首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Chinese people began to research the main source of the Changjiang (Yangtze) River 2,400 years ago. Limited by the scientific level, they did not discover it. The Tuotuo River was determined as the main source of the Changjiang River in the 1970s. However, this was not correct, because when comparing the length of the Tuotuo River with the Dam River, the glacier length at the headwaters was added to the Tuotuo River, resulting in that the Tuotuo River is 1 km longer than the Dam River, keeping in mind that the glacier can not be regarded as part of the river. In the summer of 1986, we investigated the source of the Changjiang River, we accurately measured the length of both the Tuotuo and Dam rivers, we discovered that the Dam River was 353.1 km long, and the Tuotuo River was 346.3 km long, the Dam River thus being 6.8 km longer than the Tuotuo River. The discharge of the Dam River is 196.18 m3/sec., 2.6 times as large as that of the Tuotuo River, that of the Tuotuo River is 75.10 m3/ sec. The drainage area of the Dam River is 1.8 times as larger as that of the Tuotuo River; the drainage area of the Dam River is 30,715.7 km2, the Tuotuo River is 16,691.0 km2. Through synthetic analysis of the factors mentioned above, we came to the conclusion that the main source of the Changjiang River is the Dam River instead of the Tuotuo River.  相似文献   

2.
Eutrophication has emerged as a key environmental problem in Chinese coastal waters, especially in the Changjiang (Yangtze) River estuary. In this area, large nutrient inputs result in frequent harmful algal blooms and serious hypoxia in bottom waters. Four cruises were made in the estuary in 2006 to assess the concentration and distribution of dissolved inorganic nitrogen (DIN) and phosphorus (DIP). The concentration of DIN decreased gradually in a linear relationship with salinity from the river mouth to ...  相似文献   

3.
Based on a coupled hydrodynamic-ecological model for regional and shelf seas (COHERENS), a three-dimensional baroclinic model for the Changjiang (Yangtze) River estuary and the adjacent sea area was established using the sigma-coordinate in the vertical direction and spherical coordinate in the horizontal direction. In the study, changing-grid technology and the “dry-wet” method were designed to deal with the moving boundary. The minimum water depth limit condition was introduced for numerical simulation stability and to avoid producing negative depths in the shallow water areas. Using the Eulerian transport approaches included in COHERENS for the advection and dispersion of dissolved pollutants, numerical simulation of dissolved pollutant transport and diffusion in the Changjiang River estuary were carried out. The mass centre track of dissolved pollutants released from outlets in the south branch of the Changjiang River estuary water course has the characteristic of reverse current motion in the inner water course and clockwise motion offshore. In the transition area, water transport is a combination of the two types of motion. In a sewage-discharge numerical experiment, it is found that there are mainly two kinds of pollution distribution forms: one is a single nuclear structure and the other is a double nuclear (dinuclear) structure in the turbid zone of the Changjiang River estuary. The rate of expansion of the dissolved pollutant distribution decreased gradually. The results of the numerical experiment indicate that the maximum turbid zone of the Changjiang River estuary is also the zone enriched with pollutants. Backward pollutant flow occurs in the north branch of the estuary, which is similar to the backward salt water flow, and the backward flow of pollutants released upstream is more obvious.  相似文献   

4.
Based on survey data from April to May 2009, distribution and its influential factors of dissolved inorganic nitrogen (DIN) over the continental slopes of the Yellow Sea (YS) and East China Sea (ECS) are discussed. Influenced by the Changjiang (Yangtze) River water, alongshore currents, and the Kuroshio current off the coast, DIN concentrations were higher in the Changjiang River estuary, but lower (<1 μmol/L) in the northern and eastern YS and outer continental shelf area of the ECS. In the YS, the thermocline formed in spring, and a cold-water mass with higher DIN concentration (about 11 μmol/L) formed in benthonic water around 123.2°E. In Changjiang estuary (around 123°E, 32°N), DIN concentration was higher in the 10 m layer; however, the bottom DIN concentration was lower, possibly influenced by mixing of the Taiwan Warm Current and offshore currents.  相似文献   

