首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Abstract

This article presents a set of multi-gas emission pathways for different CO2-equivalent concentration stabilization levels, i.e. 400, 450, 500 and 550 ppm CO2-equivalent, along with an analysis of their global and regional reduction implications and implied probability of achieving the EU climate target of 2°C. For achieving the 2°C target with a probability of more than 60%, greenhouse gas concentrations need to be stabilized at 450 ppm CO2-equivalent or below, if the 90% uncertainty range for climate sensitivity is believed to be 1.5–4.5°C. A stabilization at 450 ppm CO2-equivalent or below (400 ppm) requires global emissions to peak around 2015, followed by substantial overall reductions of as much as 25% (45% for 400 ppm) compared to 1990 levels in 2050. In 2020, Annex I emissions need to be approximately 15% (30%) below 1990 levels, and non-Annex I emissions also need to be reduced by 15–20% compared to their baseline emissions. A further delay in peaking of global emissions by 10 years doubles maximum reduction rates to about 5% per year, and very probably leads to high costs. In order to keep the option open of stabilizing at 400 and 450 ppm CO2-equivalent, the USA and major advanced non-Annex I countries will have to participate in the reductions within the next 10–15 years.  相似文献   

2.
Using a coupled climate?Ccarbon cycle model, fossil fuel carbon dioxide (CO2) emissions are derived through a reverse approach of prescribing atmospheric CO2 concentrations according to observations and future projections, respectively. In the second half of the twentieth century, the implied fossil fuel emissions, and also the carbon uptake by land and ocean, are within the range of observational estimates. Larger discrepancies exist in the earlier period (1860?C1960), with small fossil fuel emissions and uncertain emissions from anthropogenic land cover change. In the IPCC SRES A1B scenario, the simulated fossil fuel emissions more than double until 2050 (17 GtC/year) and then decrease to 12 GtC/year by 2100. In addition to A1B, an aggressive mitigation scenario was employed, developed within the European ENSEMBLES project, that peaks at 530 ppm CO2(equiv) around 2050 and then decreases to approach 450 ppm during the twenty-second century. Consistent with the prescribed pathway of atmospheric CO2 in E1, the implied fossil fuel emissions increase from currently 8 GtC/year to about 10 by 2015 and decrease thereafter. In the 2050s (2090s) the emissions decrease to 3.4 (0.5) GtC/year, respectively. As in previous studies, our model simulates a positive climate?Ccarbon cycle feedback which tends to reduce the implied emissions by roughly 1 GtC/year per degree global warming. Further, our results suggest that the 450 ppm stabilization scenario may not be sufficient to fulfill the European Union climate policy goal of limiting the global temperature increase to a maximum of 2°C compared to pre-industrial levels.  相似文献   

3.
The IPCC Fourth Assessment Report, Working Group III, summarises in Box 13.7 the required emission reduction ranges in Annex I and non-Annex I countries as a group, to achieve greenhouse gas concentration stabilisation levels between 450 and 650 ppm CO2-eq. The box summarises the results of the IPCC authors’ analysis of the literature on the regional allocation of the emission reductions. The box states that Annex I countries as a group would need to reduce their emissions to below 1990 levels in 2020 by 25% to 40% for 450 ppm, 10% to 30% for 550 ppm and 0% to 25% for 650 ppm CO2-eq, even if emissions in developing countries deviate substantially from baseline for the low concentration target. In this paper, the IPCC authors of Box 13.7 provide background information and analyse whether new information, obtained after completion of the IPCC report, influences these ranges. The authors concluded that there is no argument for updating the ranges in Box 13.7. The allocation studies, which were published after the writing of the IPCC report, show reductions in line with the reduction ranges in the box. From the studies analysed, this paper specifies the “substantial deviation” or “deviation from baseline” in the box: emissions of non-Annex I countries as a group have to be below the baseline roughly between 15% to 30% for 450 ppm CO2-eq, 0% to 20% for 550 ppm CO2-eq and from 10% above to 10% below the baseline for 650 ppm CO2-eq, in 2020. These ranges apply to the whole group of non-Annex I countries and may differ substantially per country. The most important factor influencing these ranges above, for non-Annex I countries, and in the box, for Annex I countries, is new information on higher baseline emissions (e.g. that of Sheehan, Climatic Change, 2008, this issue). Other factors are the assumed global emission level in 2020 and assumptions on land-use change and forestry emissions. The current, slow pace in climate policy and the steady increase in global emissions, make it almost unfeasible to reach relatively low global emission levels in 2020 needed to meet 450 ppm CO2-eq, as was first assumed feasible by some studies, 5 years ago.  相似文献   

