首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Using synthetic spectra derived from an updated model atmosphere together with a continuum model that includes contributions from haze, cloud and ground, we have re-analyzed the recently published (Geballe et al., 2003, Astrophys. J. 583, L39-L42) high-resolution 3 μm spectrum of Titan which contains newly-detected bands of HCN (in emission) and C2H2 and CH3D (in absorption), in addition to previously detected bands of CH4. In the 3.10-3.54 μm interval the analysis yields strong evidence for the existence of a cloud deck or optically thick haze layer at about the 10 mbar (∼ 100 km) level. The haze must extend well above this altitude in order to mask the strong CH4 lines at 3.20-3.50 μm. These cloud and haze components must be transparent at 2.87-2.92 μm, where analysis of the CH3D spectrum demonstrates that Titan's surface is glimpsed through a second cloud deck at about the 100 mbar (∼ 50 km) level. Through a combination of areal distribution and optical depth this cloud deck has an effective transmittance of ∼ 20%. The spectral shape of Titan's continuum indicates that the higher altitude cloud and haze particles responsible for suppressing the CH4 absorptions have a largely organic make-up. The rotational temperature of the HCN ranges from 140 to 180 K, indicating that the HCN emission occurs over a wide range of altitudes. This emission, remodeled using an improved collisional deactivation rate, implies mesospheric mixing ratio curves that are consistent with previously predictions. The stratospheric and mesospheric C2H2 mixing ratios are ∼10−5, considerably less than previous model predictions (Yung et al., 1984), but approximately consistent with recent observational results. Upper limits to mixing ratios of HC3N and C4H2 are derived from non-detections of those species near 3.0 μm.  相似文献   

2.
We report observation and analysis of a high-resolution 2.87-3.54 μm spectrum of the southern temperate region of Saturn obtained with NIRSPEC at Keck II. The spectrum reveals absorption and emission lines of five molecular species as well as spectral features of haze particles. The ν2+ν3 band of CH3D is detected in absorption between 2.87 and 2.92 μm; and we derived from it a mixing ratio approximately consistent with the Infrared Space Observatory result. The ν3 band of C2H2 also is detected in absorption between 2.95 and 3.05 μm; analysis indicates a sudden drop in the C2H2 mixing ratio at 15 mbar (130 km above the 1 bar level), probably due to condensation in the low stratosphere. The presence of the ν3+ν9+ν11 band of C2H6 near 3.07 μm, first reported by Bjoraker et al. [Bjoraker, G.L., Larson, H.P., Fink, U., 1981. Astrophys. J. 248, 856-862], is confirmed, and a C2H6 condensation altitude of 10 mbar (140 km) in the low stratosphere is determined. We assign weak emission lines within the 3.3 μm band of CH4 to the ν7 band of C2H6, and derive a mixing ratio of 9±4×10−6 for this species. Most of the C2H6 3.3 μm line emission arises in the altitude range 460-620 km (at ∼μbar pressure levels), much higher than the 160-370 km range where the 12 μm thermal molecular line emission of this species arises. At 2.87-2.90 μm the major absorber is tropospheric PH3. The cloud level determined here and at 3.22-3.54 is 390-460 mbar (∼30 km), somewhat higher than found by Kim and Geballe [Kim, S.J., Geballe, T.R., 2005. Icarus 179, 449-458] from analysis of a low resolution spectrum. A broad absorption feature at 2.96 μm, which might be due to NH3 ice particles in saturnian clouds, is also present. The effect of a haze layer at about 125 km (∼12 mbar level) on the 3.20-3.54 μm spectrum, which was not apparent in the low resolution spectrum, is clearly evident in the high resolution data, and the spectral properties of the haze particles suggest that they are composed of hydrocarbons.  相似文献   

