首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 335 毫秒
1.
北秦岭丹凤群向西延入祁连造山带的地质意义   总被引:1,自引:0,他引:1  
宋志高 《地球学报》1993,14(2):15-26
依据前人及笔者近期对北秦岭的早古生代丹凤群(蛇绿岩套)追索研究表明,该带向西可延展至甘肃陇西一带,且向更西可与甘肃的雾宿山和青海的拉脊山出露的早古生代岩系相对比,从而构成位于祁连中间隆起带南侧,与北祁连褶皱带相对应的优地槽(蛇绿岩)带。本文研讨了其火山岩系的岩石系列组合与形成环境,并认为它的向西延展,显示北秦岭与祁连造山带间不但是相互连接的,而且两区具有相同的构造格架,属华北板块南部边缘的同一造山带。  相似文献   

2.
异剥钙榴岩及其岩石成因意义   总被引:1,自引:0,他引:1  
异剥钙榴岩作为一种特殊的交代变质岩,绝大多数与超镁铁岩的蛇纹石化有关,是超镁铁岩蛇纹石化过程中所产生的富钙流体对与其伴生的相关岩石进行钙交代的结果。蛇纹石化的超镁铁岩或为蛇绿岩的端员组分,或为太古代绿岩带、阿拉斯加型和阿尔卑斯型等其它成因类型的超镁铁岩。它们多为纯橄榄岩、方辉橄榄岩和辉石岩等。异剥钙榴岩的形成主要取决于超镁铁岩的蛇纹石化作用和钙交代程度,而与超镁铁岩的成因类型、构造属性和时代归属没有多大的关系。那种将异剥钙榴岩片面地看成蛇绿岩的组成部分或者作为鉴别蛇绿岩辅助标志的观点需要改正。  相似文献   

3.
The data on the geochemistry and geochronology of zircons from wehrlites and clinopyroxenites of the dunite–wehrlite–clinopyroxenite banded complex that lies at the base of the crustal section of the ophiolite complex of the Nurali massif are presented. The obtained U–Pb age of the banded complex of 450 ± 4 Ma differs markedly from the previous age data. According to REE distribution patterns zircons from ultramafic rocks are attributed to the magmatic type and they indicate the age and supposed genetic similarity of the above rocks with lherzolites and dunites from the mantle section of the Nurali massif.  相似文献   

4.
The Mersin ophiolite, represented by approximately 6-km-thick oceanic lithospheric section on the southern flank of the Taurus calcareous axis, formed in the Mesozoic Neo-Tethyan ocean some time during Late Cretaceous in southern Turkey. The ultramafic and mafic cumulates having over 3 km thickness consist of dunite ± chromite, wehrlite, clinopyroxenite at the bottom and pass into gabbroic cumulates in which leucogabbro, olivine-gabbro and anorthosite are seen. Crystallization order is olivine (Fo91−80) ± chromian spinel (Cr# 60-80), clinopyroxene (Mg#95−77), plagioclase (An95.6−91.6) and orthopyroxene (Mg#68−77). Mineral chemistry of ultramafic and mafic cumulates suggest that highly magnesian olivines, clinopyroxenes and absence of plagioclase in the basal ultramafic cumulates are in good agreement with products of high-pressure crystal fractionation of primary basaltic melts beneath an island-arc environment. Major, trace element geochemistry of the cumulative rocks also indicate that Mersin ophiolite was formed in an arc environment. Coexisting Ca-rich plagioclase and Forich olivine in the gabbroic cumulates show arc cumulate gabbro characteristics. Field relations as well as the geochemical data support that Mersin ophiolite formed in a supra-subduction zone tectonic setting in the southern branch of the Neo-Tethys in southern Turkey.  相似文献   