5.
TEXTUAL RESEARCH ON THE MAIN SOURCE OF THE CHANGJIANG RIVER   总被引:2,自引:1,他引:1  
The Chinese people began to research the main source of the Changjiang (Yangtze) River 2,400 years ago. Limited by the scientific level, they did not discover it.The Tuotuo River was determined as the main source of the Changjiang River in the 1970s. However, this was not correct, because when comparing the length of the Tuotuo River with the Dam River, the glacier length at the headwaters was added to the Tuotuo River, resulting in that the Tuotuo River is 1 km longer than the Dam River, keeping in mind that the glacier can not be regarded as part of the river.In the summer of 1986, we investigated the source of the Changjiang River, we accurately measured the length of both the Tuotuo and Dam rivers, we discovered that the Dam River was 353.1 km long, and the Tuotuo River was 346.3 km long, the Dam River thus being 6.8 km longer than the Tuotuo River. The discharge of the Dam River is 196.18 m3/ sec., 2.6 times as large as that of the Tuotuo River, that of the Tuotuo River is 75.10 m3/sec. The drainag  相似文献   

6.
Historical records of metal inputs were studied by using a sediment core collected from a sand-rich mudflat in the Qinjiang River estuary, China. 210Pb chronology was used to reconstruct the fluxes of Hg, Cu, Pb, Zn, Cd, Cr and As to the core site during the last 86 years. Based on the constant initial concentration model, the sedimentation rates are 1.18 cm year-1 in the top 30 cm sandy layer and 0.92 cm year-1 in the muddy bottom layer. To compensate for grain-size and mineralogy effects on metal concentra-tions, aluminum was used as the normalizing element. The enrichment factors (EF) indicate that the natural inputs had prevailed up to the early 1980s. After this period, the intensity of human activities has resulted in continual increasing trend of metals towards the surface. Recent sediment samples from the Qinjiang River estuary are found moderately enriched by Cd (EF>1.5) and slightly enriched by other metals (EF<1.5). Considering that the drainage area of the Qinjiang River is mostly agricultural land, the increased Cd may be due to the usage of fertilizers and pesticides in agricultural activities and the combustion of fossil fuels.  相似文献   

7.
Rock weathering plays an important role in studying the long-term carbon cycles and global climatic change. According to the statistics analysis, the Huanghe (Yellow) River water chemistry was mainly controlled by evaporite and carbonate weathering, which were responsible for over 90% of total dissolved ions. As compared with the Huanghe River basin, dissolved load of the Changjiang (Yangtze) River was mainly originated from the carbonate dissolution. The chemical weathering rates were estimated to be 39.29t/(km2·a) and 61.58t/(km2·a) by deducting the HCO 3 derived from atmosphere in the Huanghe River and Changjiang River watersheds, respectively. The CO2 consumption rates by rock weathering were calculated to be 120.84×103mol/km2 and 452.46×103mol/km2annually in the two basins, respectively. The total CO2 consumption of the two basins amounted to 918.51×109mol/a, accounting for 3.83% of the world gross. In contrast to other world watersheds, the stronger evaporite reaction and infirm silicate weathering can explain such feature that CO2 consumption rates were lower than a global average, suggesting that the sequential weathering may be go on in the two Chinese drainage basins. Foundation item: Under the auspices of Ministry of Science and Technology Project of China (No. G1999043075) Biography: LI Jing-ying (1974-), female, a native of Xinye of Henan Province, Ph.D., associate professor, specialized in environmental geochemistry. E-mail: wxxljy2001@public.qd.sd.cn  相似文献   

8.
1 INTRODUCTIONInrecentyearstheecoenvironmentoftheChangjiangRiverbasinsufferedfromseveredestruction,sedimentcontentintheriverwatergreatlyincreased,thedownstreamcoursewasseriouslysiltedupandfloodcontrolcapacitywasweakened.Thesimilarsituationalsooccu…  相似文献   

9.
Since the last rising of sea level, two branches of the Kuroshio, the Huanghai (Yellow Sea) coastal current (HCC; mainly cold water mass) and the Changjiang River outflow have controlled the modern dynamic deposition in the East China Sea. There are three depositing areas on the sea-bed under the above currents: a relict sand area un der the Taiwan Warm Current and the Huanghai Warm Current at the south-eastern area, the about 60 km2 round mud bank under the Huanghai Coastal Current at the northern area and the large subaqueous delta of mainly fine sand and silt under the Changjiang discharge flow in its estuary and the large narrow mud bank under the Zhejiang-Fujian Coastal Current, another round mud bank under the Changjiang discharge flow off Hangzhou Bay. The relict sand area has a coarsesand block under the Taiwan Warm Current bypassing Taiwan at the northern part of the island. The two round mud banks were formed in relatively static states by an anticlockwise converging cyclonic eddy. The coarsesand block was formed by a clockwise diverging cyclonic eddy. This new dynamic deposition theory can be used to explain not only the dynamic deposition process of clay, but also the patchy distribution of sediments on the shelves of the world ocean s.  相似文献   