3.
Complex organic materials may exist as haze layers in the atmosphere of Titan and as dark coloring agents on icy satellite surfaces. Laboratory measurements of optical constants of plausible complex organic materials are necessary for quantitative evaluation from remote sensing observations, and to document the existence of complex organic materials in the extraterrestrial environments. The recent Cassini VIMS and CIRS observations provide new constraints on Titan’s haze properties in the mid-infrared wavelength region. Here, we present the optical constants (2.5–25 μm) of Titan tholins generated with cold plasma irradiation of a N2/CH4 (90/10) gas mixture at pressures of 0.26 mbar, 1.6 mbar, and 23 mbar. Our new optical constants of three types of Titan tholins suggest that no single Titan tholin in this study fulfills all the observational constraints of the Titan haze material. The discrepancy remains a challenge for future modeling and laboratory efforts that aim toward a better understanding of Titan’s haze material.  相似文献   

4.
Sang J. Kim  John Caldwell 《Icarus》1982,52(3):473-482
The 8.6-μm emission feature of Titan's infrared spectrum was analyzed using the Voyager temperature-pressure profile. Although both C3H8 and CH3D have bands at that wavelength, we show that CH3D dominates the observed emission on Titan. We derived a CH3D/CH4 mixing ratio using this band and the strong CH4 band at 7.7 μm. The corresponding D/H ratio is 4.2?1.5+2 × 10?4, neglecting deuterium fractionation with other molecules. The main uncertainty in this value comes from the continuum emission characteristics. The D/H ratio is apparently significantly enhanced on Titan with respect to published values for Saturn.  相似文献   

5.
C.M. Anderson  E.F. Young  C.P. McKay 《Icarus》2008,194(2):721-745
We report on the analysis of high spatial resolution visible to near-infrared spectral images of Titan at Ls=240° in November 2000, obtained with the Space Telescope Imaging Spectrograph instrument on board the Hubble Space Telescope as part of program GO-8580. We employ a radiative transfer fractal particle aerosol model with a Bayesian parameter estimation routine that computes Titan's absolute reflectivity per pixel for 122 wavelengths by modeling the vertical distribution of the lower atmosphere haze and tropospheric methane. Analysis of these data suggests that Titan's haze concentration in the lower atmosphere varies in strength with latitude. We find Titan's tropospheric methane profile to be fairly consistent with latitude and longitude, and we find evidence for local areas of a CH4-N2 binary saturation in Titan's troposphere. Our results suggest that a methane and haze profile at one location on Titan would not be representative of global conditions.  相似文献   

6.
The existence of strong absorption bands of singly deuterated methane (CH3D) at wavelengths where normal methane (CH4) absorbs comparatively weakly could enable remote measurement of D/H ratios in methane ice on outer Solar System bodies. We performed laboratory transmission spectroscopy experiments, recording spectra at wavelengths from 1 to 6 μm to study CH3D bands at 2.47, 2.87, and 4.56 μm, wavelengths where ordinary methane absorption is weak. We report temperature-dependent absorption coefficients of these bands when the CH3D is diluted in CH4 ice and also when it is dissolved in N2 ice, and describe how these absorption coefficients can be combined with data from the literature to simulate arbitrary D/H ratio absorption coefficients for CH4 ice and for CH4 in N2 ice. We anticipate these results motivating new telescopic observations to measure D/H ratios in CH4 ice on Triton, Pluto, Eris, and Makemake.  相似文献   