5.
Significant and widespread enrichment of platinum, palladium, and gold has been found within the Nkenja mafic–ultramafic body located in southern Tanzania in the central part of the Ubendian metamorphic belt. This body is dominated by partly serpentinized chromitiferous dunite, wehrlite and olivine clinopyroxenite, which are tectonically intercalated with amphibolitized metagabbro. The dunites contain both disseminated and seam-type chrome spinel with an Al-rich composition. The seams are thin, impersistent and, together with enclosing dunite, often show deformation at granulite facies conditions. Forsterite contents of olivine in the dunite range from 87 to 92?mol%. Clinopyroxene in wehrlite and clinopyroxenite is diopsidic with significant contents of Al and Na. Clinopyroxene forms irregular bands and crosscutting veins in the dunite, as well as occurring as weakly dispersed isolated grains in the dunite. Elevated levels of Pt, Pd and Au occur in all ultramafic rocks, but not amphibolitized metagabbro, and there is a weak correlation between high abundances of platinum-group element (PGE) and chromitites. PGE values are erratically distributed and are associated with trace to minor amounts of disseminated sulphides (pyrrhotite, pentlandite, heazlewoodite, chalcopyrite and bornite). The abundances of all PGE are consistently anomalous, suggesting a primary igneous control by sulphides in ultramafic rock. However, there has evidently been a strong metamorphic and/or hydrothermal overprint on what was probably an original magmatic concentration of PGE-bearing sulphides. Geological mapping and petrological evidence, as well as the style of PGE sulphide mineralization, are consistent with the Nkenja ultramafic body being part of the crustal section of a dismembered Palaeoproterozoic ophiolite.  相似文献   

6.
The Haji‐Abad ophiolite in SW Iran (Outer Zagros Ophiolite Belt) is a remnant of the Late Cretaceous supra‐subduction zone ophiolites along the Bitlis–Zagros suture zone of southern Tethys. These ophiolites are coeval in age with the Late Cretaceous peri‐Arabian ophiolite belt including the Troodos (Cyprus), Kizildag (Turkey), Baer‐Bassit (Syria) and Semail (Oman) in the eastern Mediterranean region, as well as other Late Cretaceous Zagros ophiolites. Mantle tectonites constitute the main lithology of the Haji‐Abad ophiolite and are mostly lherzolites, depleted harzburgite with widespread residual and foliated/discordant dunite lenses. Podiform chromitites are common and are typically enveloped by thin dunitic haloes. Harzburgitic spinels are geochemically characterized by low and/or high Cr number, showing tendency to plot both in depleted abyssal and fore‐arc peridotites fields. Lherzolites are less refractory with slightly higher bulk REE contents and characterized by 7–12% partial melting of a spinel lherzolitic source whereas depleted harzburgites have very low abundances of REE and represented by more than 17% partial melting. The Haji‐Abad ophiolite crustal sequences are characterized by ultramafic cumulates and volcanic rocks. The volcanic rocks comprise pillow lavas and massive lava flows with basaltic to more‐evolved dacitic composition. The geochemistry and petrology of the Haji‐Abad volcanic rocks show a magmatic progression from early‐erupted E‐MORB‐type pillow lavas to late‐stages boninitic lavas. The E‐MORB‐type lavas have LREE‐enriched patterns without (or with slight) depletion in Nb–Ta. Boninitic lavas are highly depleted in bulk REEs and are represented by strong LREE‐depleted patterns and Nb–Ta negative anomalies. Tonalitic and plagiogranitic intrusions of small size, with calc‐alkaline signature, are common in the ophiolite complex. The Late Cretaceous Tethyan ophiolites like those at the Troodos, eastern Mediterranean, Oman and Zagros show similar ages and geochemical signatures, suggesting widespread supra‐subduction zone magmatism in all Neotethyan ophiolites during the Late Cretaceous. The geochemical patterns of the Haji‐Abad ophiolites as well as those of other Late Cretaceous Tethyan ophiolites, reflect a fore‐arc tectonic setting for the generation of the magmatic rocks in the southern branch of Neotethys during the Late Cretaceous. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
This study presents new data on the geochemistry and mineral chemistry of ultramafic and mafic rocks in ophiolits from the base of the Kumroch segment of the Achayvayam-Valagin paleoarc. The new data enabled us to consider peridotites and the associated diabases and gabbros enclosed as separated blocks into a serpentinite mélange as a single ophiolite complex formed in a supra-subduction setting and subsequently disintegrated as a result of nappe formation. The variations identified in the geochemistry and compositions of rock-forming minerals are shown to be characteristic of the other study ophiolite complexes of Eastern Kamchatka. This is suggested to reflect spatial-temporal heterogeneity of partial melting during evolution of the Achayvayam-Valagin island arc.  相似文献   

