首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
http://www.sciencedirect.com/science/article/pii/S1674987114000243   总被引:2,自引:0,他引:2  
We combine a geological, geochemical and tectonic dataset from 118 ophiolite complexes of the major global Phanerozoic orogenic belts with similar datasets of ophiolites from 111 Precambrian greenstone belts to construct an overview of oceanic crust generation over 4 billion years. Geochemical discrimi- nation systematics built on immobile trace elements reveal that the basaltic units of the Phanerozoic ophiolites are dominantly subduction-related (75%), linked to backarc processes and characterized by a strong MORB component, similar to ophiolites in Precambrian greenstone sequences (85%). The remaining 25% Phanerozoic subduction-unrelated ophiolites are mainly (74%) of Mid-Ocean-Ridge type (MORB type), in contrast to the equal proportion of RiftlContinental Margin, Plume, and MORB type ophiolites in the Precambrian greenstone belts. Throughout the Phanerozoic there are large geochemical variations in major and trace elements, but for average element values calculated in 5 bins of 100 million year intervals there are no obvious secular trends. By contrast, basaltic units in the ophiolites of the Precambrian greenstones (calculated in 12 bins of 250 million years intervals), starting in late Paleo- to early Mesoproterozoic (ca. 2.0-1.8 Ga), exhibit an apparent decrease in the average values of incom- patible elements such as Ti, P, Zr, Y and Nb, and an increase in the compatible elements Ni and Cr with deeper time to the end of the Archean and into the Hadean. These changes can be attributed to decreasing degrees of partial melting of the upper mantle from HadeanJArchean to Present. The onset of geochemical changes coincide with the timing of detectible changes in the structural architecture of the ophiolites such as greater volumes of gabbro and more common sheeted dyke complexes, and lesser occurrences of ocelli (varioles) in the pillow lavas in ophiolites younger than 2 Ga. The global data from the Precambrian ophiolites, representative of nearly 50% of all known worldwide greenston  相似文献   

2.
The basement of the Philippine Mobile Belt (PMB) is mainly composed of ophiolites that are mostly overlain by Paleogene to Miocene turbidites in central Luzon. To clarify the geological development of the PMB with respect to the initial stage of the arc volcanism (eg. Yumul et al., 2003, 2008; Dimalanta and Yumul, 2003; Suzuki et al., 2011), radiolarian dating was examined in siliceous sediments associated with the ophiolites and turbidites. The samples were collected from sites identified with the Zambales and Montalban ophiolites, basic tuff phyllites in NW Din-galan, and their overlying formations.  相似文献   

3.
<正>The internal structure-stratigraphy and geochemical characteristics of suprasubduction zone(SSZ)ophiolites in different orogenic belts indicate a seafloor spreading origin in forearc-incipient arc settings during the initial stages of subduction.In general,there is a well-developed magmatic stratigraphy in the extrusive sequences of these ophiolites from older MORB-like lavas at the bottom  相似文献   

4.
Ophiolite studies over the decades have played a crucial role in better understanding of mid-ocean ridge and subduction zone processes,mantle dynamics and heterogeneity,fluid-rock interactions in both sub-oceanic and sub-arc upper mantle,and the mechanisms of continental growth in accretionary and collisional belts.The continued interest in ophiolites as a topic of multi-disciplinary research in Earth Sciences has resulted in a wealth of new data,syntheses,and ideas from ophiolites around the world.  相似文献   

