首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
A time-dependent finite element method (FEM) is developed to analyze the transient hydroelastie responses of very large floating structures (VLFS) subjected to dynamic loads. The hydrodynamic problem is formulated based on the linear theory of fluid and the structural response is analyzed based on the thin plate theory. The FEM truncates the unbounded fluid domain by introducing an artificial boundary surface, thus defining a finite computational domain. At this boundary surface an impedance boundary conditions are applied so that no wave reflections occur. In the proposed scheme, all of the procedures are processed directly in time domain, which is efficient for nonlinear analyses of structure floating on unbounded fluid. Numerical results indicate acceptable accuracy of the proposed method.  相似文献   

2.
A three-dimensional general mathematical hydroelastic model dealing with the problem of wave interaction with a floating and a submerged flexible structure is developed based on small amplitude wave theory and linear structural response. The horizontal floating and submerged flexible structures are modelled with a thin plate theory. The linearized long wave equations based on shallow water approximations are derived and results are compared. Three-dimensional Green’s functions are derived using fundamental source potentials in water of finite and infinite depths. The expansion formulae associated with orthogonal mode-coupling relations are derived based on the application of Fourier transform in finite and infinite depths in case of finite width in three-dimensions. The usefulness of the expansion formula is demonstrated by analysing a physical problem of surface gravity wave interaction with a moored finite floating elastic plate in the presence of a finite submerged flexible membrane in three-dimensions. The numerical accuracy of the method is demonstrated by computing the complex values of reflected wave amplitudes for different modes of oscillation and mooring stiffness. Further, the effect of compressive force and modes of oscillations on a free oscillation hydroelastic waves in a closed channel of finite width and length for floating and submerged elastic plate system is analysed.  相似文献   

3.
在工程设计中,通常采用模块化方式制造超大型浮式结构物,将巨大的单体结构分割成多个较小模块,后期通过合适的连接器拼装形成。为了明确多模块超大浮体在波浪作用下的水弹性响应,以两个相邻层合浮体(高刚度面板和低密度芯材)为研究对象,建立波浪作用下铰接层合浮体水弹性响应的高阶势流模型。采用匹配特征函数展开法求解流体运动的速度势,探讨了铰接处弹簧刚度对浮体的反射系数、透射系数、挠度、弯矩和剪力的影响规律。研究结果表明:迎浪侧浮体的存在可以有效降低背浪侧浮体的挠度、弯矩和剪力幅值;与垂直弹簧相比,扭转弹簧刚度的增加可以更加有效抑制铰接层合浮体的水弹性响应;当扭转弹簧刚度大于一定值时,继续增大弹簧刚度对浮体的动力响应不产生影响。  相似文献   

4.
Numerical solutions for the hydroelastic problems of bodies are studied directly in the time domain using Neumann–Kelvin formulation. In the hydrodynamic part of problem, the exact initial boundary value problem is linearized using the free stream as a basis flow, replaced by the boundary integral equation applying Green theorem over the transient free surface Green function. The resultant boundary integral equation is discretized using quadrilateral elements over which the value of the potential is assumed to be constant and solved using the trapezoidal rule to integrate the memory or convolution part in time. In the structure part of the problem, the finite element method is used to solve the hydroelastic problem. The Mindlin plate as a bending element, which includes transverse shear effect and rotary inertia effect are used. The present numerical results show acceptable agreement with experimental, analytical, and other published numerical results.  相似文献   

5.
This paper is concerned with the hydroelastic analysis of a pontoon-type, circular, very large floating structure (VLFS) with a horizontal submerged annular plate attached around its perimeter. The coupled fluid–structure interaction problem may be solved by using the modal expansion method in the frequency domain. It involves, firstly, the decomposition of the deflection of a circular Mindlin plate with free edges into vibration modes that are obtained analytically. Then the hydrodynamic diffraction and radiation forces are evaluated by using the eigenfunction expansion matching method which can also be done in an exact manner. The hydroelastic equation of motion is solved by the Rayleigh–Ritz method for the modal amplitudes, and then the modal responses are summed up to obtain the total response. The effectiveness of the attached submerged annular plate in reducing the motion of VLFS has been confirmed by the analysis.  相似文献   