8.
本文对新疆中天山南缘乌瓦门蛇绿混杂岩中的超镁铁岩进行了岩石矿物学和地球化学研究,对其成因和形成环境进行限定。乌瓦门蛇绿混杂岩中的超镁铁岩为蛇纹石化二辉橄榄岩,由橄榄石(Fo=89.1~90.6)、斜方辉石(Wo0.4-2.4En87.2~90.7Fs8.9-10.9;Mg#=89.0~91.0)、单斜辉石(Wo49.1-51.3En16.0~48.4Fs0.9-4.3;Mg#=90.2~92.1)和尖晶石(Mg#=71.8~77.5;Cr#=9.3~13.4)组成。主量元素组成上,以低Mg O(37.74%~41.34%)、高Al2O3(2.58%~3.39%)、高Ca O(2.23%~3.68%)和高Ti O2(0.05%~0.11%)为特征。微量元素上,亏损稀土元素(REE总量为1.73×10-6~4.63×10-6),亏损不相容元素(如,Rb=0.4×10-6~1.39×10-6,Zr=0.73×10-6~3.28×10-6,Hf=0.04×10-6~0.11×10-6),富集相容元素(如,Cr=2516×10-6~2793×10-6,Co=84.6×10-6~119×10-6,Ni=1641×10-6~2261×10-6)。矿物学和地球化学特征一致指示,乌瓦门蛇绿混杂岩中的超镁铁岩为经历过低程度(5%~10%)部分熔融作用的残余地幔橄榄岩,形成于洋中脊环境,是MOR型蛇绿岩中的地幔橄榄岩。  相似文献   

9.
The Klyuveskoi gabbro-ultramafic massif is the most representative ophiolite complex on the eastern portion of the Uralian paleoisland arc part. The massif is composed of dunite-harzburgite (tectonized mantle peridotites) and dunite-wehrlite-clinopyroxenite-gabbro (layered part of the ophiolite section) rock associations. The U-Pb age was obtained for the accessory zircons from the latter association using a SHRIMP-II ion microprobe at the Center for Isotopic Research at the Karpinskii Russian Geological Research Institute. The euhedral zircon crystals with thin rhythmic zoning from dunites are 441.4 ± 5.0 Ma in age. Zircons from olivine clinopyroxenite show three age clusters with sharply prevalent grains 449.0 ± 6.8 Ma in age. Two points give 1.7 Ga, which is probably related to the age of the mantle generating the layered complex. One value corresponds to 280 Ma, which possibly reflects exhumation of ultramafic rocks in the upper crust during the collision of the Uralian foldbelt. Thus, dunites and olivine pyroxenites from the Klyuchevskoi massif are similar in age at 441–449 Ma. The bottom of the layered part of the ophiolite section corresponds to the M paleoboundary and, consequently, the age of the Mohorovicic discontinuity conforms with the Ordovician-Silurian boundary in this part of the Urals.  相似文献   

10.
苏鲁超高压变质带胡家林超镁铁质岩成因及构造意义   总被引:1,自引:1,他引:0  
胡家林超镁铁质杂岩体产于苏鲁超高压变质带中部,纯橄岩和(石榴)单斜辉石岩呈不连续透镜体产于蛇纹石化橄榄岩中。纯橄岩遭受了部分蛇纹石化(烧失量=6.6%~13.2%),全岩富集强相容元素(Ni、Cr、Co)和Ir族PGE(IPGE;Ir、Os、Ru)及高IPGE/PPGE值,亏损Al、Ti、V,具高Mg~#橄榄石(Fo=91.7~92.4)和高Cr~#(0.68~0.76)尖晶石。纯橄岩高耐熔地球化学及矿物化学特征和古老的大陆岩石圈地幔相一致,表明其原岩来源于弧前地幔,代表了华北克拉通古老的大陆岩石圈地幔残留。(石榴)单斜辉石岩全岩呈相对低含量的强相容元素(Cr、Ni、Co)和IPGE,高含量的Al、Ti、V和流体迁移元素(Sr、Pb和Ba),球粒陨石标准化REE配分图呈明显"上凸"型,具低Mg~#橄榄石(Fo=76.6~76.8)和低Al_2O_3(2.76%)和高SiO_2(54.56%~56.87%)的单斜辉石。全岩组成和矿物化学表明其原岩为俯冲带内超镁铁质火成堆晶岩,最初岩浆由地幔岩高程度部分熔融的熔体和俯冲带中富H_2O流体和/或熔体构成。(石榴)单斜辉石岩原岩曾被地幔流带入扬子大陆俯冲板片和上覆地幔楔之间的俯冲通道,经历了超高压变质作用和生成大量石榴石。(石榴)单斜辉石岩在折返过程中,与大陆岩石圈地幔楔剥离的蛇纹石化橄榄岩及纯橄岩相结合,形成超镁铁质杂岩体,整体被低密度的俯冲板片(主要由花岗质片麻岩和变质沉积岩组成)裹挟,折返至地壳浅部。  相似文献   