5.
We present a compilation of published data(field,petrography,ages and geochemistry)from 73 ophiolitic complexes of the Central Asian Orogenic Belt.The ophiolitic complexes,ranging in age from Neoproterozoic to Triassic.have been geochemically classified as subduction-related and subductionunrelated categories applying recent,well-established discrimination diagrams.The subductionunrelated category is further subdivided into Mid-Ocean Ridge type(MOR),a common rift-drift stage and Plume type,and the subduction-related category is subdivided into Backarc(BA),Forearc(FA).Backarc to Forearc(BA-FA)and Volcanic Arc(VA)types.The four subduction-related types define highly different geochemical features,with the BA and FA types defining end members showing subduction influence of 10%-100%and 90%-100%subduction influence,respectively,and the two other types(BAFA and VA)define values between the two end members.The subduction-related category comprises79%of the examined ophiolites,of which the BA type ophiolites is by far the dominant group,followed by the BA-FA type,and with FA and VA types as subordinate groups.The Neoproterozoic and Ordovician complexes exhibit the highest,whereas those of Silurian age exhibit the lowest subduction-influence.Of the remaining 21%subduction-unrelated ophiolites,the MOR type dominates.Both the subductionrelated and subduction-unrelated types,in particular the latter,are commonly associated with alkaline basalts taken to represent ocean island magmatism.Harzburgite,dunite,gabbro and basalt are the common lithologies in all ophiolite types,whereas the BA-FA,FA and VA types generally contain intermediate to felsic rocks,and in the FA type boninites occur.The subduction-related ophiolites types generally show low metamorphic grade,whereas greenschist.amphibolite and blueschist grades occur in the subduction-unrelated and BA types.The highly different subduction contribution(from 0 to 100%in the MOR and FA,respectively),attest to variable dips of the subducting slab,as well as variable flux of subduction-related elements into the mantle above subducting slabs,from where the ophiolite magmas got their geochemical fingerprints.As most MOR ophiolites get subducted to the deep mantle,the subduction-related ophiolites have become a dominant ophiolitic type on Earth’s surface through all times supporting the idea about the early start of Plate Tectonics.  相似文献   

6.
正The Jurassic–Cretaceous ophiolites in the Alpine–Himalayan orogenic belt represent fragments of oceanic lithosphere,developed in different seaways separated by Gondwana–derived ribbon continents within a broad  相似文献   

7.
The Nain and Ashin ophiolites consist of Mesozoic melange units that were emplaced in the Late Cretaceous onto the continental basement of the Central-East Iran microcontinent(CEIM).They largely consist of serpentinized peridotites slices;nonetheless,minor tectonic slices of sheeted dykes and pillow lavas-locally stratigraphically associated with radiolarian cherts-can be found in these ophiolitic melanges.Based on their whole rock geochemistry and mineral chemistry,these rocks can be divided into two geochemical groups.The sheeted dykes and most of the pillow lavas show island arc tholeiitic(IAT)affinity,whereas a few pillow lavas from the Nain ophiolites show calc-alkaline(CA)affinity.Petrogenetic modeling based on trace elements composition indicates that both IAT and CA rocks derived from partial melting of depleted mantle sources that underwent enrichment in subduction-derived components prior to melting.Petrogenetic modeling shows that these components were represented by pure aqueous fluids,or sediment melts,or a combination of both,suggesting that the studied rocks were formed in an arc-forearc tectonic setting.Our new biostratigraphic data indicate this arc-forearc setting was active in the Early Cretaceous.Previous tectonic interpretations suggested that the Nain ophiolites formed,in a Late Cretaceous backarc basin located in the south of the CEIM(the so-called Nain-Baft basin).However,recent studies showed that the CEIM underwent a counter-clockwise rotation in the Cenozoic,which displaced the Nain and Ashin ophiolites in their present day position from an original northeastward location.This evidence combined with our new data and a comparison of the chemical features of volcanic rocks from different ophiolites around the CEIM allow us to suggest that the Nain-Ashin volcanic rocks and dykes were formed in a volcanic arc that developed on the northern margin of the CEIM during the Early Cretaceous in association with the subduction,below the CEIM,of a Neo-Tethys oceanic branch that was existing between the CEIM and the southern margin of Eurasia.As a major conclusion of this paper,a new geodynamic model for the Cretaceous evolution of the CEIM and surrounding Neo-Tethyan oceanic basins is proposed.  相似文献   