7.
The Cassini Visual and Infrared Mapping Spectrometer (VIMS) is an imaging spectrometer covering the wavelength range 0.3-5.2 μm in 352 spectral channels, with a nominal instantaneous field of view of 0.5 mrad. The Cassini flyby of Jupiter represented a unique opportunity to accomplish two important goals: scientific observations of the jovian system and functional tests of the VIMS instrument under conditions similar to those expected to obtain during Cassini's 4-year tour of the saturnian system. Results acquired over a complete range of visual to near-infrared wavelengths from 0.3 to 5.2 μm are presented. First detections include methane fluorescence on Jupiter, a surprisingly high opposition surge on Europa, the first visual-near-IR spectra of Himalia and Jupiter's optically-thin ring system, and the first near-infrared observations of the rings over an extensive range of phase angles (0-120°). Similarities in the center-to-limb profiles of H+3 and CH4 emissions indicate that the H+3 ionospheric density is solar-controlled outside of the auroral regions. The existence of jovian NH3 absorption at 0.93 μm is confirmed. Himalia has a slightly reddish spectrum, an apparent absorption near 3 μm, and a geometric albedo of 0.06±0.01 at 2.2 μm (assuming an 85-km radius). If the 3-μm feature in Himalia's spectrum is eventually confirmed, it would be suggestive of the presence of water in some form, either free, bound, or incorporated in layer-lattice silicates. Finally, a mean ring-particle radius of 10 μm is found to be consistent with Mie-scattering models fit to VIMS near-infrared observations acquired over 0-120° phase angle.  相似文献   

8.
L.A. Sromovsky 《Icarus》2005,173(1):254-283
Raman scattering by H2 in Neptune's atmosphere has significant effects on its reflectivity for λ<0.5 μm, producing baseline decreases of ∼20% in a clear atmosphere and ∼10% in a hazy atmosphere. However, few accurate Raman calculations are carried out because of their complexity and computational costs. Here we present the first radiation transfer algorithm that includes both polarization and Raman scattering and facilitates computation of spatially resolved spectra. New calculations show that Cochran and Trafton's (1978, Astrophys. J. 219, 756-762) suggestion that light reflected in the deep CH4 bands is mainly Raman scattered is not valid for current estimates of the CH4 vertical distribution, which implies only a 4% Raman contribution. Comparisons with IUE, HST, and groundbased observations confirm that high altitude haze absorption is reducing Neptune's geometric albedo by ∼6% in the 0.22-0.26 μm range and by ∼13% in the 0.35-0.45 μm range. A sample haze model with 0.2 optical depths of 0.2-μm radius particles between 0.1 and 0.8 bars fits reasonably well, but is not a unique solution. We used accurate calculations to evaluate several approximations of Raman scattering. The Karkoschka (1994, Icarus 111, 174-192) method of applying Raman corrections to calculated spectra and removing Raman effects from observed spectra is shown to have limited applicability and to undercorrect the depths of weak CH4 absorption bands. The relatively large Q-branch contribution observed by Karkoschka is shown to be consistent with current estimates of Raman cross-sections. The Wallace (1972, Astrophys. J. 176, 249-257) approximation, produces geometric albedo ∼5% low as originally proposed, but can be made much more accurate by including a scattering contribution from the vibrational transition. The original Pollack et al. (1986, Icarus 65, 442-466) approximation is inaccurate and unstable, but can be greatly improved by several simple modifications. A new approximation based on spectral tuning of the effective molecular single scattering albedo provides low errors for zenith angles below 70° in a clear atmosphere, although intermediate clouds present problems at longer wavelengths.  相似文献   

9.
We have performed an analysis of ESO Very Large Telescope (VLT) observations of Titan at 2 μm. The data were acquired with the Nasmyth Adaptative Optics System Near-Infrared Imager and Spectrograph (NAOS/CONICA), on the 16th of January 2005, that is 2 days after the landing of the Huygens probe (Hirtzig et al., 2007). The data consist in 21 spectra taken along two diameters of Titan’s disk at wavelengths between 2.03 and 2.5 μm. This range covers a part of the 2 μm methane window and the adjacent band. The data received a preliminary analysis in a recent paper (Negrão et al., 2007), essentially focused on the surface albedo near Huygens landing site. In this work, we perform an in-depth analysis to retrieve information about several aspects: the latitude haze distribution in the stratosphere and in the low atmosphere, the latitudinal variation of the surface albedo and its spectral behaviour. Also, this analysis allowed us to make sensitivity tests on the influence of the scatterer profiles on the retrieved surface albedo and its spectral slope. The news analysis confirms that, as was the case with VIMS observations at the same epoch, the Northern (currently winter) Hemisphere contains more haze than the southern one (Summer Hemisphere). The sensitivity tests show that the scatterer profiles have just a little impact on the surface albedo and its spectral slope. The analysis seems to confirm the presence of H2O and CH4 ices.  相似文献   