6.
The hydroelastic response of a circular, very large floating structure (VLFS), idealized as a floating circular elastic thin plate, is investigated for the case of time-harmonic incident waves of the surface and interfacial wave modes, of a given wave frequency, on a two-layer fluid of finite and constant depth. In linear potential-flow theory, with the aid of angular eigenfunction expansions, the diffraction potentials can be expressed by the Bessel functions. A system of simultaneous equations is derived by matching the velocity and the pressure between the open-water and the plate-covered regions, while incorporating the edge conditions of the plate. Then the complex nested series are simplified by utilizing the orthogonality of the vertical eigenfunctions in the open-water region. Numerical computations are presentedto investigate the effects of different physical quantities, such as the thickness of the plate, Young's modulus, the ratios ofthe densities and of the layer depths, on the dispersion relations of the flexural-gravity waves for the two-layer fluid.Rapid convergence of the method is observed, but is slower at higher wave frequency. At high frequency, it is found that there is some energy transferred from the interfacial mode to the surface mode.  相似文献   

7.
开发并验证了一种基于CFD-FEM耦合的弹性浮体水弹性响应计算模拟方法。采用CFD方法建立黏性数值水池模拟非线性波浪,弹性浮板进行有限元离散,并在交界面进行数据交互实现耦合计算;通过与水池试验数据和三维板理论在各种波浪环境下的浮体垂向位移结果对比,证实CFD-FEM耦合方法的有效性。并进一步研究了浮板的厚度、入射波波幅和浮板的三维效应对浮板水弹性响应的影响。结论表明,波幅的增加会加剧弹性浮板的水弹性响应,浮板各点处的垂向位移随波幅的增加而增大;当浮板厚度改变时,不同厚度浮板自由端处的垂向位移差异较小,而在中部等位置处,厚度对浮板的水弹性响应有较大的影响。  相似文献   

8.
1 .IntroductionShipsrestrainedbycablesandfendersinfrontofdocksundergolargeamplitudenon harmonicmotionsinwaves.Forthiskindofnon harmonicproblem ,atime domainmethodmustbeapplied .LinandYue ( 1 990 )usedanintegralequationwiththetime domainGreenfunctionforinfinitewaterdepthtocomputetheshipmotionindeepwater.Butforthepresentproblem ,theintegralequationwiththetime domainGreenfunctionforfinitewaterdepthmustbeapplied .TheGreenfunctionisafieldwithacertainboundaryandinitialconditionsproducedbyasourceat…  相似文献   

9.
Green functions with pulsating sources in a two-layer fluid of finite depth   总被引:1,自引:0,他引:1  
The derivation of Green function in a two-layer fluid model has been treated in different ways.In a two-layer fluid with the upper layer having a free surface,there exist two modes of waves propagating due to the free surface and the interface.This paper is concerned with the derivation of Green functions in the three dimensional case of a stationary source oscillating.The source point is located either in the upper or lower part of a two-layer fluid of finite depth.The derivation is carried out by the method of singularities.This method has an advantage in that it involves representing the potential as a sum of singularities or multipoles placed within any structures being present.Furthermore,experience shows that the systems of equations resulted from using a singularity method possess excellent convergence characteristics and only a few equations are needed to obtain accurate numerical results.Validation is done by showing that the derived two-layer Green function can be reduced to that of a single layer of finite depth or that the upper Green function coincides with that of the lower,for each case.The effect of the density on the internal waves is demonstrated.Also,it is shown how the surface and internal wave amplitudes are compared for both the wave modes.The fluid in this case is considered to be inviscid and incompressible and the flow is irrotational.  相似文献   

