首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
This work is devoted to the physico-chemical study of cadmium and lead interaction with diatom–water interfaces for two marine planktonic (Thalassiosira weissflogii = TW, Skeletonema costatum = SC) and two freshwater periphytic species (Achnanthidium minutissimum = AMIN, Navicula minima = NMIN) by combining adsorption measurements with surface complexation modeling. Reversible adsorption experiments were performed at 20 °C after 3 h of exposure as a function of pH, metal concentration in solution, and ionic strength. While the shape of pH-dependent adsorption edge is similar among all four diatom species, the constant-pH adsorption isotherm and maximal binding capacities differ. These observations allowed us to construct a surface complexation model for cadmium and lead binding by diatom surfaces that postulates the constant capacitance of the electric double layer and considers Cd and Pb complexation with mainly carboxylic and, partially, silanol groups. Parameters of this model are in agreement with previous acid–base titration results and allow quantitative reproduction of all adsorption experiments.  相似文献   

2.
3.
Sorption interactions with montmorillonite and other clay minerals in soils, sediments, and rocks are potentially important mechanisms for attenuating the mobility of U(6+) and other radionuclides through the subsurface environment. Batch experiments were conducted (in equilibrium with atmospheric % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% acbiGaiWiG-bfadaWgaaWcbaacbaGaa43qaiaa+9eadaWgaaqaaiaa% +jdaaWqabaaaleqaaaaa!400D!\[P_{CO_2 } \])to determine the effects of varying pH (2 to 9), solid-mass to solution-volume ratio (M/V = 0.028 to 3.2 g/L), and solution concentration (2 × 10–7 and 2 × 10–6 M 233U) on U(6+) sorption on SAz-1 montmorillonite. The study focused on U(6+) surface complexation on hydroxylated edge sites as the sorption mechanism of interest because it is expected to be the predominant sorption mechanism at pHs typical of natural waters (pH 6 to 9). Thus, the experiments were conducted with a 0.1 M NaNO3 matrix to suppress ion-exchange between U(6+) in solution and interlayer cations. The results show that U(6+) sorption on montmorillonite is a strong function of pH, reaching a maximum at near-neutral pH (6 to 6.5) and decreasing sharply towards more acidic or more alkaline conditions. A comparison of the pH-dependence of U(6+) sorption with that of U(6+) aqueous speciation indicates a close correspondence between U(6+) sorption and the predominance field of U(6+)-hydroxy complexes. At high pH, sorption is inhibited due to formation of aqueous U(6+)-carbonate complexes. At low pH, the low sorption values indicate that the 0.1 M NaNO3 matrix was effective in suppressing ion-exchange between the uranyl (UO2 2+) species and interlayer cations in montmorillonite. At pH and carbonate concentrations typical of natural waters, sorption of U(6+) on montmorillonite can vary by four orders of magnitude and can become negligible at high pH.The experimental results were used to develop a thermodynamic model based on a surface complexation approach to permit predictions of U(6+) sorption at differing physicochemical conditions. A Diffuse-Layer model (DLM) assuming aluminol (>AlOH) and silanol (>SiOH) edge sites and two U(6+) surface complexation reactions per site effectively simulates the complex sorption behavior observed in the U(6+)-H2O-CO2-montmorillonite system at an ionic strength of 0.1 M and pH > 3.5. A comparison of model predictions with data from this study and from published literature shows good agreement and suggests that surface complexation models based on parameters derived from a limited set of data could be useful in extrapolating radionuclide sorption over a range of geochemical conditions. Such an approach could be used to support transport modeling by providing a better alternative to the use of constant K d s in transport calculations.  相似文献   