10.
Jeremy Bailey  Linda Ahlsved 《Icarus》2011,213(1):218-232
We have obtained spatially resolved spectra of Titan in the near-infrared J, H and K bands at a resolving power of ∼5000 using the near-infrared integral field spectrometer (NIFS) on the Gemini North 8 m telescope. Using recent data from the Cassini/Huygens mission on the atmospheric composition and surface and aerosol properties, we develop a multiple-scattering radiative transfer model for the Titan atmosphere. The Titan spectrum at these wavelengths is dominated by absorption due to methane with a series of strong absorption band systems separated by window regions where the surface of Titan can be seen. We use a line-by-line approach to derive the methane absorption coefficients. The methane spectrum is only accurately represented in standard line lists down to ∼2.1 μm. However, by making use of recent laboratory data and modeling of the methane spectrum we are able to construct a new line list that can be used down to 1.3 μm. The new line list allows us to generate spectra that are a good match to the observations at all wavelengths longer than 1.3 μm and allow us to model regions, such as the 1.55 μm window that could not be studied usefully with previous line lists such as HITRAN 2008. We point out the importance of the far-wing line shape of strong methane lines in determining the shape of the methane windows. Line shapes with Lorentzian, and sub-Lorentzian regions are needed to match the shape of the windows, but different shape parameters are needed for the 1.55 μm and 2 μm windows. After the methane lines are modeled our observations are sensitive to additional absorptions, and we use the data in the 1.55 μm region to determine a D/H ratio of 1.77 ± 0.20 × 10−4, and a CO mixing ratio of 50 ± 11 ppmv. In the 2 μm window we detect absorption features that can be identified with the ν5 + 3ν6 and 2ν3 + 2ν6 bands of CH3D.  相似文献   

11.
Sang J. Kim  T.R. Geballe  A. Jung  Y.C. Minh 《Icarus》2010,208(2):837-849
We present latitudinally-resolved high-resolution (R = 37,000) pole-to-pole spectra of Jupiter in various narrow longitudinal ranges, in spectral intervals covering roughly half of the spectral range 2.86-3.53 μm. We have analyzed the data with the aid of synthetic spectra generated from a model jovian atmosphere that included lines of CH4, CH3D, NH3, C2H2, C2H6, PH3, and HCN, as well as clouds and haze. Numerous spectral features of many of these molecular species are present and are individually identified for the first time, as are many lines of and a few unidentified spectral features. In both polar regions the 2.86-3.10-μm continuum is more than 10 times weaker than in spectra at lower latitudes, implying that in this wavelength range the single-scattering albedos of polar haze particles are very low. In contrast, the 3.24-3.53 μm the weak polar and equatorial continua are of comparable intensity. We derive vertical distributions of NH3, C2H2 and C2H6, and find that the mixing ratios of NH3 and C2H6 show little variation between equatorial and polar regions. However, the mixing ratios of C2H2 in the northern and southern polar regions are ∼6 and ∼3 times, respectively, less than those in the equatorial regions. The derived mixing ratio curves of C2H2 and C2H6 extend up to the 10−6 bar level, a significantly higher altitude than most previous results in the literature. Further ground-based observations covering other longitudes are needed to test if these mixing ratios are representative values for the equatorial and polar regions.  相似文献   

