首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A field study was conducted to clarify the effect of rhizosphere processes on the accumulation and partitioning of heavy metals (Pb, Zn, Cu, Cr, Cd and Ni) in mangrove sediments. Metals were fractionated by a sequential extraction procedure into three chemically distinct fractions: water soluble, exchangeable and carbonate bound (B1), Fe–Mn oxide bound (B2), and organic and sulfide bound (B3). Results indicate that rhizosphere processes tend to increase the metal concentrations in the rhizosphere sediments. However, plant uptake may result in the decrease of the metal concentrations in the rhizosphere sediments when the metal concentrations are relatively low in the bulk sediments. Compared with the bulk sediments, the rhizosphere sediments have low concentrations of heavy metals in the B1 and B2 fractions and high concentrations in the B3 fraction. Either an increase or decrease in the residual fraction of heavy metals in the rhizosphere sediments may appear, depending on whether the formation of the refractory metal-organic compounds or the activation of the residual fractions dominates. Results also indicate that mangrove plants absorb and store non-essential metals in the perennial tissues, thus reducing the export of non-essential metals via leaf litter transport. Mangrove plants are excellent candidates for phytostabilization of heavy metals in intertidal substrates.  相似文献   

2.
The goal of this study was to evaluate the soil properties and their modifications within the rhizosphere of spontaneous vegetation as key factors to assess the phytomanagement of a salt marsh polluted by mining wastes. A field survey was performed based on a plot sampling design. The results provided by the analyses of rhizospheric soil (pH, electrical conductivity (EC), organic carbon, total nitrogen, etc.) and metal(loid)s’ phytoavailability (assessed by EDTA) were discussed and related to plant metal uptake. The averages of pH and EC values of the bulk soil and rhizospheric samples were in the range of neutral to slightly alkaline (pH 7–8) to saline (>2 dS m?1), respectively. Heavy metal and As concentrations (e.g. ~600 mg kg?1 As, ~50 mg kg?1 Cd, ~11,000 mg kg?1 Pb) were higher in the rhizosphere for both total and EDTA-extractable fraction. Phragmites australis uptaked the highest concentrations in roots (e.g. ~66 mg kg?1 As, ~1,770 mg kg?1 Zn) but not in shoots, for which most of plant species showed low values for Zn (<300 mg kg?1) but not for Cd (>0.5 mg kg?1) or Pb (~20–40 mg kg?1). Vegetation distribution in the studied salt marsh looked to be more affected by salinity than by metal pollution. The free availability of water for plants and the incoming nutrient-enriched effluents which flow through the salt marsh may have hindered the metal(loid)s’ phytotoxicity. The phytomanagement of these polluted areas employing the spontaneous vegetation is a good option in order to improve the ecological indicators and to prevent the transport of pollutants to nearby areas.  相似文献   