8.
<正>Precambrian ophiolites are abundant in the ArabianNubian Shield of NE Africa and Arabia and range in age from 690 to 890 Ma.In Egypt,they are widely distributed in the central and southern Eastern Desert and occur as nape complexes along sature zone or dismembered masses in metavolcano-sedimenatry assemblages.The ophiolite  相似文献   

9.
<正>Peridotites are an important part of ophiolites:they not only record plate tectonic settings and events,but also offer help to interpret the composition of the mantle and the effect of the deep mantle.The Yarlung-Zangbo suture zone extends more than 2000 km along southern Tibet,which is the biggest suture zone in China.The western  相似文献   

10.
Mesozoic ophiolites crop out discontinuously in the Indo-Myanmar Ranges in NE India and Myanmar,and represent the remnants of the Neotethyan oceanic lithosphere(Sengupta et al.,1990;Mitchell,1993).These ophiolites in the Indo-Myanmar Ranges are the southern continuation of the Neotethyan ophiolites occurring along the Yarlung Zangbo Suture Zone(YZSZ)in southern Tibet farther northwest(Mitchell,1993;Fareeduddin and Dilek,2015),as indicated by their coeval crystallization ages and geochemical compositions(Yang et al.,2012;Liu et al.,2016).The Kalaymyo ophiolite is located in the central part of the eastern Indo-Myanmar Ranges(Fig.1).composition of these ophiolites from the central Tibetan Plateau(CTP)is dominated by MORBs and minor OIBs and a distinct lack of IATs and BONs,which is inconsistent with most ophiolites worldwide(Robinson and Zhou,2008;Zhang et al.,2008).But the generation and tectonic nature of these ophiolites are still controversial.*The Kalaymyo peridotites consist mainly of harzburgites,which show typical porphyroclastic or coarse-grained equigranular textures.They are composed ofolivine(Fo=89.8–90.5),orthopyroxene(En86-91Wo1-4Fs8-10;Mg#=89.6–91.9),clinopyroxene(En46-49Wo47-50Fs3-5;Mg#=90.9–93.6)and spinel(Mg#=67.1–78.9;Cr#=13.5–31.5),and have relatively homogeneous whole-rock compositions with Mg#s of90.1–90.8 and Si O2(41.5–43.65 wt.%),Al2O3(1.66–2.66wt.%)and Ca O(1.45–2.67 wt.%)contents.TheydisplayLightRareEarthElement(LREE)-depleted chondrite-normalized REE patterns with(La/Yb)CN=0.04–0.21 and(Gd/Yb)CN=0.40–0.84,and show a slight enrichment from Pr to La with(La/Pr)CN in the range of 0.98–2.36.The Kalaymyo peridotites are characterized by Pd-enriched chondrite-normalized PGE patterns with superchondritic(Pd/Ir)CN ratios(1.15–2.36).Their calculated oxygen fugacities range between QFM–0.57 and QFM+0.90.These mineralogical and geochemical features collectively suggest that the Kalaymyo peridotites represent residual upper mantle rocks after low to moderate degrees(5–15%)of partial melting at a mid-ocean-ridge(MOR)environment.The observed enrichment in LREE and Pd was a result of their reactions with enriched MORB-like melts,percolating through these already depleted,residual peridotites.The Kalaymyo and other ophiolites in the Indo-Myanmar Ranges hence represent mid-ocean ridge(MOR)–type Tethyan oceanic lithosphere derived from a downgoing plate and accreted into a westward migrating subduction–accretion system along the eastern margin of India.  相似文献   