10.
The main reasons for the high content of inorganic N and its increase by several times in the Changjiang River and its mouth during the last 40 years were analysed in this work. The inorganic N in precipitation in the Changjiang River catchment mainly comes from gaseous loss of fertilizer N, N resulting from the increases of population and livestock, and from high temperature combustions of fossil fuels. N from precipitation is the first N source in the Changjiang River water and the only direct cause of high content of inorganic N in the Changjiang River and its mouth. The lost N in gaseous form and from agriculture non-point sources fertilizer comprised about 60% of annual consumption of fertilizer N in the Changjiang River catchment and were key factors controlling the high content of inorganic N in the Changjiang River mouth. The fate of the N in precipitation and other N sources in the Changjiang River catchment are also discussed in this paper.  相似文献   

11.
Long-term data on diatom assemblages in a sediment core (60 cm) obtained from the Changjiang (Yangtze) River estuary were analyzed in order to assess the environmental changes that took place in the approximately 38 years (as determined by 210pb measurements), i.e., between 1974 and 2012, of sediment accumulation. From the sediment core, 62 diatom taxa and genera were identified. The diatom biomass in the core generally increased beginning in the mid-1990s (core depth: 35 cm), accompanied by a shift in the dominant species from Podosira stelliger and two species of Cyclotella (C. stylorum and C. striata) to Paralia sulcata, three species of Thalassiosira ( T. eccentria, I". oestrupii, and T. excentrica), Actinoptychus undulates, and Thalassionema nitzschioides. The changes in both species diversity and abundance suggested that since the 1980s the estuary has undergone extensive eutrophication. This conclusion was supported by the increased proportion of planktonic species, another indicator of high nutrients inputs, in the Changjiang River estuary.  相似文献   

12.
Analysis using historical data on the phosphate sources in Changjiang (Yangtze River) estuary show that phosphate was supplied equally from the east, south, west and north of the estuary. These sources include the Changjiang River, the Taiwan Warm Current (TWC), a cyclone-type eddy, and the 32°N Upwelling, supplying different phosphates in different times, ways and intensities. The magnitude of their supplying phosphate concentration was related with the size in the order of the Changjiang River 〈 the TWC 〈 the 32°N Upwelling 〈 the cyclone-type eddy, and the duration of the supplying was: the Changjiang River 〉 the TWC 〉 the cyclone-type eddy 〉 the 32°N Upwelling. The four sources supplied a great deal of phosphate so that the phosphate concentration in the estuary was kept above 0.2 pmol/L in previous years, satisfying the phytoplankton growth. The horizontal and vertical distribution of the phosphate concentration showed that near shallow marine areas at 122°E/31°N, the TWC in low nutrient concentration became an upwelling through sea bottom and brought up nutrients from sea bottom to marine surface. In addition, horizontal distribution of phosphate concentration was consistent with that of algae: Rhizosolenia robusta, Rhizosolenia calcaravis and Skeletonema, which showed that no matter during high water or low water of Changjiang River, these species brought by the TWC became predominant species. Therefore, the authors believe that the TWC flowed from south to north along the coast and played a role in deflecting the Changjiang River flow from the southern side.  相似文献   

13.
Both nitrate (NO3) and soluble reactive phosphate (PO43−) concentration in the freshwater end-member at the mouth of the Changjiang River have increased dramatically since the 1960s. Within the same period in the sea area, with surface salinity>30, NO3 concentration has shown an obvious increase, PO43− has not changed greatly and dissolved reactive silica (SiO32−) has deceased dramatically. An examination of the elemental ratio of NO3 to PO43− at the mouth of the Changjiang River did not show a systematic trend from the 1960s to 2000s largely because both nutrients increased simultaneously. In comparison, the elemental ratio of dissolved inorganic nitrogen (DIN) to PO43− in surface seawater, with salinity>22, has shown a clearly increasing trend. Furthermore, an overall historical change of the SiO32−:PO43− ratio has undergone a reverse trend in this area. Based on the changes of SiO32−:PO43− and DIN:PO43− ratios, we can conclude that an overall historical change of SiO32−:DIN ratio has decreased in this area from the 1950–1960s to 2000s. The argument that phytoplankton productivity in the Changjiang estuary has been enhanced by increasing nutrient input from the riverine transport was supported by these results. A comparative study analyzing the shift of phytoplankton composition from the mid-1980s to 2000s was also made. The results indicated that the average yearly percentage of diatom species in the Changjiang estuary has decreased from 84.6% during 1985–1986 to 69.8% during 2004–2005. Furthermore, the average yearly percentage of diatom abundance in the Changjiang estuary decreased from 99.5% during to 75.5% over the same time period, while the abundance of dinoflagellates has increased dramatically, from 0.7% to 25.4%.  相似文献   