3.
The Pliocene aquifer receives inflow of Miocene and Pleistocene aquifer waters in Wadi El Natrun depression. The aquifer also receives inflow from the agricultural activity and septic tanks. Nine sediment samples were collected from the Pliocene aquifer in Wadi E1 Natrun. Heavy metal (Cu, Sr, Zn, Mn, Fe, Al, Ba, Cr, Ni, V, Cd, Co, Mo, and Pb) concentrations of Pliocene aquifer sediments were investigated in bulk, sand, and mud fractions. The determination of extractable trace metals (Cu, Zn, Fe, Mn, and Pb) in Pliocene aquifer sediments using sequential extraction procedure (four steps) has been performed in order to study environmental pathways (e.g., mobility of metals, bounding states). These employ a series of successively stronger chemical leaching reagents which nominally target the different compositional fractions. By analyzing the liquid leachates and the residual solid components, it is possible to determine not only the type and concentration of metals retained in each phase but also their potential ecological significance. Cu, Sr, Zn, Mn, Fe, and Al concentrations are higher in finer sediments than in coarser sediments, while Ba, Cr, Ni, V, Cd, Co, Mo, and Pb are enriched in the coarser fraction. The differences in relative concentrations are attributed to intense anthropogenic inputs from different sources. Heavy metal concentrations are higher than global average concentrations in sandstone, USEPA guidelines, and other local and international aquifer sediments. The order of trace elements in the bulk Pliocene aquifer sediments, from high to low concentrations, is Fe?>?Al?>?Mn?>?Cr?>?Zn?>?Cu?>?Ni?>?V?>?Sr?>?Ba?>?Pb?>?Mo?>?Cd?>?Co. The Pliocene aquifer sediments are highly contaminated for most toxic metals, except Pb and Co which have moderate contamination. The active soluble (F0) and exchangeable (F1) phases are represented by high concentrations of Cu, Zn, Fe, and Mn and relatively higher concentrations of Pb and Cd. This may be due to the increase of silt and clay fractions (mud) in sediments, which act as an adsorbent, retaining metals through ion exchange and other processes. The order of mobility of heavy metals in this phase is found to be Pb?>?Cd?>?Zn?>?Cu?>?Fe?>?Mn. The values of the active phase of most heavy metals are relatively high, indicating that Pliocene sediments are potentially a major sink for heavy metals characterized by high mobility and bioavailability. Fe–Mn oxyhydroxide phase is the most important fraction among labile fractions and represents 22% for Cd, 20% for Fe, 11% for Zn, 8% for Cu, 5% for Pb, and 3% for Mn. The organic matter-bound fraction contains 80% of Mn, 72% of Cu, 68% of Zn, 60% of Fe, 35% of Pb, and 30% of Cd (as mean). Summarizing the sequential extraction, a very good immobilization of the heavy metals by the organic matter-bound fraction is followed by the carbonate-exchangeable-bound fraction. The mobility of the Cd metal in the active and Fe–Mn oxyhydroxide phases is the highest, while the Mn metal had the lowest mobility.  相似文献   

4.
Soil pollution in agricultural areas surrounding big cities is a major environmental problem. Tabriz is the largest city in the northwest of Iran and the fourth largest city in the country. Soil samples were taken from 46 sites in the suburbs of the Tabriz city, and separate samples were taken from control site and analyzed. The results indicated that the mean pH value of the soil samples was 9.29, while the mean EC value was 354.33 μs/cm and the amount of TOC and TOM was 0.99 and 1.7 %, respectively. The mean concentrations of Cd, Pb, Cu, Cr, Ni, and Zn in the soil were determined to be 1.61, 10.56, 101.25, 87.40, 38.73, and 98.27 mg/kg, respectively (dry weight). The concentrations of heavy metals (Cd, Pb, Cu, Cr, and Zn), with the exception of Ni, were higher than the concentrations of the same heavy metals at the control site. Despite these elevated concentrations, the concentrations of heavy metals were lower than the toxicity threshold limit of agricultural soils. The values of the pollution index revealed that the metal pollution level was Pb > Cr > Cu > Zn > Cd > Ni, and the mean value of the integrated pollution index was determined to be 1.81, indicating moderate pollution. Nevertheless, there were some sites that were severely polluted by Cr (maximum values of 1,364 mg/kg). It was concluded that city probably has affected the surrounding agricultural area. Application of wastewater (municipal and industrial) as irrigation water, using of sludge as soil fertilizer, and atmospheric perceptions have been considered as main reasons of increased heavy metals concentrations found in the studied area.  相似文献   

5.
This study was carried out to determine the concentration of heavy metals (Cd, Ni, Pb, Cr, Ni and Zn) in ordinary Portland cement (OPC) produced from the co-processing with hazardous waste in comparison with OPC produced using natural raw materials. The results showed that the concentration of heavy metals in cement produced from natural raw material was in the order of Zn > Pb > Cr > Ni > Cu > Cd. Zn and Cd were the highest and the lowest concentrations, respectively, in cements produced from the co-processing activity. The difference between heavy metals concentrations in OPC produced with and without co-processing was found to be statistically significant. The concentration of heavy metals in the cement produced is generally factory dependent. The human risk assessment associated with the heavy metals for non-carcinogenic and carcinogenic risks has been evaluated. The calculated hazard index (HI) and total lifetime cancer risks (LCR) were lower than the acceptable threshold reference values, HI < 1 and LCR < 1 × 10?4, respectively. Thus, it is anticipated that there is no potential of non-carcinogenic and carcinogenic risks for both adult and children. However, the findings indicated that there is a need for regulatory monitoring. The exposure pathway for both non-carcinogenic and carcinogenic risks are both in the order of ingestion > dermal > inhalation.  相似文献   