12.
We have analyzed Titan observations performed by the Infrared Space Observatory (ISO) in the range 7-30 μm. The spectra obtained by three of the instruments on board the mission (the short wavelength spectrometer, the photometer, and the camera) were combined to provide new and more precise thermal and compositional knowledge of Titan’s stratosphere. With the high spectral resolution achieved by the SWS (much higher than that of the Voyager 1 IRIS spectrometer), we were able to detect and separate the contributions of most of the atmospheric gases present on Titan and to determine disk-averaged mole fractions. We have also tested existing vertical distributions for C2H2, HCN, C2H6, and CO2 and inferred some information on the abundance of the first species as a function of altitude. From the CH3D band at 1161 cm−1 and for a CH4 mole fraction assumed to be 1.9% in Titan’s stratosphere, we have obtained the monodeuterated methane-averaged abundance and retrieved a D/H isotopic ratio of 8.7−1.9+3.2 × 10−5. We discuss the implications of this value with respect to current evolutionary scenarios for Titan. The ν5 band of HC3N at 663 cm−1 was observed for the first time in a disk-averaged spectrum. We have also obtained a first tentative detection of benzene at 674 cm−1, where the fit of the ISO/SWS spectrum at R = 1980 is significantly improved when a constant mean mole fraction of 4 × 10−10 of C6H6 is incorporated into the atmospheric model. This corresponds to a column density of ∼ 2 × 1015 molecules cm−2 above the 30-mbar level. We have also tested available vertical profiles for HC3N and C6H6 and adjusted them to fit the data. Finally, we have inferred upper limits of a few 10−10 for a number of molecules proposed as likely candidates on Titan (such as allene, acetonitrile, propionitrile, and other more complex gases).  相似文献   

13.
It is shown that Titan's surface and plausible atmospheric thermal opacity sources—gaseous N2, CH4, and H2, CH4 cloud, and organic haze—are sufficient to match available Earth-based and Voyager observations of Titan's thermal emission spectrum. Dominant sources of thermal emission are the surface for wavelenghts λ ? 1 cm, atmospheric N2 for 1 cm ? λ ? 200 μm,, condensed and gaseous CH4 for 200 μm ? λ ? 20 μm, and molecular bands and organic haze for λ ? 20 μm. Matching computed spectra to the observed Voyager IRIS spectra at 7.3 and 52.7° emission angles yields the following abundances and locations of opacity sources: CH4 clouds: 0.1 g cm? at a planetocentric radius of 2610–2625 km, 0.3 g cm?2 at 2590–2610 km, total 0.4 ± 0.1 g cm–2 above 2590 km; organic haze: 4 ± 2 × 10?6, g cm, ?2 above 2750 km; tropospheric H2: 0.3 ± 0.1 mol%. This is the first quantitative estimate of the column density of condensed methane (or CH4/C2H6) on Titan. Maximum transparency in the middle to far IR occurs at 19 μm where the atmospheric vertical absorption optical depth is ?0.6 A particle radius r ? 2 μm in the upper portion of the CH4 cloud is indicated by the apparent absence of scattering effects.  相似文献   

14.
R. de Kok  P.G.J. Irwin 《Icarus》2010,209(2):854-857
We use Cassini far-infrared limb and nadir spectra, together with recent Huygens results, to shed new light on the controversial far-infrared opacity sources in Titan’s troposphere. Although a global cloud of large CH4 ice particles around an altitude of 30 km, together with an increase in tropospheric haze opacity with respect to the stratosphere, can fit nadir and limb spectra well, this cloud does not seem consistent with shortwave measurements of Titan. Instead, the N2-CH4 collision-induced absorption coefficients are probably underestimated by at least 50% for low temperatures.  相似文献   