4.
Using a global carbon cycle model (GLOCO) that considers seven terrestrial biomes, surface and deep ocean layers based on the HILDA model and a single mixed atmosphere, we analyzed the response of atmospheric CO2 concentration and oceanic DIC and DOC depth profiles to additions of carbon to the atmosphere and ocean. The rate of transport of carbon to the deepest oceanic layers is rather insensitive to the atmosphereic-ocean surface gas exchange coefficient over a wide range, hence discrepancies between researchers on the precise global average value of this coefficient do not significantly affect predictions of atmospheric response to anthropogenic inputs. Upwelling velocity, on the other hand, amplifies oceanic response by increasing primary production in the upper ocean layers, resulting in a larger flux into DOC and sediments and increased carbon storage; experiments to reduce the uncertainty in this parameter would be valuable.The location of the carbon addition, whether it is released in the atmosphere or in the middle of the oceanic thermocline, has a significant impact on the maximum atmospheric CO2 concentration (pCO2) subsequently reached, suggesting that oceanic burial of a significant fraction of carbon emissions (e.g. via clathrate hydrides) may be an important management option for limiting pCO2 buildup. Our analysis indicates that the effectiveness of ocean burial decreases asymptotically below about 1000 m depth. With a constant emissions scenario (at 1990 levels), pCO2 at year 2100 is reduced from 501 ppmv considering all emissions go to the atmosphere, to 422 ppmv with ocean burial at a depth of 1000 m of 50% of the fossil fuel emissions. An alternative scenario looks at stabilizing pCO2 at 450 ppmv; with no ocean burial of fossil fuel emissions, the rate of emissions has to be cut drastically after the year 2010, whereas oceanic burial of 2 GtC/yr allows for a smoother transition to alternative energy sources.  相似文献   

5.
A new Earth system model, GENIE-1, is presented which comprises a 3-D frictional geostrophic ocean, phosphate-restoring marine biogeochemistry, dynamic and thermodynamic sea-ice, land surface physics and carbon cycling, and a seasonal 2-D energy-moisture balance atmosphere. Three sets of model climate parameters are used to explore the robustness of the results and for traceability to earlier work. The model versions have climate sensitivity of 2.8–3.3°C and predict atmospheric CO2 close to present observations. Six idealized total fossil fuel CO2 emissions scenarios are used to explore a range of 1,100–15,000 GtC total emissions and the effect of rate of emissions. Atmospheric CO2 approaches equilibrium in year 3000 at 420–5,660 ppmv, giving 1.5–12.5°C global warming. The ocean is a robust carbon sink of up to 6.5 GtC year−1. Under ‘business as usual’, the land becomes a carbon source around year 2100 which peaks at up to 2.5 GtC year−1. Soil carbon is lost globally, boreal vegetation generally increases, whilst under extreme forcing, dieback of some tropical and sub-tropical vegetation occurs. Average ocean surface pH drops by up to 1.15 units. A Greenland ice sheet melt threshold of 2.6°C local warming is only briefly exceeded if total emissions are limited to 1,100 GtC, whilst 15,000 GtC emissions cause complete Greenland melt by year 3000, contributing 7 m to sea level rise. Total sea-level rise, including thermal expansion, is 0.4–10 m in year 3000 and ongoing. The Atlantic meridional overturning circulation shuts down in two out of three model versions, but only under extreme emissions including exotic fossil fuel resources.  相似文献   