11.
The Central Asian Orogenic Belt(CAOB)is a huge tectonic mélange that lies between the North China Craton and the Siberian Block.It is composed of multiple orogenic belts,continental fragments,magmatic and metamorphic rocks,suture zones and discontinuous ophiolite belts.Although the Hegenshan and Sartohay ophiolites are separated by nearly 3000 km and lie in completely different parts of the CAOB,they are remarkably similar in many respects.Both are composed mainly of serpentinized peridotite and dunite,with minor gabbro and sparse basalt.They both host significant podiform chromitites that consist of high-Al,refractory magnesiochromite with Cr#s[100Cr/(Cr+Al)]averaging60.The Sartohay ophiolite has a zircon U-Pb age of ca.300 Ma and has been intruded by granitic plutons of similar age,resulting in intense hydrothermal activity and the formation of gold-bearing listwanites.The age of the Hegenshan is not firmly established but is thought to have formed in the Carboniferous.Like many other ophiolites that we have investigated in other orogenic belts,the chromitites in these two bodieshave abundant diamonds,as well as numerous super-reduced and crustal minerals.The diamonds are mostly,colorless to pale yellow,200-300μm across and have euhedral to anhedral shapes.They all have low carbon isotopes(δ14C=-18 to-29)and some have visible inclusions.These are accompanied by numerous super-reduced minerals such as moissanite,native elements(Fe,Cr,Si,Al,Mn),and alloys(e.g.,Ni-Mn-Fe,Ni-Fe-Al,Ni-Mn-Co,Cr-Ni-Fe,Cr-Fe,Cr-Fe-Mn),as well as a wide range of oxides,sulfides and silicates.Grains of zircon are abundant in the chromitites of both ophiolites and range in age from Precambrian to Cretaceous,reflecting both incorporation of old zircons and modification of grains by hydrothermal alteration.Our investigation confirms that high-Al,refractory chromitites in these two ophiolites have the same range of exotic minerals as high-Cr metallurgical chromitites such as those in the Luobusa ophiolite of Tibet.These collections of exotic minerals in ophiolitic chromitites indicate complex,multi-stage recycling of oceanic and continental crustal material at least to the mantle transition zone,followed by uprise and emplacement of the peridotites into relatively shallow ophiolites.  相似文献   

12.
There is a general consensus that most ophiolites formed above subduction zones(Pearce,2003),particularly during forearc extension at subduction initiation(Shervais,2001;Stern,2004;Whattam and Stern,2011)."Supra-Subduction zone"(SSZ)ophiolites such as the well-studied Tethyan ophiolites,generally display a characteristic sequential evolution from mid-oceanic ridge basalts(MORBs)to island arc tholeiities(IATs)or bonites(BONs)(Pearce,2003;Dilek and Furnes,2009,2011),which were generated in sequence from the decompression melting of asthenospheric mantle and partial melting of subduction-metasomatized depleted mantle(Stern and Bloomer,1992;Dilek and Furnes,2009;Whattam and Stern,2011).However,ophiolites with MORB and/or oceanic-island basalt(OIB)affinities are rare,and their origin and tectonic nature are poorly understood(Boedo et al.,2013;Saccani et al.,2013).It is interesting that the composition of these ophiolites from the central Tibetan Plateau(CTP)is dominated by MORBs and minor OIBs and a distinct lack of IATs and BONs,which is inconsistent with most ophiolites worldwide(Robinson and Zhou,2008;Zhang et al.,2008).But the generation and tectonic nature of these ophiolites are still controversial.*In this study,we present new geochronological,mineralogical and Sr-Nd isotopic data for the Chayong and Xiewu mafic complexes in the western Garzê-Litang suture zone(GLS),a typical Paleo-Tethyan suture crossing the CTP(Fig.1).The Triassic ophiolite in the western GLS has been described by Li et al.(2009),who foundthat it mainly consists of gabbros,diabases,pillow basalts and a few metamorphic peridotites.The ophiolite has been tectonically dismembered and crops out in Triassic clastic rocks and limestones as tectonic blocks.The Chayong and Xiewu mafic complexes are generally regarded as important fragments of the Triassic ophiolites(e.g.,Jin,2006;Li et al.,2009).Zircon LA-ICP-MS U-Pb ages of234±3 Ma and 236±2 Ma can be interpreted as formation times of the Chayong and Xiewu mafic complexes,respectively.The basalts and gabbros of the Chayong complexexhibitenrichedMORB(E-MORB)compositional affinities except for a weak depletion of Nb,Ta and Ti relative to the primitive mantle,whereas the basalts and gabbros of the Xiewu complex display distinct E-MORB and OIB affinities.The geochemical features suggest a probable fractionation of olivine±clinopyroxene±plagioclase as well as insignificant crustal contamination.The geochemical and Sr-Nd isotopic data reveal that the Chayong mafic rocks may have been derived from depleted MORB-type mantle metasomatized by crustal components and Xiewu mafic rocks from enriched lithosphericmantlemetasomatizedbyOIB-like components.The ratios of Zn/Fet,La/Yb and Sm/Yb indicate that these mafic melts were produced by the partial melting of garnet+minor spinel-bearing peridotite or spinel±minor garnet-bearing peridotite.We propose thatback-arcbasinspreadingassociated with OIB/seamount recycling had occurred in the western GLS at least since the Middle Triassic times,and the decompression melting of the depleted MORB-type asthenospheremantleandpartialmeltingof sub-continental lithosphere were metasomatized by plume-related melts,such as OIBs,which led to the generation of the Chayong and Xiewu mafic melts.  相似文献   