15.
Recently, an unidentified 3.3-3.4 μm feature found in the solar occultation spectra of the atmosphere of Titan observed by Cassini/VIMS was tentatively attributed to the C-H stretching mode of aliphatic hydrocarbon chains attached to large organic molecules, but without properly extracting the feature from adjacent influences of strong CH4 and weak C2H6 absorptions (Bellucci et al., 2009). In this work, we retrieve the detailed spectral feature using a radiative transfer program including absorption and fluorescent emission of both molecules, as well as absorption and scattering by haze particles. The spectral features of the haze retrieved from the VIMS data at various altitudes are similar to each other, indicating relatively uniform spectral properties of the haze with altitude. However, slight deviations observed near 127 km and above 300 km suggest inhomogeneity at these altitudes. We find that the positions of the major spectral peaks occur at 3.33-3.37 μm, which are somewhat different from the typical 3.3 μm aromatic or 3.4 μm aliphatic C-H stretches usually seen in the spectra of dust particles of the interstellar medium and comets. The peaks, however, coincide with those of the solid state spectra of C2H6, CH4, and CH3CN; and a broad shoulder from 3.37 to 3.50 μm coincides with those of C5H12 and C6H12 as well as those of typical aliphatic C-H stretches. This result combined with high-altitude (∼1000 km) haze formation process recently reported by Waite et al. (2007) opens a new question on the chemical composition of the haze particles. We discuss the possibility that the 3 μm feature may be due to the solid state absorption bands of these molecules (or some other molecules) and we advocate additional laboratory measurements for the ices of hydrocarbon and nitrogen-bearing molecules present in Titan's atmosphere for the identification of this 3 μm feature.  相似文献   

16.
High vertical resolution scans of the Venus limb made by the Pioneer Venus Orbiter Cloud Photopolarimeter at 365 nm and 690 nm wavelengths are used to investigate the level of the haze top, and haze particle properties and scale height. Haze particle vertical optical depth 0.01 occurs at altitude 80 to 85 km based on knowledge of instrument pointing. The lowest haze tops were observed close to subsolar longitudes but the data set supports a longitude dependence no more than a temporal variation. Single scattering computations for a spherical shell atmosphere show good agreement with observed intensities for particles smaller than 0.3 μm radius and refractive index less than 1.7, consistent with, but not limited to, concentrated sulfuric acid. Particle scale height in the 0.5 to 2 mbar pressure regions varies between 1 and 3 km over the season (12 of 92 days), latitude (15–45°N), and local time (0900–1800) ranges of the observations. Detached layers of haze are sometimes present. An average particle scale height of 2.2 km at 84 km altitude yields an eddy diffusion coefficient of 1.3 × 105 cm2 sec?1.  相似文献   

17.
A solar occultation by Titan's atmosphere has been observed through the solar port of the Cassini/VIMS instrument on January 15th, 2006. Transmission spectra acquired during solar egress probe the atmosphere in the altitude range 70 to 900 km at the latitude of 71° S. Several molecular absorption bands of CH4 and CO are visible in these data. A line-by-line radiative transfer calculation in spherical geometry is used to model three methane bands (1.7, 2.3, 3.3 μm) and the CO 4.7 μm band. Above 200 km, the methane 2.3 μm band is well fit with constant mixing ratio between 1.4 and 1.7%, in agreement with in situ and other Cassini measurements. Under 200 km, there are discrepancies between models and observations that are yet fully understood. Under 480 km, the 3.3 μm CH4 band is mixed with a large and deep additional absorption. It corresponds to the C-H stretching mode of aliphatic hydrocarbon chains attached to large organic molecules. The CO 4.7 μm band is observed in the lower stratosphere (altitudes below 150 km) and is well fit with a model with constant mixing ratio of 33±10 ppm. The continuum level of the observed transmission spectra provides new constraints on the aerosol content of the atmosphere. A model using fractal aggregates and optical properties of tholins produced by Khare et al. [Khare, B.N., Sagan, C., Arakawa, E.T., Suits, F., Callcott, T.A., Williams, M.W., 1984. Icarus 60, 127-137] is developed. Fractal aggregates with more than 1000 spheres of radius 0.05 μm are needed to fit the data. Clear differences in the chemical composition are revealed between tholins and actual haze particles. Extinction and density profiles are also retrieved using an inversion of the continuum values. An exponential increase of the haze number density is observed under 420 km with a typical scale height of 60 km.  相似文献   