6.
The capture and storage of CO2 from combustion of fossil fuels is gaining attraction as a means to deal with climate change. CO2 emissions from biomass conversion processes can also be captured. If that is done, biomass energy with CO2 capture and storage (BECS) would become a technology that removes CO2 from the atmosphere and at the same time deliver CO2-neutral energy carriers (heat, electricity or hydrogen) to society. Here we present estimates of the costs and conversion efficiency of electricity, hydrogen and heat generation from fossil fuels and biomass with CO2 capture and storage. We then insert these technology characteristics into a global energy and transportation model (GET 5.0), and calculate costs of stabilizing atmospheric CO2 concentration at 350 and 450 ppm. We find that carbon capture and storage technologies applied to fossil fuels have the potential to reduce the cost of meeting the 350 ppm stabilisation targets by 50% compared to a case where these technologies are not available and by 80% when BECS is allowed. For the 450 ppm scenario, the reduction in costs is 40 and 42%, respectively. Thus, the difference in costs between cases where BECS technologies are allowed and where they are not is marginal for the 450 ppm stabilization target. It is for very low stabilization targets that negative emissions become warranted, and this makes BECS more valuable than in cases with higher stabilization targets. Systematic and stochastic sensitivity analysis is performed. Finally, BECS opens up the possibility to remove CO2 from the atmosphere. But this option should not be seen as an argument in favour of doing nothing about the climate problem now and then switching on this technology if climate change turns out to be a significant problem. It is not likely that BECS can be initiated sufficiently rapidly at a sufficient scale to follow this path to avoiding abrupt and serious climate changes if that would happen.  相似文献   

7.
This paper synthesizes results of the multi-model Energy Modeling Forum 27 (EMF27) with a focus on climate policy scenarios. The study included two harmonized long-term climate targets of 450 ppm CO2-e (enforced in 2100) and 550 pm CO2-e (not-to-exceed) as well as two more fragmented policies based on national and regional emissions targets. Stabilizing atmospheric GHG concentrations at 450 and 550 ppm CO2-e requires a dramatic reduction of carbon emissions compared to baseline levels. Mitigation pathways for the 450 CO2-e target are largely overlapping with the 550 CO2-e pathways in the first half of the century, and the lower level is achieved through rapid reductions in atmospheric concentrations in the second half of the century aided by negative anthropogenic carbon flows. A fragmented scenario designed to extrapolate current levels of ambition into the future falls short of the emissions reductions required under the harmonized targets. In a more aggressive scenario intended to capture a break from observed levels of stringency, emissions are still somewhat higher in the second half due to unabated emissions from non-participating countries, emphasizing that a phase-out of global emissions in the long term can only be reached with full global participation. A key finding is that a large range of energy-related CO2 emissions can be compatible with a given long-term target, depending on assumptions about carbon cycle response, non-CO2 and land use CO2 emissions abatement, partly explaining the spread in mitigation costs.  相似文献   