14.
The major concern of this article is to address the shortcoming and outgoing effects of the human activities on the landscape patterns and their consequences in the Sefidrood River watershed in Iran. A flow of data includes three inputs; each of them belongs to one part of three zones of a fluvial system. The three parts of the Sefidrood River fluvial system include Zone 1, a sub-watershed as degradation modeling site, Zone 2, Sefidrood Dam asdam site, and Zone 3, 17kin away from the Sefidrood River path to the Caspian Sea as ending point site. The degra-dation model in the Zone 1 provides a suitable mean for decision support system to decrease the human impacts oneach small district. The maximum number for degradation coefficient belongs to the small district with the highest physiographic density, relatively cumulative activities, and a lower figure for the habitat vulnerability. The human degradation impact were not limited to the upstream. The investigation to the Sefidrood Dam and ending point of the Sefidrood River depicts that sedimentation continues as a significant visual impact in the Sefidrood Dam reservoir and the estuary.  相似文献   

15.
Investigations from August, 1985 to July , 1986 showed that the high concentration area of PO4-P , SiO3-Si and NO3-N gradually reduced with the reduction of the area of the Changjiang River diluted water from summer, autumn to winter , and that the seasonal distributions and variations of the nutrients concentrations were mainly controlled by the river flow and were also related to the growth and decline of phytoplankton . The conservation of SiO3-Si and NO3-N in the estuary in the flood season was poorer than that in the dry season .. The behaviour of PO4-P in the estuary shows that aside from -biological removal, buffering of PCU-P is possible in the estuary . The highest monthly average concentrations and annual average concentrations in the river mouth were respectively 0.88 and 0.57 umol/L for PO4-P,191.5 and 96.2 umol/L for SiO3-Si, and 81.6 and 58.6 umol/L for NOs-N . The Changjiang's annual transports of PO4-P , SiO3-Si and NO3-N to the sea were about 1.4×104tons , 204.4×104 tons and 63.6×104  相似文献   

16.
This paper presents a paleoflood study to determine the flood frequency of the Changjiang River, based on core cj0702, taken from the Changjiang River subaqueous delta. We identified flood deposits by means of high-resolution grain-size variation, sensitive population, geochemical indexes and magnetic susceptibility. The core covers a time span of 120 years by 210 Pb dating and was sampled at 1–2 cm intervals. Grain size, geochemical elements, and physical parameters were analyzed. The results indicate that the sediment of the core is mainly composed of silt and clay, as well as groups of interbedded silt, clay silt, and clay. Vertically, the grain size pattern was controlled by seasonal variations in water discharge and by the sediment input in winter from the abandoned Huanghe River delta. River flooding caused extreme values in all our measured parameters. We identified more than 20 flood events that occurred since 1887 using the physical parameter analysis method. The environmentally sensitive component of sediment grain size(14.32–96.39 μm) contribution30%, Zr/Rb ratio1.5, and magnetic susceptibility16 were selected as the criteria for flood identification generally. We also found that floods that had taken place in the upstream, midstream, or downstream parts of the river were clearly identified by these indexes while the large-scale floods that covered the whole drainage area did not leave clear indications in the sediment record. This study for identification of flood events is of great significance for understanding hyperpycnal current sedimentation as well as for forecasting of floods.  相似文献   