18.
Two coherently related radio signals transmitted from Voyager 1 at wavelengths of 13 cm (S-band) and 3.6 cm (X-band) were used to probe the equatorial atmosphere of Titan. The measurements were conducted during the occultation of the spacecraft by the satellite on November 12, 1980. An analysis of the differential dispersive frequency measurements did not reveal any ionization layers in the upper atmosphere of Titan. The resolution was approximately 3 × 103 and 5 × 103 electrons/cm3 near the evening and morning terminators, respectively. Abrupt signal changes observed at ingress and egress indicated a surface radius of 2575.0 ± 0.5 km, leading to a mean density of 1.881 ± 0.002 g cm?3 for the satellite. The nondispersive data were used to derive profiles in height of the gas refractivity and microwave absorption in Titan's troposphere and stratosphere. No absorption was detected; the resolution was about 0.01 dB/km at the 13-cm wavelength. The gas refractivity data, which extend from the surface to about 200 km altitude, were interpreted in two different ways. In the first, it is assumed that N2 makes up essentially all of the atmosphere, but with very small amounts of CH4 and other hydrocarbons also present. This approach yielded a temperature and pressure at the surface of 94.0 ± 0.7°K and 1496 ± 20 mbar, respectively. The tropopause, which was detected near 42 km altitude, had a temperature of 71.4 ± 0.5°K and a pressure of about 130 mbar. Above the tropopause, the temperature increased with height, reaching 170 ± 15°K near the 200-km level. The maximum temperature lapse rate observed near the surface (1.38 ± 0.10°K/km) corresponds to the adiabatic value expected for a dry N2 atmosphere—indicating that methane saturation did not occur in tbis region. Above the 3.5-km altitude level the lapse rate dropped abruptly to 0.9 ± 0.1°K/km and then decreased slowly with increasing altitude, crossing zero at the tropopause. For the N2 atmospheric model, the lapse rate transition at the 3.5-km level appears to mark the boundary between a convective region near the surface having the dry adiabatic lapse rate, and a higher stable region in radiative equilibrium. In the second interpretation of the refractivity data, it is assumed, instead, that the 3.5 km altitude level corresponds to the bottom of a CH4 cloud layer, and that N2 and CH4 are perfectly mixed below this level. These assumptions lead to an atmospheric model which below the clouds contains about 10% CH4 by number density. The temperature near the surface is about 95°K. Arguments concerning the temperature lapse rates computed from the radio measurements appear to favor models in which methane forms at most a limited haze layer high in the troposphere.  相似文献   