6.
This study was carried out in order to determine the concentration of heavy metals, e.g., lead (Pb), cadmium (Cd), copper (Cu), zinc (Zn), iron (Fe), manganese (Mn), nickel (Ni) and chromium (Cr) in road dust in Kuala Lumpur’s city centre. Samples were collected from four sampling locations, each of which had four sampling points and three replications. Heavy metals from different fractions of particles separated by different diameter sizes: d < 63 μm (Fraction A), 63 < d < 125 μm (Fraction B) and 125 < d < 250 μm (Fraction C) were analyzed using inductively coupled plasma mass spectrometry. The results from this study showed that concentration of heavy metals was dominated by the smallest particle size: <63 μm and that Fe was the most abundant heavy metal overall, followed by Cu > Mn > Zn > Pb > Ni > Cr > Cd. The fact that Cd had the highest enrichment factor value (EF) for all particle sizes indicates that anthropogenic activities contributed to the presence of this metal. There was also a higher EF value for heavy metals in small particle (Fraction A), compared to Fraction B and C, which suggests that fine particles were being produced through anthropogenic activities. Cluster analysis and principal component analysis demonstrated the likelihood of the heavy metals detected in the road dust, originating from road traffic and industrial activities.  相似文献   

7.
Ulsan mine produced the iron ore minerals of magnetite, arsenopyrite, and scheelite in 1992, and serpentine was developed from 1977 to 2002. The soils of the mine were contaminated by heavy metals such as As, Zn, Ni, and Cd. Heavy metals of Ni and Zn came mostly from serpentinite, and As was derived mainly from arsenopyrite in the scan-type iron ore body. As, Zn, and Ni were major contaminants, but Cd was a minor contaminant on a basis of Korean standard. The heavy metals in the deep depth (>?5 m) came from the host rocks, and those in the shallow depth (<?5 m) were derived from the organic–mineral complexation soil. The remediation plan was a soil washing for highly contaminated soils and the containment of clay materials for less contaminated soils. Even though the remediation methods were successful, the continuous monitoring and the analysis of monitoring data are still necessary for the conservation of soil and groundwater around the study area.  相似文献   

8.
Algal species which are ubiquitous along the coastlines of many countries reflect the environmental conditions of the coastal seawater and may serve as useful biomonitors of anthropogenic pollution. Heavy metal concentrations of ten elements (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) of potential environmental concern were determined in seawater, sediments and twelve species of benthic marine macroalgae from four locations (Glenelg, Port Adelaide, Port Broughton and Port Pirie) along the South Australian coastline. The four sites chosen represented varying degrees of metal contamination, where the capacity for benthic macroalgae to accumulate heavy metals from the environment was evaluated. Spatial differences in heavy metal concentration in both seawaters and sediments were observed at all sites with the highest concentrations of heavy metals including Cd (125 μg g?1), Pb (2,425 μg g?1) and Zn (7,974 μg g?1) found in the finer sediment fractions (<250 μm) of Port Pirie. While all algal species studied (Acrosorium polyneurum, Anotrichium tenue, Cystophora Cephalornithos Cystophora monillifera, Cystophora monilliformis, Dictyopteris australis, Gelidium micropterum, Gracilaria, Hormophysa Cuneiformis, Sargassum cinctum, Scaberia agardhii and Ulva lactuca) accumulated metals to varying degrees, Blindigia marginata was a good biomonitor species for a number of metals including Cd, Co, Cr, Fe, Pb and Zn, exhibiting both relatively high total metal concentrations and significant concentration factors.  相似文献   