10.
There has been substantial development in computer codes for linear hydroelasticity in recent years, driven in part by the motivation to investigate the wave-induced response of very large floating structures (VLFSs). A recent International Ship and Offshore Structures Congress (ISSC) state-of-the-art report on VLFS design and analysis [ISSC, 2006. Report of Specialist Task Committee VI.2, very large floating structures. In: Frieze, P.A., Shenoi, R.A. (eds.), Proceedings of the 16th International Ship and Offshore Structures Congress, Elsevier, Southampton, UK, pp. 397-451] included a brief comparative study of the simulation results from different computer codes for a pontoon (mat-like) VLFS. The codes covered a mix of both fluid models (potential and linear Green-Naghdi) and structural models (3-D grillage, 2-D plate, 3-D shell). A more detailed comparison of the results from a select group of models from that study is provided and discussed herein. The similarities in the results increase the confidence level of the state-of-the-art in predicting the hydroelastic response of such structures, and the differences, including in computational efficiency, lead to an understanding of the significance of specific modeling assumptions and their impact on the predicted response.  相似文献   

11.
An influence of sea-bottom topography on the hydroelastic response of a Very Large Floating Structure (VLFS) is considered. When the floating structure is constructed near the shore, the sea-bottom topographical effect should be considered. In this study, the effect of sea-bottom topography is investigated for four different bottom cases. To calculate the sea-bottom effects rigorously, the finite-element method based on the variational formulation is used in the fluid domain. The pontoon-type floating structure is modeled as the Kirchhoff plate. The mode superposition method is adopted for the hydroelastic behavior of the floating structure.  相似文献   

12.
Hydroelastic analysis of flexible floating interconnected structures   总被引:3,自引:0,他引:3  
Three-dimensional hydroelasticity theory is used to predict the hydroelastic response of flexible floating interconnected structures. The theory is extended to take into account hinge rigid modes, which are calculated from a numerical analysis of the structure based on the finite element method. The modules and connectors are all considered to be flexible, with variable translational and rotational connector stiffness. As a special case, the response of a two-module interconnected structure with very high connector stiffness is found to compare well to experimental results for an otherwise equivalent continuous structure. This model is used to study the general characteristics of hydroelastic response in flexible floating interconnected structures, including their displacement and bending moments under various conditions. The effects of connector and module stiffness on the hydroelastic response are also studied, to provide information regarding the optimal design of such structures.  相似文献   

13.
超大型浮体在海洋资源开发和海洋空间利用方面有重要应用前景.非均匀海洋环境中的水弹性响应是其应用中的一个重要问题.在近海中最典型的非均匀海洋环境当属由于底部变化引起的非均匀现象.本文分别采用多重尺度法(零阶近似)和常规的有限水深势流格林函数边界积分法,对底部呈二维缓变情况下超大型浮体的水弹性响应问题进行了研究和对比,并与实验工况进行了对照.两种方法与试验结果吻合较好,证明非均匀海洋环境确实对超大型浮体的水弹性响应具有一定的影响.  相似文献   

14.
In this study, we develop a numerical method for a 3D linear hydroelastic analysis of floating structures with liquid tanks subjected to surface regular water waves and compare the numerical results with experimental tests. Considering direct couplings among structural motion, sloshing, and water waves, a mathematical formulation and a numerical method extended from a recent work [1] are developed. The finite element method is employed for the floating structure and internal fluid in tanks, and the boundary element method is used for the external fluid. The resulting formulation completely incorporates all the interaction terms including hydrostatic stiffness and the irregular frequency effect is removed by introducing the extended boundary integral equations. Through various numerical tests, we verify the proposed numerical method. We also performed 3D hydroelastic experimental tests of a floating production unit (FPU) model in an ocean basin. The measured dynamic motions are compared with the numerical results obtained using the proposed method.  相似文献   

15.
Very Large Floating Structures (VLFS) have received considerable attention recently. Efficient and accurate estimation of their hydroelastic responses in waves is very important for the design. The most efficient approach would obviously be the analytical one. Within the category of analytical approaches, the simplified method proposed by Ohkusu and his colleague are of special characteristics. However, when one studies their methods, several questions arise. The purpose of this paper is to critically study the simplified methods proposed by Ohkusu and his colleague in order to answer these questions. Some problems in their original methods have been found and possible improvements are suggested. It is concluded that the improved simplified method using the same idea of Ohkusu and his colleague could provide a reasonable estimate of the hydroelastic response of mat-like VLFS in a certain range of incident angles of waves.  相似文献   