8.
The Consequences of CO2 Stabilisation for the Impacts of Climate Change   总被引:1,自引:0,他引:1  
This paper reports the main results of an assessment of the global-scale implications of the stabilisation of atmospheric CO2 concentrations at 750 ppm (by 2250) and 550 ppm (by 2150), in relationto a scenario of unmitigated emissions. The climate change scenarios were derived from simulation experiments conducted with the HadCM2 global climate model and forced with the IPCC IS92a, S750 and S550 emissions scenarios. The simulated changes in climate were applied to an observed global baseline climatology, and applied with impacts models to estimate impacts on natural vegetation, water resources, coastal flood risk and wetland loss, crop yield and food security, and malaria. The studies used a single set of population and socio-economic scenarios about the future that are similar to those adopted in the IS92a emissions scenario.An emissions pathway which stabilises CO2 concentrations at 750 ppmby the 2230s delays the 2050 temperature increase under unmitigated emissions by around 50 years. The loss of tropical forest and grassland which occurs by the 2050s under unmitigated emissions is delayed to the 22nd century, and the switch from carbon sink to carbon source is delayed from the 2050s to the 2170s. Coastal wetland loss is slowed. Stabilisation at 750 ppm generally has relatively little effect on the impacts of climate change on water resource stress, and populations at risk of hunger or falciparum malaria until the 2080s.A pathway which stabilises CO2 concentrations at 550 ppm by the 2170s delays the 2050 temperature increase under unmitigated emissions by around 100 years. There is no substantial loss of tropical forest or grassland, even by the 2230s, although the terrestrial carbon store ceases to act as a net carbon sink by around 2170 (this time because the vegetation has reached a new equilibrium with the atmosphere). Coastal wetland loss is slowed considerably, and the increase in coastal flood risk is considerably lower than under unmitigated emissions. CO2 stabilisation at 550 ppm reduces substantially water resource stress, relative to unmitigated emissions, but has relatively little impact on populations at risk of falciparum malaria, and may even cause more people to be at risk of hunger. While this study shows that mitigation avoids many impacts, particularly in the longer-term (beyond the 2080s), stabilisation at 550 ppm appears to be necessary to avoid or significantly reduce most of the projected impacts in the unmitigated case.  相似文献   

9.
Climate change mitigation via a reduction in the anthropogenic emissions of carbon dioxide (CO2) is the principle requirement for reducing global warming, its impacts, and the degree of adaptation required. We present a simple conceptual model of anthropogenic CO2 emissions to highlight the trade off between delay in commencing mitigation, and the strength of mitigation then required to meet specific atmospheric CO2 stabilization targets. We calculate the effects of alternative emission profiles on atmospheric CO2 and global temperature change over a millennial timescale using a simple coupled carbon cycle-climate model. For example, if it takes 50 years to transform the energy sector and the maximum rate at which emissions can be reduced is ?2.5% $\text{year}^{-1}$ , delaying action until 2020 would lead to stabilization at 540 ppm. A further 20 year delay would result in a stabilization level of 730 ppm, and a delay until 2060 would mean stabilising at over 1,000 ppm. If stabilization targets are met through delayed action, combined with strong rates of mitigation, the emissions profiles result in transient peaks of atmospheric CO2 (and potentially temperature) that exceed the stabilization targets. Stabilization at 450 ppm requires maximum mitigation rates of ?3% to ?5% $\text{year}^{-1}$ , and when delay exceeds 2020, transient peaks in excess of 550 ppm occur. Consequently tipping points for certain Earth system components may be transgressed. Avoiding dangerous climate change is more easily achievable if global mitigation action commences as soon as possible. Starting mitigation earlier is also more effective than acting more aggressively once mitigation has begun.  相似文献   

10.
While the international community has agreed on the long-term target of limiting global warming to no more than 2 °C above pre-industrial levels, only a few concrete climate policies and measures to reduce greenhouse gas (GHG) emissions have been implemented. We use a set of three global integrated assessment models to analyze the implications of current climate policies on long-term mitigation targets. We define a weak-policy baseline scenario, which extrapolates the current policy environment by assuming that the global climate regime remains fragmented and that emission reduction efforts remain unambitious in most of the world’s regions. These scenarios clearly fall short of limiting warming to 2 °C. We investigate the cost and achievability of the stabilization of atmospheric GHG concentrations at 450 ppm CO2e by 2100, if countries follow the weak policy pathway until 2020 or 2030 before pursuing the long-term mitigation target with global cooperative action. We find that after a deferral of ambitious action the 450 ppm CO2e is only achievable with a radical up-scaling of efforts after target adoption. This has severe effects on transformation pathways and exacerbates the challenges of climate stabilization, in particular for a delay of cooperative action until 2030. Specifically, reaching the target with weak near-term action implies (a) faster and more aggressive transformations of energy systems in the medium term, (b) more stranded investments in fossil-based capacities, (c) higher long-term mitigation costs and carbon prices and (d) stronger transitional economic impacts, rendering the political feasibility of such pathways questionable.  相似文献   