9.
In this study, total heavy metal content of soil and their spatial distribution in Sar?seki-Dörtyol district were analyzed and mapped. Variable distance grids (0.5, 1.0 and 2.0 km) were established, with a total of 102 soil samples collected from two different soil depths (0–5 and 5–20 cm) at intersections of the grids (51 sampling point). Soil samples were analyzed for heavy metals (Cd, Co, Cr, Cu, Pb, Zn, Mn, Fe, and Ni). The most proper variogram models for the contents of all heavy metal were spherical and exponential ones. The ranges of semivariograms were between 1.9 and 31.1 km. According to the calculated geoaccumulation (I geo) values, samples from both soil depths were classified as partly to highly polluted with Cd and Ni and partly polluted with Cr and as partly polluted-to-not polluted with Pb and not polluted with Cu, Fe and Mn. Similar results were also obtained when evaluated by the enrichment factor. The contamination levels of the heavy metals were Ni > Cd > Cr > Pb > Zn > Cu > Co > Fe > Mn in decreasing order. The soils in the study area are contaminated predominantly by Cd and Ni, which may give rise to various health hazards or diseases. Cadmium pollution results primarily from industrial activities and, to a lesser extent, from vehicular traffic, whereas Ni contents in the study area result from parent material, phosphorus fertilizer, industries, and vehicles.  相似文献   

10.
The concentrations and speciation of heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) in the sediments of the nearshore area, river channel and coastal zones of the Yangtze estuary, China, were systematically investigated in this study. The concentrations of all heavy metals except Ni in the sediments of the nearshore area were higher than those of the river channel and coastal zones. In the nearshore area, the concentrations of most heavy metals except Hg in the sediments of the southern branch were higher than those of the northern branch because of the import of pollutants from the urban and industrial activities around. When compared with the threshold effect level (TEL) and geochemical background levels, Cr, Ni and As accumulated and posed potential adverse biological effects. The speciation analysis suggested that Cd, Pb and Zn in the sediments of the three zones showed higher bioavailability than the other heavy metals, and thus posed ecological risk. Significant correlations were observed among Cr, Cu, Ni and Zn (r > 0.77) in the nearshore area, Ni, Cu, Zn and Pb (r > 0.85) in the river channel and Ni, Cu, Cr, Pb and Zn (r > 0.75) in the coastal zone. Principal component analysis (PCA) indicated that the discharge of unban and industrial sewage, shipping pollution and the properties of the sediments (contents of Fe, Mn, Al, TOC, clay and silt) dominated the distribution of heavy metal in the nearshore area, river channel and coastal zones of the Yangtze estuary.  相似文献   

11.
Heavy metal pollution in the surficial sediments derived from the estuary in Daliao River and Yingkou Bay is investigated to assess environmental quality, pollution level, bioavailability and toxicity. The ranges of Pb, Co, Zn and Cu concentrations in the surficial sediments are: 16.57–39.18, 3.61–16.02, 16.53–39.18, 2.77–43.80 mg/kg. Results of the geoaccumulation index (I geo) show that the pollution levels of four metals are in the “unpolluted” class except for Pb in 15 sampling sites. The pollution level of the study area assessed by pollution load index (PLI) shows that except for the moderately polluted region of sites 1, 2, 3, 8, 12 and 13, other sites belong to unpolluted state. The sequence of pollution extent of different heavy metals is: Pb > Zn > Co > Cu. At all sampling sites, the grades of potential ecological risk of Co, Cu, Pb and Zn are “light”. The order of potential ecological risk is: Pb > Co > Cu > Zn. Sequential extraction of the metals indicates that the states of Pb, Cu, Co and Zn in the sediment are relatively stable at most sites of the estuary in Daliao River and Yingkou Bay, which means that there is a low source of pollution arriving in this area. While only at several sites, Co, Pb and Zn are labile, which are considered as anthropogenically originated.  相似文献   