13.
正The modern‘Penrose’definition of ophiolites is based largely on the Troodos complex of Cyprus,which contains a spectacular and well-exposed sheeted dike complex in which dike intrudes dike without intermediate screens of  相似文献   

14.
<正>Diamonds,moissanite and a variety of other minerals,similar to those reported from ophiolites in Tibet and northern Russia(Yang et al.,2011),have recently been discovered in chromitites of the Hegenshan ophiolite of the Central Asian Orogenic Belt.The Hegenshan ophiolite is located in Xilinhaote,Inner Mongolia,180 km north of  相似文献   

15.
<正>1 Introduction The ophiolites that crop out discontinuously for more than 2000 km along the Yarlung-Zangbo suture zone(YZSZ,also called the Indus-Tsangpo suture)in southern Tibet are the remnants of the Neotethyan oceanic lithosphere,which evolved between the Indian and Eurasian continental plates(Gaetani and Garzanti,1991;  相似文献   

16.
Understanding the nature of parental melts for pyroxenite veins in supra-subduction zone(SSZ) ophiolites provides vibrant constraints on melt infiltration processes operating in subduction zones. The Zedang ophiolitic massif in the eastern Yarlung–Zangbo suture zone in Tibet consists of mantle peridotites and a crustal section of gabbro, diabase, and basalt. Veins of two pyroxenite varieties cut the southern part of the Zedang massif. These pyroxenite rocks have different geochemical characteris...  相似文献   

17.
The proto-Philippine Sea Plate(pPSP)has been proposed by several authors to account for the origin of the Mesozoic supra-subduction ophiolites along the Philippine archipelago.In this paper,a comprehensive review of the ophiolites in the eastern portion of the Philippines is undertaken.Available data on the geology,ages and geochemical signatures of the oceanic lithospheric fragments in Luzon(Isabela,Lagonoy in Camarines Norte,and Rapu-Rapu island),Central Philippines(Samar,Tacloban,Malitbog and Southeast Bohol),and eastern Mindanao(Dinagat and Pujada)are presented.Characteristics of the Halmahera Ophiolite to the south of the Philippines are also reviewed for comparison.Nearly all of the crust-mantle sequences preserved along the eastern Philippines share Early to Late Cretaceous ages.The geochemical signatures of mantle and crustal sections reflect both mid-oceanic ridge and suprasubduction signatures.Although paleomagnetic information is currently limited to the Samar Ophiolite,results indicate a near-equatorial Mesozoic supra-subduction zone origin.In general,correlation of the crust-mantle sequences along the eastern edge of the Philippines reveal that they likely are fragments of the Mesozoic pPSP.  相似文献   