11.
We use a coupled climate–carbon cycle model of intermediate complexity to investigate scenarios of stratospheric sulfur injections as a measure to compensate for CO2-induced global warming. The baseline scenario includes the burning of 5,000 GtC of fossil fuels. A full compensation of CO2-induced warming requires a load of about 13 MtS in the stratosphere at the peak of atmospheric CO2 concentration. Keeping global warming below 2°C reduces this load to 9 MtS. Compensation of CO2 forcing by stratospheric aerosols leads to a global reduction in precipitation, warmer winters in the high northern latitudes and cooler summers over northern hemisphere landmasses. The average surface ocean pH decreases by 0.7, reducing the calcifying ability of marine organisms. Because of the millennial persistence of the fossil fuel CO2 in the atmosphere, high levels of stratospheric aerosol loading would have to continue for thousands of years until CO2 was removed from the atmosphere. A termination of stratospheric aerosol loading results in abrupt global warming of up to 5°C within several decades, a vulnerability of the Earth system to technological failure.  相似文献   

12.
Anthropogenic climate change will continue long after anthropogenic CO2 emissions cease. Atmospheric CO2, global warming and ocean circulation will approach equilibrium on the millennial timescale, whereas thermal expansion of the ocean, ice sheet melt and their contributions to sea level rise are unlikely to be complete. Atmospheric CO2 in year 3000 depends non-linearly on the total amount of CO2 emitted and is very likely to exceed the present level of ∼380 ppmv. CO2 is doubled for ∼2500 GtC emitted, quadrupled if all ∼5000 GtC of conventional fossil fuel resources are emitted, and increases by a factor of ∼32 if a further 20,000 GtC of exotic fossil fuel resources are emitted. Global warming in year 3000 will also depend on climate sensitivity to doubling CO2, which is most probably ∼3 C but highly uncertain. Thermal expansion will contribute 0.5–2 m to millennial sea level rise for each doubling of CO2. The Greenland ice sheet could melt completely within the millennium under > 8×CO2, adding a further ∼7 m to sea level. The rate of melt depends on the magnitude of forcing above a regional warming threshold of 1–3 C. The West Antarctic ice sheet could be threatened by 4–10 C local warming, and its potential contribution to millennial sea level rise exceeds current maximum estimates of ∼1 m. The fate of the ocean thermohaline circulation may depend on the rate as well as the magnitude of forcing.  相似文献   

13.
This article assesses Japan's carbon budgets up to 2100 in the global efforts to achieve the 2?°C target under different effort-sharing approaches based on long-term GHG mitigation scenarios published in 13 studies. The article also presents exemplary emission trajectories for Japan to stay within the calculated budget.

The literature data allow for an in-depth analysis of four effort-sharing categories. For a 450?ppm CO2e stabilization level, the remaining carbon budgets for 2014–2100 were negative for the effort-sharing category that emphasizes historical responsibility and capability. For the other three, including the reference ‘Cost-effectiveness’ category, which showed the highest budget range among all categories, the calculated remaining budgets (20th and 80th percentile ranges) would run out in 21–29 years if the current emission levels were to continue. A 550?ppm CO2e stabilization level increases the budgets by 6–17 years-equivalent of the current emissions, depending on the effort-sharing category. Exemplary emissions trajectories staying within the calculated budgets were also analysed for ‘Equality’, ‘Staged’ and ‘Cost-effectiveness’ categories. For a 450?ppm CO2e stabilization level, Japan's GHG emissions would need to phase out sometime between 2045 and 2080, and the emission reductions in 2030 would be at least 16–29% below 1990 levels even for the most lenient ‘Cost-effectiveness’ category, and 29–36% for the ‘Equality’ category. The start year for accelerated emissions reductions and the emissions convergence level in the long term have major impact on the emissions reduction rates that need to be achieved, particularly in the case of smaller budgets.