11.
东昆仑乌妥一带超镁铁质岩镁铁质岩地质特征及构造环境   总被引:1,自引:0,他引:1  
东昆仑昆中断裂带乌妥一带分布20多个超镁铁质镁铁质岩残块(片),在野外地质调查的基础上,结合室内岩石学、岩石地球化学研究,属非典型的蛇绿岩残块(片),是东昆中断带在漫长的地质演化过程中残留在陆块边缘的洋壳物质,形成于洋中岛弧环境。分布于东昆中断裂带内及其附近,时代上属于早古生代。  相似文献   

12.
The Hongseong area, located in the western Gyeonggi Massif, South Korea, can be correlated with the northern margin of the South China block (Yangtze Craton). This area experienced Neoproterozoic igneous activity related to subduction before the amalgamation of Rodinia. Several isolated, lenticular, and serpentinized ultramafic–mafic bodies occur in the Hongseong area. The Baekdong body, one of the largest ultramafic bodies, has been highly deformed and metamorphosed to eclogite- and granulite-facies. The petrogenesis and tectonic environment of the Baekdong rocks are assessed using the composition of unaltered cores of spinel and olivine grains, and show that these rocks represent the mantle section of a suprasubduction ophiolite. The rocks originated from oceanic lithosphere that formed during the transition from nascent back-arc to mature island arc, related to subduction roll-back. During the back-arc stage, Al-rich spinel harzburgite formed through melt–rock interaction caused by the intrusion of magma. This magma was produced in small amounts, by less than 10% of partial melting of the wedge mantle. Subsequently, during the mature island arc stage, Cr-rich spinel dunite formed through melt–rock interaction caused by the intrusion of relatively evolved magma that formed by 30–35% partial melting due to a high input of volatiles from the subducted slab and sediments. The Baekdong ultramafic rocks, together with the Bibong ultramafic rocks, indicate that a suprasubduction tectonic setting prevailed before the amalgamation of Rodinia (at 860–890 Ma) in the Hongseong area, which may be an extension of the northern margin of the Yangtze Craton.  相似文献   

13.
The Upper Proterozoic ophiolite complex of Bou Azzer, Morocco, includes ultramafic rocks, cumulate gabbros, sheeted dykes, pillow lavas and diorite-quartz diorite intrusions and an overlying volcano-sedimentary sequence. The gabbroic cumulates, basaltic flows and dykes have compositions similar to recent ocean-floor rocks (N- and/or T-type). Among other features, they have comparable light REE-depleted patterns and relations of Ti-Zr and La-Nb. Although fractional crystallization played an important role in the evolution of these rocks, the large variations in their chemical compositions require generation from a heterogeneous upper mantle source and/or by a dynamic partial melting process. Diorites, quartz diorites and the volcanic rocks of the overlying sequence are calc-alkaline, genetically unrelated to the tholeiitic suite and indicative of an island arc setting. A possible tectonic model for the ophiolite complex is a marginal basin just behind a still active island arc.  相似文献   

14.
Podiform chromite ore deposits in ultramafic parts of ophiolite rock complexes can be detected using remote sensing data. This study focuses on the discrimination of chromite bearing mineralized zones using Landsat TM and Advance Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite data in Abdasht ophiolite complex, south of Iran. Several image processing methods, including Log residual, Decorellation Stretch, Band ratio and Mixture-Tuned Matched-Filtering (MTMF) have been evaluated for lithological mapping using Landsat ETM and ASTER data. The outcome showed that TIR band ratios of ASTER can discriminate quartzite, carbonate and mafic–ultramafic rocks in the ophiolite complex. Log residual, Decorollation Stretch and MTMF methods were more capable than previous published ASTER methods specifically for lithological mapping at a regional scale. New geological map of Abdasht region was produced based on the interpretation of ASTER image processing results and field verification. Consequently, the proposed methods demonstrated the ability of ASTER and Landsat ETM data to provide information for detecting chromite host rock (serpentinized dunites) that is valuable for chromite prospecting in study area. Additionally, the techniques used in this study are subtle for exploration geologist and mine engineering to identify high-potential chromite-bearing zones in the ophiolite complex, minimizing costly and time-consuming field works.  相似文献   