17.
The nitrogen (N) input and Spartina alterniflora invasion in the tidal marsh of the southeast of China are increasingly serious. To evaluate CH4 emissions in the tidal marsh as affected by the N inputs and S. alterniflora invasion, we measured CH4 emissions from plots with vegetated S. alterniflora and native Cyperus malaccensis, and fertilized with exogenous N at the rate of 0 (NO), 21 (N1) and 42 (N2) g N/(m2.yr), respectively, in the Shanyutan marsh in the Minjiang River estuary, the southeast of China. The average CH4 fluxes during the experiment in the C. malaccensis and S. alterniflora plots without N addition were 3.67 mg CHa/(m2.h) and 7.79 mg CH4/(m2-h), respectively, suggesting that the invasion of S. alterniflora into the Minjiang River estuary stimulated CH4 emission. Exogenous N had positive effects on CH4 fluxes both in native and in invaded tidal marsh. The mean CH4 fluxes of NI and N2 treat- ments increased by 31.05% and 123.50% in the C. malaccensis marsh, and 63.88% and 7.55% in the S. alterniflora marsh, respectively, compared to that of NO treatment. The CH4 fluxes in the two marshes were positively correlated with temperature and pH, and nega- tively correlated with electrical conductivity and redox potential (Eh) at different N addition treatments. While the relationships between CH4 fluxes and environmental variables (especially soil temperature, pH and Eh at different depths) tended to decrease with N additions. Significant temporal variability in CH4 fluxes were observed as the N was gradually added to the native and invaded marshes. In order to better assess the global climatic role of tidal marshes as affected by N addition, much more attention should be paid to the short-term temporal variability in CH4 emission.  相似文献   

18.
Fish assemblage structure in the hypoxic zone in the Changjiang (Yangtze River) estuary and its adjacent waters were analyzed based on data from bottom trawl surveys conducted on the R/V Beidou in June, August and October 2006. Four fish assemblages were identified in each survey using two-way indicator species analysis (TWIA). High fish biomass was found in the northern part, central part and coastal waters of the survey area; in contrast, high fish diversity was found in the southern part of the survey area and the Changjiang estuary outer waters. Therefore, it is difficult to maintain high fishery production when high fish diversity is evenly distributed in the fish community. Fish became smaller and fish size spectra tended to be narrower because of fish species variations and differences in growth characteristics. Fish diversity increased, the age to maturity was reduced and some migrant species were not collected in the surveys. Fish with low economic value, small size, simple age structure and low tropic level were predominant in fish assemblages in the Changjiang estuary and its adjacent waters. The lowest hypoxic value decreased in the Changjiang estuary and its adjacent waters.  相似文献   

19.
Tropical glaciers are extremely sensitive to a warming climate. In this paper, the evolution of the remaining tropical glaciers in Australasia(Irian Jaya, Indonesia) during the period 1988-2015 was quantified. Landsat series images, a digital elevation model from SRTM, and previously published data were used. Estimated total glacier area in 1988, 1993, 1997 and 2004 was 3.85 km2±0.13 km2, 3.01 km2±0.08 km2, 2.49 km2±0.07 km2 and 1.725 km2 ±0.042 km2, respectively. Only 0.58 km2±0.016 km2 glacierized area remained in 2015 in Puncak Jaya, which is about 84.9% loss in just 27 years. If this rate continued, the remaining tropical glaciers in Australasia would disappear in the 2020 s. Timeseries analysis of climate variables showed significant positive trends in air temperature(0.009°C per year) and relative humidity(0.43% per year) but no considerable tendency was observed for precipitation. Warming climate together with mining activities would accelerate loss of glacier coverage in this region.  相似文献   

20.
The Changjiang (Yangtze) River estuary has been subject to a variety of anthropogenic pressures in recent decades. To assess the ecological health of the coastal benthic ecosystem adjacent to the estuary, three surveys were conducted in 2005, 2009, and 2010. The AZTI's Marine Biotic Index (AMBI) and multivariate-AMBI (M-AMBI) were used to analyse the benthic ecological status of this coast. The AMBI indicate that the ecological status of the coast adjacent to the Changjiang River estuary was only slightly degraded in all 3 years. In contrast, the M-AMBI indicated that the ecological status was seriously degraded, a result that is most likely due to pollution and eutrophication induced by human activities. The assessment of the coast's ecological status by the AMBI was not in agreement with that of the M-AMBI at some stations because of lower biodiversity values at those sites. The analysis of the two indices integrated with abiotic parameters showed that the M-AMBI could be used as a suitable bio-indicator index to assess the benthic ecological status of the coast adjacent to the Changjiang River estuary. The reference conditions proposed for the coast of the Changjiang River estuary should be further evaluated in future studies. Designation of local species could also provide an important reference for Chinese waters. To improve the reliability of AMBI and M-AMBI, further research into the ecology of local species is required to understand their arrangement in ecological groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号