Policy relevance

In previous climate mitigation target formulation processes for 2020 and 2030 in Japan, neither equity principles nor long-term management of cumulative GHG emissions was at the centre of discussion. This article quantitatively assesses how much more GHGs Japan can emit by 2100 to achieve the 2?°C target in light of different effort-sharing approaches, and how Japan's GHG emissions can be managed up to 2100. The long-term implications of recent energy policy developments following the Fukushima nuclear disaster for the calculated carbon budgets are also discussed.  相似文献   

14.
The threats of wide-scale coral bleaching and reef demise associated with anthropogenic (global) climate change are widely known. Less well considered is the contributing role of conditions local to the reef, in particular reef water quality, in co-determining the physiological tolerance of corals to increasing sea temperatures and declining pH. Here, the modelled benefit of reduced exposure to dissolved inorganic nitrogen (DIN) in terrestrial runoff, which raises the thermal tolerance of coastal coral communities on the central Great Barrier Reef (Australia), is considered alongside alternative future warming scenarios. The simulations highlight that an 80% reduction in DIN ‘buys’ an additional ~50–60?years of reef-building capacity for No Mitigation (‘business-as-usual’) bleaching projections. Moreover, the integrated management benefits provided by: (i) local reductions of ~50% in DIN contained in river loads, and (ii) global stabilisation of atmospheric CO2 below 450?ppm can help ensure the persistence of hard-coral-dominated reefscapes beyond 2100. The simulations reinforce the message that beyond the global imperative to mitigate future atmospheric CO2 emissions there still remains the need for effective local management actions that enhance the resistance and resilience of coral reef communities to the impacts of climate change.  相似文献   

15.
The choice of stabilization target for CO2 concentration depends on the following: what is considered to be dangerous anthropogenic interference with the climate system; the forcings that might arise from non-CO2 gases; and the climate sensitivity. These three factors are specified here probabilistically, as probability density functions (pdfs), and combined to produce a pdf for the CO2 concentration target. There is a probability of 17% that the stabilization target should be less than the present level, and the median target is 536 ppm. The effects of reducing the emissions of non-CO2 gases and/or implementing adaptation strategies are considered probabilistically and shown to alter these figures significantly.  相似文献   

16.
Multi-gas Emissions Pathways to Meet Climate Targets   总被引:1,自引:1,他引:1  
So far, climate change mitigation pathways focus mostly on CO2 and a limited number of climate targets. Comprehensive studies of emission implications have been hindered by the absence of a flexible method to generate multi-gas emissions pathways, user-definable in shape and the climate target. The presented method ‘Equal Quantile Walk’ (EQW) is intended to fill this gap, building upon and complementing existing multi-gas emission scenarios. The EQW method generates new mitigation pathways by ‘walking along equal quantile paths’ of the emission distributions derived from existing multi-gas IPCC baseline and stabilization scenarios. Considered emissions include those of CO2 and all other major radiative forcing agents (greenhouse gases, ozone precursors and sulphur aerosols). Sample EQW pathways are derived for stabilization at 350 ppm to 750 ppm CO2 concentrations and compared to WRE profiles. Furthermore, the ability of the method to analyze emission implications in a probabilistic multi-gas framework is demonstrated. The probability of overshooting a 2 C climate target is derived by using different sets of EQW radiative forcing peaking pathways. If the probability shall not be increased above 30%, it seems necessary to peak CO2 equivalence concentrations around 475 ppm and return to lower levels after peaking (below 400 ppm). EQW emissions pathways can be applied in studies relating to Article 2 of the UNFCCC, for the analysis of climate impacts, adaptation and emission control implications associated with certain climate targets. See for EQW-software and data.  相似文献   