12.
Heavy metals are introduced in human tissue through breathing air, food chain and human skin. They can cause damage to the nervous system and internal organs. In the present study, sixty street dust samples were collected from the central area of Tehran and were digested in the laboratory to determine the content of Zn, Ni, Cd, Cr, Cu and Pb, using inductively coupled plasma optical emission spectrometry (ICP-OES). The level of contamination with the analyzed metals was determined according to the following indices: geo-accumulation index (I geo), enrichment factor (EF), pollution index (PI), integrated pollution index (IPI) and potential ecological risk index (RI). The average concentration of heavy metals found was in the order of Zn > Cu > Pb > Ni > Cr > Cd. The average I geo values for Cd, Cr, Cu, Ni, Pb and Zn were 1.53, ?1.88, 2.68, ?0.67, 1.62 and 2.70, respectively. Among the investigated heavy metals, zinc and copper had the maximum average EF values and were placed into the “very severe enrichment” class. Potential ecological risk factor (E r) also indicated that Cd had the highest risk, and it was classified as of considerable potential ecological risk. Therefore, it is necessary to pay more attention to the appearance of Cd in the human environment. The calculated potential ecological risk index values also illustrated that the street dust samples presented a “moderate ecological risk.” The calculated IPI values showed that the pollution levels of the street dust samples ranged from high to extremely high.  相似文献   

13.
A study of agricultural lands around an abandoned Pb–Zn mine in a karst region was undertaken to (1) assess the distribution of heavy metals in the agricultural environment, in both dry land and paddy field; (2) discriminate between natural and anthropogenic contributions; and (3) identify possible sources of any pollution discovered. Ninety-two samples of cultivated soils were collected around the mine and analyzed for eight heavy metals, pH, fluoride (F?), cation exchange capacity, organic matter, and grain size. The eight heavy metals included Cd, Cr, Cu, Ni, Pb, Zn, As, and Hg. The average concentrations (mg/kg) obtained were as follows: Cd 16.76 ± 24.49, Cr 151.5 ± 18.24, Cu 54.28 ± 18.99, Ni 57.5 ± 14.43, Pb 2,576.2 ± 1,096, Zn 548.7 ± 4,112, As 29.1 ± 6.36, and Hg 1.586 ± 1.46. In a site where no impact from mining activities was detected, the mean and median of Cd, Cu, Ni, Pb, Zn, As, and Hg concentrations in investigated topsoils were higher than the mean and median of heavy metal concentrations in reference soils. An ensemble of basic and multivariate statistical analyses was performed to reduce the multidimensional space of variables and samples. Two main sets of heavy metals were revealed as indicators of natural and anthropogenic influences. The results of principal component analysis (PCA) and categorical PCA demonstrated that Cd, Cu, Pb, Zn, and Hg are indicators of anthropogenic pollution, whereas Cr, As and Ni concentrations are mainly associated with natural sources in the environment. The contamination from Pb–Zn mining operations, coupled with the special karst environment, was a key contributing factor to the spatial distribution of the eight heavy metals in the surrounding soil. The values of heavy metals in the soil samples suggested the necessity of conducting a rigorous assessment of the health and environmental risks posed by these residues and taking suitable remedial action as necessary.  相似文献   

14.
Serpentinite soils, common throughout the world, are characterized by low calcium-to-magnesium ratios, low nutrient levels and elevated levels of heavy metals. Yet the water quality and heavy metal concentrations in sediments of streams draining serpentine geology have been little studied. The aim of this work was to collect baseline data on the water quality (for both wet and dry seasons) and metals in sediments at 11 sites on the Marlborough Creek system, which drains serpentine soils in coastal central Queensland, Australia. Water quality of the system was characterized by extremely hard waters (555–698 mg/L as CaCO3), high dissolved salts (684–1285 mg/L), pH (8.3–9.1) and dissolved oxygen (often >110% saturation). Cationic dominance was Mg > Na > Ca > K and for anions HCO3 > Cl > SO4. Al, Cu and Zn in stream waters were naturally high and exceeded Australian and New Zealand Environment and Conservation Council guidelines. Conductivity displayed the highest seasonal variability, decreasing significantly after wet season flows. There was little seasonal variation in pH, which often exceeded regional guidelines. Stream sediments were enriched with concentrations of Ni, Cr, Co and Zn up to 35, 21, 10 and 2 times the world average for shallow sediments, respectively. Concentrations for Ni and Cr were up to 60 and 16 times those of the relevant Interim Sediment Quality Guidelines Low Trigger Values, respectively. The distinctive nature of the water and sediment data suggests that it would be appropriate to establish more localized water quality and sediment guidelines for the creek system for the water quality parameters conductivity, Cu and Zn (and possibly Cr and Cd also), and for sediment concentrations of Cd, Cr and Ni.  相似文献   