19.
Titan’s optical and near-IR spectra result primarily from the scattering of sunlight by haze and its absorption by methane. With a column abundance of 92 km amagat (11 times that of Earth), Titan’s atmosphere is optically thick and only ~10% of the incident solar radiation reaches the surface, compared to 57% on Earth. Such a formidable atmosphere obstructs investigations of the moon’s lower troposphere and surface, which are highly sensitive to the radiative transfer treatment of methane absorption and haze scattering. The absorption and scattering characteristics of Titan’s atmosphere have been constrained by the Huygens Probe Descent Imager/Spectral Radiometer (DISR) experiment for conditions at the probe landing site (Tomasko, M.G., Bézard, B., Doose, L., Engel, S., Karkoschka, E. [2008a]. Planet. Space Sci. 56, 624–247; Tomasko, M.G. et al. [2008b]. Planet. Space Sci. 56, 669–707). Cassini’s Visual and Infrared Mapping Spectrometer (VIMS) data indicate that the rest of the atmosphere (except for the polar regions) can be understood with small perturbations in the high haze structure determined at the landing site (Penteado, P.F., Griffith, C.A., Tomasko, M.G., Engel, S., See, C., Doose, L., Baines, K.H., Brown, R.H., Buratti, B.J., Clark, R., Nicholson, P., Sotin, C. [2010]. Icarus 206, 352–365). However the in situ measurements were analyzed with a doubling and adding radiative transfer calculation that differs considerably from the discrete ordinates codes used to interpret remote data from Cassini and ground-based measurements. In addition, the calibration of the VIMS data with respect to the DISR data has not yet been tested. Here, VIMS data of the probe landing site are analyzed with the DISR radiative transfer method and the faster discrete ordinates radiative transfer calculation; both models are consistent (to within 0.3%) and reproduce the scattering and absorption characteristics derived from in situ measurements. Constraints on the atmospheric opacity at wavelengths outside those measured by DISR, that is from 1.6 to 5.0 μm, are derived using clouds as diffuse reflectors in order to derive Titan’s surface albedo to within a few percent error and cloud altitudes to within 5 km error. VIMS spectra of Titan at 2.6–3.2 μm indicate not only spectral features due to CH4 and CH3D (Rannou, P., Cours, T., Le Mouélic, S., Rodriguez, S., Sotin, C., Drossart, P., Brown, R. [2010]. Icarus 208, 850–867), but also a fairly uniform absorption of unknown source, equivalent to the effects of a darkening of the haze to a single scattering albedo of 0.63 ± 0.05. Titan’s 4.8 μm spectrum point to a haze optical depth of 0.2 at that wavelength. Cloud spectra at 2 μm indicate that the far wings of the Voigt profile extend 460 cm?1 from methane line centers. This paper releases the doubling and adding radiative transfer code developed by the DISR team, so that future studies of Titan’s atmosphere and surface are consistent with the findings by the Huygens Probe. We derive the surface albedo at eight spectral regions of the 8 × 12 km2 area surrounding the Huygens landing site. Within the 0.4–1.6 μm spectral region our surface albedos match DISR measurements, indicating that DISR and VIMS measurements are consistently calibrated. These values together with albedos at longer 1.9–5.0 μm wavelengths, not sampled by DISR, resemble a dark version of the spectrum of Ganymede’s icy leading hemisphere. The eight surface albedos of the landing site are consistent with, but not deterministic of, exposed water ice with dark impurities.  相似文献   

20.
A spectrophotometric observational study of the Galilean satellites and Titan was carried out at 0.004-μm (40-Å) resolution over the spectral range 0.32 to 0.86 μm. A standard lunar area was used as a primary spectroscopic standard to establish the relative reflection spectra of the objects by ratioing the sky-corrected satellite spectra to the standard area on the Moon. J1 (Io) is found to have a spectral edge at 0.33 μm that has not been previously reported. The increase in reflectivity from 0.4 to 0.5 μm and the band at 0.56 μm are confirmed. A weak band at 0.56 μm is probable on J2 (Europa) and possible on J3 (Ganymede). J4 (Callisto) shows no spectral features that have not been previously reported. On Titan, no temporal variations in the methane bands greater than 2% were found, indicating that the effective path length in the Titan atmosphere did not change over the 3-month period of this study. A new absorption band of methane at 0.68 μm was found on Titan. We propose an extension of the evaporite model of Fanale et al. (1974, 1977) and the sulfur mixing models of Wamsteker et al. (1974) in which the primary constituent of the surface of J1 is elemental sulfur sublimated onto the surface by photodissociation of hydrogen sulfide outgassing from the interior. The sulfur is continually renewed by sublimation, sputtering, and redeposition. At low temperatures irradiation produces stable S2, S3, S4, S6, and long chain polymers. Some of these allotropes have an edge at 0.33 μm, a rising reflectance between 0.4 and 0.5 μm a band at 0.56 μm. All of these features are found in the spectrum of J1. We conclude that the lunar ratioing technique used in this study is well suited for determining the relative reflection spectra of solar system objects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号