4.
《Geochimica et cosmochimica acta》1999,63(19-20):3059-3067
In order to test the ability of a surface complexation approach to account for metal-bacteria interactions in near surface fluid-rock systems, we have conducted experiments that measure the extent of adsorption in mixed metal, mixed bacteria systems. This study tests the surface complexation approach by comparing estimated extents of adsorption based on surface complexation modeling to those we observed in the experimental systems. The batch adsorption experiments involved Ca, Cd, Cu, and Pb adsorption onto the surfaces of 2 g positive bacteria: Bacillus subtilis and Bacillus licheniformis. Three types of experiments were performed: 1. Single metal (Ca, Cu, Pb) adsorption onto a mixture of B. licheniformis and B. subtilis; 2. mixed metal (Cd, Cu, and Pb; Ca and Cd) adsorption onto either B. subtilis or B. licheniformis; and 3. mixed or single metal adsorption onto B. subtilis and B. licheniformis. %Independent of the experimental results, and based on the site specific stability constants for Ca, Cd, Cu, and Pb interactions with the carboxyl and phosphate sites on B. licheniformis and B. subtilis determined by Fein et al. (1997), by Daughney et al. (1998) and in this study, we estimate the extent of adsorption that is expected in the above experimental systems.Competitive cation adsorption experiments in both single and double bacteria systems exhibit little adsorption at pH values less than 4. With increasing pH above 4.0, the extent of Ca, Cu, Pb and Cd adsorption also increases due to the increased deprotonation of bacterial surface functional groups. In all cases studied, the estimated adsorption behavior is in excellent agreement with the observations, with only slight differences that were within the uncertainties of the estimation and experimental procedures. Therefore, the results indicate that the use of chemical equilibrium modeling of aqueous metal adsorption onto bacterial surfaces yields accurate predictions of the distribution of metals in complex multicomponent systems.  相似文献   

5.
Cadmium, Co, Cu, Ni and Pb adsorption is measured on montmorillonite as a function of pH (3–11), ionic strength (0.001–0.1 M NaNO3), and sorbate concentration (0.1–10 μM metal on 0.5 g/L solid). Sorption of all metals shows strong dependence on ionic strength and sorbate concentration, as well as a break in the slope of the edge, indicative of a 2-site interaction with montmorillonite. The resulting adsorption edges are used to parameterize diffuse layer surface complexation models (DLMs) for each metal. A 2-site DLM with a bidentate variable charge surface hydroxyl site and a bidentate permanent charge exchange site produced good fits for the individual experiments, but lacked the robustness to accurately predict adsorption across the entire experimental range. Other models, such as CCM, TLM, or CD-MUSIC may be required for more accurate predictions across broad ranges of solution conditions.  相似文献   

6.
The nature of adsorbed arsenate species for a wide range of minerals and environmental conditions is fundamental to prediction of the migration and long-term fate of arsenate in natural environments. Spectroscopic experiments and theoretical calculations have demonstrated the potential importance of a variety of arsenate surface species on several iron and aluminum oxides. However, integration of the results of these studies with surface complexation models and extrapolation over wide ranges of conditions and for many oxides remains a challenge. In the present study, in situ X-ray and infrared spectroscopic and theoretical molecular evidence of arsenate (and the analogous phosphate) surface speciation are integrated with an extended triple layer model (ETLM) of surface complexation, which takes into account the electrostatic work associated with the ions and the water dipoles involved in inner-sphere surface complexation by the ligand exchange mechanism.Three reactions forming inner-sphere arsenate surface species
  相似文献   

7.
8.
The distribution of yttrium and the rare earth elements (YREE) between natural waters and oxide mineral surfaces depends on adsorption reactions, which in turn depend on the specific way in which YREE are coordinated to mineral surfaces. Recent X-ray studies have established that Y3+ is adsorbed to the rutile (1 1 0) surface as a distinctive tetranuclear species. However, the hydrolysis state of the adsorbed cation is not known from experiment. Previous surface complexation models of YREE adsorption have suggested two to four cation hydrolysis states coexisting on oxide surfaces. In the present study, we investigate the applicability of the X-ray results to rare earth elements and to several oxides in addition to rutile using the extended triple-layer surface complexation model. The reaction producing a hydrolyzed tetranuclear surface species
  相似文献   