15.
Heavy metals in tailings and mining wastes from abandoned mines can be released into adjacent agricultural field and bioaccumulated in crops or vegetables. Therefore, prediction of metal bioavailability has become an important issue to prevent adverse effect of bioaccumulated metals on human health. In this study, single and sequential extraction methods were compared using multivariate analysis to predict the bioavailability of Cd and As in contaminated rhizosphere soils. Single extraction using 0.1 M HCl for Cd and 1.0 M HCl for As had an extraction efficiency of 8–12% for soil Cd and 14–17% for soil As compared to total concentration extracted with aqua regia. Using sequential extraction, Fe–Mn-bound Cd (FR3) and residual Cd (FR5) were the dominant fractions representing 43 and 41% of total Cd concentration. For As, the strongly absorbed form (FR2) was the most abundant chemical fraction showing 45–54% of the total As concentration in soil. Multivariate analyses showed that single extraction with HCl and total concentration of Cd and As in soil were significantly correlated to potato and green onion plant tissue metal concentration. Although little information was obtained with multiple regression analysis because of multicollinearity of variables, the result of principle component analysis (PCA) revealed that the highest positive loading was obtained using total concentration of Cd and As in soil in the first principle component (PC1). In addition, total concentration of Cd and As in soil was independently grouped with other chemical fractions by cluster analysis. Therefore, the overall result of this research indicated that total concentrations of Cd and As in rhizosphere soils were the best predictors of bioavailability of heavy metals in these contaminated soils.  相似文献   

16.
Heavy metal contamination is prevalent in urban areas where soil represents a significant sink. Urban topsoil samples were collected and metal concentrations including Pb, Zn, Cu, Cd, Ni and Co were measured by inductively coupled plasma mass spectrometry. All analyzed metals showed elevated concentrations compared to local background concentrations with the exception of Co. Cadmium was the metal most enriched in the analyzed area, presenting enrichment factor, on average, of 16.5. Mineral magnetic concentration parameters (χlf and SIRM) exhibited significant relationships with Pb, Zn, Cu and Cd, respectively. Zinc, Co and Ni exhibited a substantial build-up in the finest particles (<28 μm). Enrichment was positively correlated with carbonate complexation constants (but not bulk solubility products) and suggests that the dominant mechanism controlling metal enrichment in these samples is a precipitation of carbonate surfaces that subsequently adsorb metals.  相似文献   

17.
Dynamics of heavy metals in the surface sediments of Mahanadi river estuarine system were studied for three different seasons. This study demonstrates that the relative abundance of these metals follows in the order of Fe > Mn > Zn > Pb > Cr > Ni ≥ Co > Cu > Cd. The spatial pattern of heavy metals supported by enrichment ratio data, suggests their anthropogenic sources possibly from various industrial wastes and municipal wastes as well as agricultural runoff. The metal concentrations in estuarine sediments are relatively higher than in the river due to adsorption/accumulation of metals on sediments during saline mixing, while there is a decreasing trend of heavy metal concentrations towards the marine side. The temporal variations for metals, such as Fe, Mn, Zn, Ni and Pb exhibit higher values during monsoon season, which are related to agricultural runoff. Higher elemental concentrations are observed during pre-monsoon season for these above metals (except Ni) at the polluted stations and for metals, such as Cr, Co and Cd at all sites, which demonstrate the intensity of anthropogenic contribution. R-mode factor analysis reveals that “Fe–Mn oxy hydroxide”, “organic matter”, “CaCO3”, and “textural variables” factors are the major controlling geochemical factors for the enrichment of heavy metals in river estuarine sediment and their seasonal variations, though their intensities were different for different seasons. The relationships among the stations are highlighted by cluster analysis, represented in dendrograms to categorize different contributing sites for the enrichment of heavy metals in the river estuarine system.  相似文献   