15.
Most chrysotile deposits occur in ultramafic rocks of the ophiolite suite. The chrysotile deposits dis-cussed in the present paper were formed through metasomatism and infilling-crystallization in a continentalserpentinization environment after plate convergence, where ultramafic rocks were replaced byhydrothermal solutions consisting mainly of deep-circulating heated water derived from atmospheric precip-itation. The critical state for the formation of asbestos in ultramafic rock bodies might be reached bysuperposition of multiple stages of serpentinization. Favourable fracture systems and relatively stable geo-logical environment are important conditions for forming chrysotile deposits. Three subtypes of chrysotiledeposits could be formed in different tectonic settings and under different minerogenic geochemical condi-tions.  相似文献   

16.
Serpentinized ultramafic rocks occur in two separate basement complexes in the South Arm of Sulawesi, the Bantimala and Barru Blocks. We present petrographic, mineral chemical and geochemical data for these rocks, and interpret them in terms of petrogenesis and tectonic setting. The rocks of both blocks show strong serpentinization of original anhydrous silicates. The Bantimala ultramafics consist mainly of peridotite (harzburgite and dunite) and clinopyroxenite, with lenses of podiform chromitite. Metamorphism is evidenced by the occurrence of amphibolite-facies tremolite schist. In contrast, the Barru ultramafics consist of harzburgite peridotite and podiform chromitite, which also show an amphibolite-facies overprint that in this case may be related to intrusion by a large dacite/granodiorite body. Whole-rock trace element analyses and spinel compositions show that the Barru harzburgite is depleted relative to primitive mantle, and has had some melt extracted. In contrast, the Bantimala dunite, harzburgite and clinopyroxenite are cumulates. Both are derived from a supra-subduction zone environment, and were obducted during the closure of small back-arc basins. If there has been no rotation of the blocks, then the Bantimala ultramafics were emplaced from an ENE direction, while the Barru ultramafics were emplaced from the WNW. The ultramafic suites from these two blocks are juxtaposed with metamorphic assemblages, which were later intruded by younger volcanics, particularly in the Barru Block.  相似文献   