9.
Many studies have proposed that silicic acid and phosphate (PV) can displace arsenic sorbed to iron oxides leading to elevated As concentrations in aquatic systems. While surface complexation models are adept at quantifying sorption to synthetic oxides in laboratory systems their application to complex natural systems remains challenging. In this study we provide a systematic approach to developing a robust use of models for understanding AsV distribution in natural systems in which hydrated iron oxides are the main adsorptive phase. The Waikato River provides a useful laboratory for this work because it contains high H4SiO4, AsV and PV loadings due to geothermal and agricultural inputs. A 15 min oxalate extraction and a 48 h ethylenediaminetetraacetic acid (EDTA) extraction of river sediment contained the same ratios of As:Fe, P:Fe and Si:Fe. Both of these extracts target the poorly ordered iron oxide phases (typically ferrihydrite) and by following the release of elements over time in the EDTA extraction it was possible to demonstrate that the extracted As, P, and Si were associated with the ferrihydrite. This demonstrates for the first time that a single oxalate extraction can quantify ferrihydrite sorbed H4SiO4, As and PV and provides a basis to quantify the role of these ligands in inhibiting AsV sorption to sediments. The measured concentrations of ferrihydrite sorbed AsV, PV and H4SiO4 for the Waikato River suspended sediment allow for the informed selection of appropriate model parameters for applying the Diffuse Layer Model to the system. In this way it was possible to quantify the effect of the individual components in the river water on AsV sorption. This study provides an explanation for the observation that the proportion of sorbed As in the Waikato River is generally significantly lower than that observed in rivers closer to the world average concentrations. More generally the study provides a method to quantify the role of individual water chemistry components on AsV distribution in natural systems.  相似文献   

10.

Background  

Proteins of various compositions are required by organisms inhabiting different environments. The energetic demands for protein formation are a function of the compositions of proteins as well as geochemical variables including temperature, pressure, oxygen fugacity and pH. The purpose of this study was to explore the dependence of metastable equilibrium states of protein systems on changes in the geochemical variables.  相似文献   

11.
Uranium(VI) adsorption onto aquifer sediments was studied in batch experiments as a function of pH and U(VI) and dissolved carbonate concentrations in artificial groundwater solutions. The sediments were collected from an alluvial aquifer at a location upgradient of contamination from a former uranium mill operation at Naturita, Colorado (USA). The ranges of aqueous chemical conditions used in the U(VI) adsorption experiments (pH 6.9 to 7.9; U(VI) concentration 2.5 · 10−8 to 1 · 10−5 M; partial pressure of carbon dioxide gas 0.05 to 6.8%) were based on the spatial variation in chemical conditions observed in 1999-2000 in the Naturita alluvial aquifer. The major minerals in the sediments were quartz, feldspars, and calcite, with minor amounts of magnetite and clay minerals. Quartz grains commonly exhibited coatings that were greater than 10 nm in thickness and composed of an illite-smectite clay with occluded ferrihydrite and goethite nanoparticles. Chemical extractions of quartz grains removed from the sediments were used to estimate the masses of iron and aluminum present in the coatings. Various surface complexation modeling approaches were compared in terms of the ability to describe the U(VI) experimental data and the data requirements for model application to the sediments. Published models for U(VI) adsorption on reference minerals were applied to predict U(VI) adsorption based on assumptions about the sediment surface composition and physical properties (e.g., surface area and electrical double layer). Predictions from these models were highly variable, with results overpredicting or underpredicting the experimental data, depending on the assumptions used to apply the model. Although the models for reference minerals are supported by detailed experimental studies (and in ideal cases, surface spectroscopy), the results suggest that errors are caused in applying the models directly to the sediments by uncertain knowledge of: 1) the proportion and types of surface functional groups available for adsorption in the surface coatings; 2) the electric field at the mineral-water interface; and 3) surface reactions of major ions in the aqueous phase, such as Ca2+, Mg2+, HCO3, SO42−, H4SiO4, and organic acids. In contrast, a semi-empirical surface complexation modeling approach can be used to describe the U(VI) experimental data more precisely as a function of aqueous chemical conditions. This approach is useful as a tool to describe the variation in U(VI) retardation as a function of chemical conditions in field-scale reactive transport simulations, and the approach can be used at other field sites. However, the semi-empirical approach is limited by the site-specific nature of the model parameters.  相似文献   

12.
Despite the fact that the bulk compositions of most low temperature natural surface waters, groundwaters, and porewaters are heavily influenced by alkaline earths, an understanding of the development of proton surface charge in the presence of alkaline earth adsorption on the surfaces of minerals is lacking. In particular, models of speciation at the mineral-water interface in systems involving alkaline earths need to be established for a range of different minerals. In the present study, X-ray standing wave results for Sr2+ adsorption on rutile as a tetranuclear complex [Fenter, P., Cheng, L., Rihs, S., Machesky, M., Bedyzk, M.D., Sturchio, N.C., 2000. Electrical double-layer structure at the rutile-water interface as observed in situ with small-period X-ray standing waves. J. Colloid Interface Sci.225, 154-165] are used as constraints for all the alkaline earths in surface complexation simulations of proton surface charge, metal adsorption, and electrokinetic experiments referring to wide ranges of pH, ionic strength, surface coverage, and type of oxide. The tetranuclear reaction
4>SOH+M2++H2O=(>SOH)2(>SO-)2_M(OH)++3H+  相似文献   