17.
《Climate Policy》2013,13(4):355-376
Many stabilization scenarios have examined the implications of stabilization on the assumption that all regions and all sectors of all of the world's economies undertake emissions mitigations wherever and whenever it is cheapest to do so. This idealized assumption is just one of many ways in which emissions mitigation actions could play out globally, but not necessarily the most likely. This paper explores the implications of generic policy regimes that lead to stabilization of CO2 concentrations under conditions in which non-Annex I regions delay emissions reductions and in which carbon prices vary across participating regions. The resulting stabilization scenarios are contrasted with the idealized results. Delays in the date by which non-Annex I regions begin to reduce emissions raise the price of carbon in Annex I regions relative to the price of carbon in Annex I in an idealized regime for any given CO2 concentration limit. This effect increases the longer the delay in non-Annex I accession, the lower the non-Annex I carbon prices relative to the Annex I prices, and the more stringent the stabilization level. The effect of delay is very pronounced when CO2 concentrations are stabilized at 450 ppmv, however the effect is much less pronounced at 550 ppmv and above. For long delays in non-Annex I accession, 450 ppmv stabilization levels become infeasible.  相似文献   

18.
Increasing reliance on natural gas (methane) to meet global energy demands holds implications for atmospheric CO2 concentrations. Analysis of these implications is presented, based on a logistic substitution model viewing energy technologies like biological species invading an econiche and substituting in case of superiority for existing species. This model suggests gas will become the dominant energy source and remain so for 50 years, peaking near 70 percent of world supply. Two scenarios of energy demand are explored, one holding per capita consumption at current levels, the second raising the global average in the year 2100 to the current U.S. level. In the first (efficiency) scenario concentrations peak about 450 ppm, while in the second (long wave) they near 600 ppm. Although projected CO2 concentrations in a methane economy are low in relation to other scenarios, the projections confirm that global climate warming is likely to be a major planetary concern throughout the twenty-first century. A second finding is that data on past growth of world per capita energy consumption group neatly into two pulses consistent with longwave theories in economics.  相似文献   

19.
Various aspects of the role of uncertainty in greenhouse gas emission reduction policy are analyzed with the integrated assessment model FUND. FUND couples simple models of economy, climate, climate impacts, and emission abatement. Probability distribution functions are assumed for all major parameters in the model. Monte Carlo analyses are used to study the effects of parametric uncertainties. Uncertainties are found to be large and grow over time. Uncertainties about climate change impacts are more serious than uncertainties about emission reduction costs, so that welfare-maximizing policies are stricter under uncertainty than under certainty. This is more pronounced without than with international cooperation. Whether or not countries cooperate with one another is more important than whether or not uncertainty is considered. Meeting exogenously defined emission targets may be more or less difficult under uncertainty than under certainty, depending on the asymmetry in the uncertainty and the central estimate of interest. The major uncertainty in meeting emissions targets in each of a range of possible future is the timing of starting (serious) reduction policies. In a scenario aiming at a stable CO2 concentration of 550 ppm, the start date varies 20 years for Annex I countries, and much longer for non-Annex countries. Atmospheric stabilization at 550 ppm does not avoid serious risks with regard to climate change impacts. At the long term, it is possible to avoid such risks but only through very strict emission control at high economic costs.  相似文献   

20.
International negotiations under the UN Framework Convention on Climate Change could take several different approaches to advance future mitigation commitments. Options range from trying to reach consensus on specific long-term atmospheric concentration targets (e.g. 550 ppmv) to simply ignoring this contentious issue and focusing instead on what can be done in the nearer term. This paper argues for a strategy that lies between these two extremes. Internationally agreed threshold levels for certain categories of impacts or of risks posed by climate change could be translated into acceptable levels of atmospheric concentrations. This could help to establish a range of upper limits for global emissions in the medium term that could set the ambition level for negotiations on expanded GHG mitigation commitments. The paper thus considers how physical and socio-economic indicators of climate change impacts might be used to guide the setting of such targets. In an effort to explore the feasibility and implications of low levels of stabilisation, it also quantifies an intermediate global emission target for 2020 that keeps open the option to stabilise at 450 ppmv CO2 If new efforts to reduce emissions are not forthcoming (e.g. the Kyoto Protocol or similar mitigation efforts fail), there is a significant chance that the option of 450 ppmv CO2 is out of reach as of 2020. Regardless of the preferred approach to shaping new international commitments on climate change, progress will require improved information on the avoided impacts climate change at different levels of mitigation and careful assessment of mitigation costs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号