分析可以看到真实的孔隙结构和符合我们要求的裂缝参数,岩样被加工成八面棱柱以测量不同方向上弹性波传播的速度,用0.5 MHz的换能器使用透射法测量在饱和空气和饱和水条件下各个样品不同方向上的纵横波速度,并得出纵横波速度、横波分裂系数和纵横波各向异性强度受裂缝密度和饱和流体的影响.研究发现流体对于纵波速度和纵波各向异性强度的影响较强,而横波速度、横波分裂系数和横波各向异性强度受饱和流体的影响不大,但是对裂缝密度的变化更敏感.  相似文献   

20.
This paper describes a large-scale reservoir characterization experiment carried out in Oman in 1991 which comprised the acquisition, processing and interpretation of a 28.4 km2 3D multicomponent seismic experiment over the Natih field. The objective of the survey was to obtain information on the fracture network present in the Natih carbonates from shear-wave anisotropy. Shear-wave anisotropy in excess of 20% time splitting was encountered over a large part of the survey. The seismic results are confirmed by geological and well data but provide additional qualitative information on fracturing where this was not available before. Regions of stronger and weaker shear-wave anisotropy appear to be fault-bounded. The average well flow rates (which are fracture-dominated) within such blocks correlate with the average anisotropy of the blocks. The further observation that the anisotropy is largest in the fracture gas cap of the reservoir suggests that shear waves can provide a direct hydrocarbon indicator for fractured rock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号