13.
Surface flux parameterization schemes used in current dynamic models are primarily based upon measurements at low and moderate wind speeds. Recent studies show that these parameterization schemes may be incorrect at high wind speeds (e.g., tropical cyclone forecasts). Five high-resolution numerical model experiments are designed to assess the sensitivity of tropical cyclone intensity forecasts to changes in the surface flux parameterization. The sensitivity experiments are conducted by running 48 h forecasts of the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) for six selected tropical cyclones with individual modifications to surface flux calculation that include: (1) limiting the surface stress for wind speeds greater than 33 m s−1, or 64 knots (kt); (2) computing the stress at the top of the model bottom grid layer (MBGL) by averaging results from surface layer similarity and turbulence mixing parameterization for wind speeds greater than 33 m s−1; (3) increasing the roughness lengths for heat and moisture transfer by a factor of ten; (4) setting the roughness lengths for heat and moisture transfer to 1/10 of the momentum roughness length; and (5) cooling the sea surface temperature (SST) by a prescribed rate at high winds. Averaged responses for the six storms to these sensitivity tests show that: (i) the limit on surface stress at high winds significantly increases the cyclone intensity in 48 h forecasts; (ii) the averaged surface layer stress at high winds increases the cyclone intensity but to a much lesser degree than limiting the surface stress; (iii) large increases in the roughness lengths for heat and moisture transfer are needed to significantly impact the intensity forecast; (iv) the different roughness length formula for surface transfer coefficients notably increases C h/C d ratio from 0.59 to 0.79 for 25 m s−1 and 0.41 to 0.75 for 50 m s−1 that significantly increases the predicted cyclone intensity; and (v) cooling of the SST by −5.8°C in 48 h reduces the maximum surface wind speed by −32 kt, or 16.5 m s−1, at 48 h forecast. These results suggest that a surface flux parameterization scheme suitable for tropical cyclone intensity forecast must correctly model the leveling-off character of surface stress and C h/C d ratio at high winds. All modifications to surface flux calculation have little influence on 48 h track forecasts, even though they may significantly impact the intensity forecasts.
Chi-Sann LiouEmail:
  相似文献   

14.
15.
We developed a model that describes quantitatively the arsenate adsorption behavior for any goethite preparation as a function of pH and ionic strength, by using one basic surface arsenate stoichiometry, with two affinity constants. The model combines a face distribution-crystallographic site density model for goethite with tenets of the Triple Layer and CD-MUSIC surface complexation models, and is self-consistent with its adsorption behavior towards protons, electrolytes, and other ions investigated previously. Five different systems of published arsenate adsorption data were used to calibrate the model spanning a wide range of chemical conditions, which included adsorption isotherms at different pH values, and adsorption pH-edges at different As(V) loadings, both at different ionic strengths and background electrolytes. Four additional goethite-arsenate systems reported with limited characterization and adsorption data were accurately described by the model developed. The adsorption reaction proposed is:
  相似文献   

16.

Background  

The speciation of dissolved sulfide in the water immediately surrounding deep-ocean hydrothermal vents is critical to chemoautotrophic organisms that are the primary producers of these ecosystems. The objective of this research was to identify the role of Zn and Fe for controlling the speciation of sulfide in the hydrothermal vent fields at the Eastern Lau Spreading Center (ELSC) in the southern Pacific Ocean. Compared to other well-studied hydrothermal systems in the Pacific, the ELSC is notable for unique ridge characteristics and gradients over short distances along the north-south ridge axis.  相似文献   

17.