18.
Consuming edible plants contaminated by heavy metals transferred from soil is an important pathway for human exposure to environmental contaminants. In the past several decades, heavy metal accumulation in contaminated soil has been widely studied; however, few researches investigated the background levels of metals in plants and evaluated the difference in plants grown in soils produced from different parent rocks. In this study, a systemic survey of heavy metal distribution and accumulation in the soil–pepper system was investigated in an unpolluted area, Hainan Island, China. Levels of Cu, Pb, Zn and Cd were measured in soils and pepper fruits from five representative pepper-growing areas with different soil parent rocks (i.e. basalt, granite, sedimentary rock, metamorphic rock and alluvial deposits). Average concentrations of Cu, Pb, Zn and Cd in pepper fruits were 11.52, 0.84, 8.77 and 0.05 mg/kg, respectively. The concentrations of heavy metals in soils are controlled by the parent materials and varied greatly from in different areas. Heavy metal contents in all pepper samples were lower than the Chinese maximum contaminant levels. The relationship between heavy metals in soils and biological absorption coefficient (BAC) of pepper fruits suggests that the uptake ability of pepper for soil metals depends mainly on the physiological mechanism, while in some cases, the soil types and supergene environment are also important.  相似文献   

19.
The present study was carried out to investigate the impact of anthropogenic influences on Cuddalore coast, Southeast coast of India, with regard to physicochemical parameters and heavy metal concentration in the surface water and sediment samples of the study area. The samples were collected in different seasons of the year (January–December 2010) and analysed for physicochemical parameters (Temperature, pH, salinity, nitrate, nitrite, ammonia, phosphate and silicate) and heavy metals (Cd, Cu, Pb and Zn) using standard methods. Results showed that physicochemical characteristics and heavy metals concentration in the samples of the study area were varied seasonally and spatially. The concentrations of heavy metals in water and sediment samples of the study area were higher in the monsoon season compared with those of other seasons. The heavy metal concentration in collected samples was found to be above WHO standards. The order of heavy metals in water and sediment samples was Pb > Cu > Cd > Zn. The heavy metal data were analysed through widely using multivariate statistical methods including principle component analysis (PCA) and cluster analysis (CA). CA classified the sampling sites into three clusters based on contamination sources and season. The PCA revealed that the season has a huge impact on the levels, types and distribution of metals found in water and sediment samples. The study also shows the main basis of heavy metals pollution at Cuddalore coast is land based anthropogenic inputs as a result of discharging of waste from industries, municipal, agricultural activities and sewage into estuarine regions, which carries the wastes into coastal area during tidal action. Statistical analyses and experimental data revealed that the Cuddalore coast may cause health risk to the recreational users and fisher folk, ultimately warrants environmental quality management to control heavy metal contamination.  相似文献   

20.
Soil samples from chromite mining site and its adjacent overburden dumps and fallow land of Sukinda, Odisha, were analysed for their physico-chemical, microbial and metal contents. Chromite mine soils were heterogenous mixture of clay, mud, minerals and rocks. The pH of the soils ranges between 5.87 and 7.36. The nutrient contents of the mine soils (N, P, K and organic C) were found to be extremely low. Analysis of chromite mine soils revealed accumulation of a number of metals in high concentrations (Fe > Cr > Mn > Ni > Zn > Pb > Sr) which exceeded ecotoxicological limits in soil. Correlation and cluster analysis of metals revealed a strong relation between Cr, Ni, Fe, Mn among the different attributes studied. Assessment of different microbial groups such as fungi, actinomycetes and bacteria (heterotrophic, spore forming, free-living nitrogen fixing, phosphate solubilising and cellulose degrading) from mine soils were found to be either extremely low or absent in some soil samples. Further chromium tolerant bacteria (CTB) were isolated using 100 mg/L Cr(VI) enriched nutrient agar medium and were screened for their tolerance towards increasing concentrations of hexavalent chromium and other toxic metals. Out of 23 CTB isolates, three bacteria tolerated up to 900 mg/L, 6 up to 500 mg/L, 20 up to 200 mg/L of Cr(VI). These bacteria were also found to be sensitive towards Cu > Co > Cd and very few CTB strains could show multiple metal tolerance. These strains have great scope for their application in bioremediation of toxic chromium ions in presence of other metals ions, which needs to be explored for their biotechnological applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号