16.
The application of very large floating structure (VLFS) to the utilization of ocean space and exploitation of ocean resources has become one of the issues of great interest in international ocean engineering field. Owing to the advantage of simplicity in structure and low cost of construction and maintenance, box-type VLFS can be used in the calm water area near the coast as the structure configuration of floating airport. In this paper, a 3D linear hydroelastic theory is used to study the dynamic response of box-type VLFS in sinusoidal regular waves. A beam model and a 3D FEM model are respectively employed to describe the dynamic characteristics of the box-type structure in vacuum. A hydrodynamic model (3D potential theory of flexible body) is applied to investigate the effect of different dry models on the hydroelastic response of box-type structure. Based on the calculation of hydroelastic response in regular waves, the rigid body motion displacement, flexible deflection, and the short term and long  相似文献   

17.
By integration of the second-order fluid pressure over the instantaneous wetted surface, the generalized first- and second-order fluid forces used in nonlinear hydroelastic analysis are obtained. The expressions for coefficients of the generalized first- and second-order hydrodynamic forces in irregular waves are also given. The coefficients of the restoring forces of a mooring system acting on a flexible floating body are presented. The linear and nonlinear three-dimensional hydroelastic equations of motion of a moored floating body in frequency domain are established. These equations include the second-order forces, induced by the rigid body rotations of large amplitudes in high waves, the variation of the instantaneous wetted surface and the coupling of the first order wave potentials. The first-order and second-order principal coordinates of the hydrelastic vibration of a moored floating body are calculated. The frequency characteristics of the principal coordinates are discussed. The numerical results indicate that the rigid resonance and the coupling resonance of a moored floating body can occur in low frequency domain while the flexible resonance can occur in high frequency domain. The hydroelastic responses of a moored box-type barge are also given in this paper. The effects of the second-order forces on the modes are investigated in detail.  相似文献   

18.
使用三维源汇分布法Ⅲ计算有限水深中零航速浮体所受到的波浪力,对两种不同形式的格林函数中所共同存在的奇点问题分别进行了处理。公式推导表明,使用级数形式的格林函数可以使计算更加快捷。最后,对不同尺度的圆柱体进行了验算,在对计算结果与解析解进行了比较之后,工程计算也证明选择格林函数级数计算公式是更令人满意的方案。  相似文献   

19.
The hydroelastic response of a semi-infinite thin elastic plate floating on a two-layer fluid of finite depth due to obliquely incident waves is investigated. The upper and lower fluids with different densities separated by a sharp and stable interface are assumed to be inviscid and incompressible and the motion to be irrotational. Simply time-harmonic incident waves of the surface and interfacial wave modes with a given angular frequency are considered within the framework of linear potential flow theory. With the aid of the methods of matched eigenfunction expansion and the inner product of the two-layer fluid, a closed system of simultaneous linear equations is derived for the reflection and transmission coefficients of the series solutions. Based on the dispersion relations for the gravity waves and the flexural–gravity waves in a two-layer fluid and Snell’s law for refraction, we obtain a critical angle for the incident waves of the surface wave mode and three critical angles for the incident waves of the interfacial wave mode, which are related to the existence of the propagating waves. Graphical representations of the series solutions show the interaction between the water waves and the plate. The effects of several physical parameters, including the density and depth ratios of the fluid and the thickness of the plate, on the wave scattering and the hydroelastic response of the plate are studied. It is found that the variation of the thickness of the plate may change the wave numbers and the critical angles. The density ratio is the main factor to influence the wave numbers of the interfacial wave modes. Finally, the stress state is considered.  相似文献   

20.
1 .IntroductionIntheexploitationofoceanresourcesandintheutilizationofoceanspaces,verylargefloatingstructures (VLFS)suchasMega FloatinJapan (Isobe ,1 999)andMobileOffshoreBase (MOB)inUSA (Remmers ,1 999)playasignificantrole .However,owingtotheirlargesizesandrelativelylowbendingrigidities ,theirhydroelasticresponsesinwavesareofthemostconcern .ManystudieshavebeencarriedoutforthepredictionofthehydroelasticresponsesofVLFS′s (Kashiwagi,2 0 0 0 ;Cui,2 0 0 2 ) .However,inalmostallofthesestu…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号