Background  

Given the importance of highly reactive oxygen species (hROS) as reactants in a wide range of biological, photochemical, and environmental systems there is an interest in detection and quantification of these species. The extreme reactivity of the hROS, which includes hydroxyl radicals, presents an analytical challenge. 3'-(p-Aminophenyl) fluorescein (APF) is a relatively new probe used for measuring hROS. Here, we further evaluate the use of APF as a method for the detection of hydroxyl radicals in particle suspensions.  相似文献   

18.
Sorption edge data for Ni(II), Co(II), Eu(III) and Sn(IV) [Bradbury M. H. and Baeyens B. (2009) Sorption modelling on illite. Part I: titration measurements and sorption of Ni(II), Co(II), Eu(III) and Sn(IV), Part I] on purified Na-Illite du Puy are available from some previous work, and some new measurements for Am(III), Th(IV), Pa(V) and U(VI) are presented here. All of these sorption edge measurements have been modelled with a 2 site protolysis non-electrostatic surface complexation and cation exchange (2SPNE SC/CE) sorption model for which the site types, site capacities and protolysis constants were fixed [Bradbury M. H. and Baeyens B. (2009), Part I]. In addition, two further data sets for the sorption of Am(III) and Np(V) on Illite du Puy, obtained from the literature, were also modelled in this work. Thus, surface complexation constants for the strong sites in the 2SPNE SC/CE sorption model for nine metals with valence states from II to VI have been obtained. A linear relationship between the logarithm of strong site metal binding constants, SKx−1, and the logarithm of the corresponding aqueous hydrolysis stability constant, OHKx, extending over nearly 35 orders of magnitude is established here for illite for these nine metals. Such correlations are often termed linear free energy relationships (LFER), and although they are quite common in aqueous phase chemistry, they are much less so in surface chemistry, especially over this large range. The LFER for illite could be described by the equation: where, “x” is an integer. A similar relationship has been previously obtained for montmorillonite, thus LFERs relating to the sorption on two of the most important clay minerals present in natural systems have been established. Such an LFER approach is an extremely useful tool for estimating surface complexation constants for metals in a chemically consistent manner. It provides a means of obtaining sorption values for radionuclides for which there are no measured values and thus allows gaps in missing sorption data to be filled. An ultimate goal of this approach is to develop a thermodynamic sorption database. This could then be used in radioactive waste management performance assessment studies to calculate sorption in natural systems, and thereby replace the current usage of single solid liquid distribution coefficients (Kd values) to describe radionuclide uptake. Finally, with the data now available, the 2SPNE SC/CE sorption model can be ported into reactive transport models allowing radionuclide migration to be calculated under spatially and temporally changing conditions.  相似文献   

19.

Background  

Goethite is a common and reactive mineral in the environment. The transport of contaminants and anaerobic respiration of microbes are significantly affected by adsorption and reduction reactions involving goethite. An understanding of the mineral-water interface of goethite is critical for determining the molecular-scale mechanisms of adsorption and reduction reactions. In this study, periodic density functional theory (DFT) calculations were performed on the mineral goethite and its (010) surface, using the Vienna Ab Initio Simulation Package (VASP).  相似文献   

20.
《Geochimica et cosmochimica acta》1999,63(19-20):2929-2938
The competitive sorption of Cu(II) and Pb(II) to colloidal hematite was investigated as a function of pH and total metal concentration. Acid–base titrations of the hematite and single-metal sorption experiments for Cu and Pb at low to medium surface coverages were used to calibrate two surface complexation models, the triple layer model, and a 2-pK basic Stern model with ion-pair formation. The surface site density was systematically varied from 2 to 20 sites/nm2. Three different metal surface complexes were considered: (1) an inner-sphere metal complex; (2) an outer-sphere metal complex; and (3) an outer-sphere complex of singly hydrolyzed metal cations. Both models provided excellent fits to acid–base titration and single-metal sorption data, regardless of the surface site density used. With increasing site density, ΔpK of the stability constants for protonation reactions increased and metal surface complexes decreased steadily. The calibrated models based on different site densities were used to predict competitive sorption effects between Cu and Pb and single-metal sorption at higher total metal concentrations. Precipitation of oversaturated solid phases was included in the calculations. Best predictions of competitive sorption effects were obtained with surface site densities between 5 and 10 sites/nm2. The results demonstrate that surface site density is a key parameter if surface complexation models are exposed to more complex, multicomponent environments. We conclude that competitive metal sorption experiments can be used to obtain additional information about the relevant surface site density of oxide mineral surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号