18.
http://www.sciencedirect.com/science/article/pii/S1674987112001569   总被引:1,自引:0,他引:1  
The southeastern Anatolia comprises numbers of tectono-magmatic/stratigraphic units such as the metamorphic massifs,the ophiolites,the volcanic arc units and the granitoid rocks.All of them play important role for the late Cretaceous evolution of the southern Neotethys.The spatial and temporal relations of these units suggest the progressive development of coeval magmatism and thrusting during the late Cretaceous northward subduction/accretion.Our new U-Pb zircon data from the rhyolitic rocks of the wide-spread volcanic arc unit show ages of(83.1±2.2)-(74.6±4.4) Ma. Comparison of the ophiolites,the volcanic arc units and the granitoids suggest following late Cretaceous geological evolution.The ophiolites formed in a suprasubduction zone(SSZ) setting as a result of northward intra-oceanic subduction.A wide-spread island-arc tholeiitic volcanic unit developed on the top of the SSZ-type crust during 83-75 Ma.Related to regional plate convergence, northward under-thrusting of SSZ-type ophiolites and volcanic arc units was initiated beneath the Tauride platform(Malatya-Keban) and followed by the intrusion of l-type calc-alkaline volcanic arc granitoids during 84-82 Ma.New U-Pb ages from the arc-related volcanic-sedimentary unit and granitoids indicate that under-thrusting of ophiolites together with the arc-related units beneath the Malatya-Keban platform took place soon after the initiation of the volcanic arc on the top of the SSZtype crust.Then the arc-related volcanic-sedimentary unit continued its development and lasted at~75 Ma until the deposition of the late Campanian—Maastrichtian shallow marine limestone.The subduction trench eventually collided with the Bitlis-Ptrge massif giving rise to HP-IT metamorphism of the Bitlis massif.Although the development of the volcanic arc units and the granitoids were coeval at the initial stage of the subduction/accretion both tectono-magmatic units were genetically different from each other.  相似文献   

19.
The Beishan area,located on the southern margin of the Central Asian orogenic belt,includes four main ophiolitebearing belts.From north to south,these are the Hongshishan ophiolitic belt,the Jijitaizi-Xiaohuangshan ophiolitic belt,the Hongliuhe-Xichangjing ophiolitic belt,and the Fluitongshan ophiolitic belt(Fig.la).To date,only two ophiolites have been identified in the Jijitaizi-Xiaohuangshan ophiolitic belt.  相似文献   

20.
The subduction of the Bangonghu-Nujiang Meso-Tethys and the collision between the Lhasa and Qiangtang blocks were important events in the growth of the Tibetan crust. However,the timing of collision initiation and closure timing,as well as nature and structure of the Bangonghu ocean basin,are still poorly constrained. The Lagkor Tso ophiolite,located in the south of Gerze County,Tibet,is one of the most completed ophiolites preserved in the southern side of the BangonghuNujiang suture zone. This study discussed the tectonic evolution of the Bangonghu-Nujiang suture zone as revealed by the Lagkor Tso ophiolite investigated by field investigations,petrology,geochemistry,geochronology and tectonic analysis methods. We present new LA-ICP-MS zircon U-Pb and 39Ar/40 Ar ages for the Lagkor Tso ophiolite,in addition to geochemical and platinum-group element(PGE) data presented for the Lagkor Tso ophiolite in Tibet. It is suggested that the ancient Lagkor Tso oceanic basin split in Middle Jurassic(161.2 ± 2.7 Ma – 165.4 ± 3.5 Ma),and experienced a second tectonic emplacement during the Early Cretaceous(137.90 ± 6.39 Ma). The Lagkor Tso ophiolite likely developed in an independent suture zone. The Bangonghu-Nujiang ocean subducted southwards,and the dehydration of the subducting oceanic crust materials caused partial melting of the continental mantle wedge,which formed the second-order expanding center of the obduction dish. This led to inter-arc expansion,followed by the formation of inter-arc and back-arc basins with island arc features,which are represented by ophiolites around the Shiquanhe-Lagkor Tso-Yongzhu region. The tectonic environment presently can be considered to be similar to that of the current Western Pacific,in which a large number of island arc-ocean basin systems are developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号