17.
The present article describes, for the first time, petrological and geochemical details of the Mawpyut differentiated complex which is related to the Sylhet trap located at Jaintia Hills district, Meghalaya, northeastern India. The Mawpyut complex occurs as an arcuate body that intrudes into the surrounding Shillong Group rocks. The complex in general contains ‘ultramafic’ and ‘mafic’ rocks, as well as minor syenitic veins that postdate the main units. The lithotypes correspond to cumulate and noncumulate units. The cumulate unit is represented by olivine clinopyroxenite, clinopyroxenite, plagioclase‐bearing ultramafic, olivine gabbronorite, mela‐gabbronorite, melagabbro, orthopyroxene gabbro, and gabbro, all with a pronounced cumulus texture. The noncumulate unit is marked by gabbro, monzonite, monzodiorite, and quartzsyenite. The use of several major and trace element variation diagrams suggests that magmatic differentiation led to the formation of cumulate and noncumulate units. In chondrite‐normalized REE diagrams the cumulate rocks show flat LREE and MREE patterns and a moderate positive Eu anomaly (in plagioclase‐bearing ultramafics) due to plagioclase cumulation. The rocks of the noncumulate unit show a strongly fractionated REE pattern and no Eu anomaly. The noncumulate mafic rocks are geochemically comparable to high‐phosphorous/high‐titanium basalts (HPT) indicative of low pressure fractional crystallization. In a primitive mantle‐normalized multielement diagram some of the cumulate rocks show pronounced negative anomalies for K and P, indicating anorogenic mafic magmatism in a within‐plate setting. The rocks of the noncumulate unit show a slight negative anomaly for Yb and a Nb–Ta trough, indicating a subduction‐related signature that perhaps is inherited from subducted sedimentary rocks incorporated during crustal contamination of the derived magma (left after crystal cumulation) with country rocks. Various trace element ratios for the cumulate mafic rocks indicate parent EMI/EMII/HIMU sources with a very limited crustal signature. The noncumulate mafic rocks (corresponding to the derived evolved magma) indicate EMI/EMII/HIMU sources with a pronounced crustal contamination. The Sr–Nd isotopic compositions of the Mawpyut samples typically plot in the continental flood basalt field, with an affinity to the EMII source. The isotopic compositions of the noncumulate rocks also clearly indicate crustal contamination. We suggest that partial melting (involving garnet in the residue) of the enriched mantle source EMI/EMII/HIMU could have derived the parental melt; this melt, in turn, underwent assimilation and fractional crystallization to produce the variety of cumulate‐noncumulate lithologies of the Mawpyut complex. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
《地学前缘(英文版)》2020,11(6):2347-2364
The Late Cretaceous Sabzevar ophiolite represents one of the largest and most complete fragments of Tethyan oceanic lithosphere in the NE Iran. It is mainly composed of serpentinized mantle peridotites slices; nonetheless, minor tectonic slices of all crustal sequence constituents are observed in this ophiolite. The crustal sequence contains a well-developed ultramafic and mafic cumulates section, comprising plagioclase-bearing wehrlite, olivine clinopyroxenite, olivine gabbronorite, gabbronorite, amphibole gabbronorite and quartz gabbronorite with adcumulate, mesocumulate, heteradcumulate and orthocumulate textures. The crystallization order for these rocks is olivine ​± ​chromian spinel → clinopyroxene → plagioclase → orthopyroxene → amphibole. The presence of primary magmatic amphiboles in the cumulate rocks shows that the parent magma evolved under hydrous conditions. Geochemically, the studied rock units are characterized by low TiO2 (0.18–0.57 ​wt.%), P2O5 (<0.05 ​wt.%), K2O (0.01–0.51 ​wt.%) and total alkali contents (0.12–3.04 ​wt.%). They indicate fractionated trends in the chondrite-normalized rare earth element (REE) plots and multi-element diagrams (spider diagrams). The general trend of the spider diagrams exhibit slight enrichment in large ion lithophile elements (LILEs) relative to high field strength elements (HFSEs) and positive anomalies in Sr, Pb and Eu and negative anomalies in Zr and Nb relative to the adjacent elements. The REE plots of these rocks display increasing trend from La to Sm, positive Eu anomaly (Eu/Eu1 ​= ​1.06–1.54) and an almost flat pattern from medium REE (MREE) to heavy REE (HREE) region [(Gd/Yb)N ​= ​1–1.17]. Moreover, clinopyroxenes from the cumulate rocks have low REE contents and show marked depletion in light REE (LREE) compared to MREE and HREE [(La/Sm)N ​= ​0.10–0.27 and (La/Yb)N ​= ​0.08–0.22]. The composition of calculated melts in equilibrium with the clinopyroxenes from less evolved cumulate samples are closely similar to island arc tholeiitic (IAT) magmas. Modal mineralogy, geochemical features and REE modeling indicate that Sabzevar cumulate rocks were formed by crystal accumulation from a hydrous depleted basaltic melt with IAT affinity. This melt has been produced by moderate to high degree (~15%) of partial melting a depleted mantle source, which partially underwent metasomatic enrichment from subducted slab components in an intra-oceanic arc setting.  相似文献   

19.
李天福  张建新 《岩石学报》2014,30(8):2393-2401
西昆仑造山带划分为北昆仑地体和南昆仑地体,关于西昆仑造山带中库地蛇绿岩的形成时代一直存在争议。本文在库地布孜完沟超镁铁岩单元角闪石化二辉辉石岩和依歇克沟火山岩单元底部粒玄岩中获得了锆石LA-ICP-MS U-Pb年龄,分别为494.28±0.86Ma和500.30±8.0Ma,两者非常相近,说明超镁铁岩单元和火山岩单元下部的玄武岩形成时代均为晚寒武世-早奥陶世,是配套的蛇绿岩组成单元,即库地蛇绿岩为早古生代早期原特提斯洋的产物。根据前人已发表的年代学、古生物学资料和本文的资料分析对比,原划依莎克群火山岩单元可能是构造拼合叠置体,应予解体。  相似文献   

20.
刘春花  聂凤军 《地质通报》2015,34(6):1045-1056
拜韦尔特半岛矿产资源主要包括铜、金和石棉,区域地层和构造是控制矿床形成、发展和叠加改造的主要因素。这些矿产资源主要赋存在拜韦尔特海洋带达利吉带圣母玛利亚亚带的早奥陶世潜次火山岩中,包括起源于超俯冲作用带的蛇绿岩套和火山岩盖层。其蛇绿岩套超镁铁堆积岩的热液蚀变岩中产出石棉,火山成因的块状硫化物型(VMS型)铜±金矿产在基性和双峰式火山岩中,金矿产在基性和超基性的热液蚀变岩中。而蛇绿岩套火山岩盖层中则产出与条带状含铁建造(BIF)有关的后生金矿,石英脉型或相关的交代型矿床则大多赋存在蚀变和变形的基性岩中。拜韦尔特半岛的构造样式和几何结构非常复杂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号