首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 775 毫秒
1.
The devastation due to storm surge flooding caused by extreme wind waves generated by the cyclones is a severe apprehension along the coastal regions of India. In order to coexist with nature’s destructive forces in any vulnerable coastal areas, numerical ocean models are considered today as an essential tool to predict the sea level rise and associated inland extent of flooding that could be generated by a cyclonic storm crossing any coastal stretch. For this purpose, the advanced 2D depth-integrated (ADCIRC-2DDI) circulation model based on finite-element formulation is configured for the simulation of surges and water levels along the east coast of India. The model is integrated using wind stress forcing, representative of 1989, 1996, and 2000 cyclones, which crossed different parts of the east coast of India. Using the long-term inventory of cyclone database, synthesized tracks are deduced for vulnerable coastal districts of Tamil Nadu. Return periods are also computed for the intensity and frequency of cyclones for each coastal district. Considering the importance of Kalpakkam region, extreme water levels are computed based on a 50-year return period data, for the generation of storm surges, induced water levels, and extent of inland inundation. Based on experimental evidence, it is advocated that this region could be inundated/affected by a storm with a threshold pressure drop of 66 hpa. Also it is noticed that the horizontal extent of inland inundation ranges between 1 and 1.5 km associated with the peak surge. Another severe cyclonic storm in Tamil Nadu (November 2000 cyclone), which made landfall approximately 20 km south of Cuddalore, has been chosen to simulate surges and water levels. Two severe cyclonic storms that hit Andhra coast during 1989 and 1996, which made landfall near Kavali and Kakinada, respectively, are also considered and computed run-up heights and associated water levels. The simulations exhibit a good agreement with available observations from the different sources on storm surges and associated inundation caused by these respective storms. It is believed that this study would help the coastal authorities to develop a short- and long-term disaster management, mitigation plan, and emergency response in the event of storm surge flooding.  相似文献   

2.
Extreme sea-level events (e.g. caused by storm surges) can cause coastal flooding, and considerable disruption and damage. To understand the impacts or hazards expected by different sea levels, waves and defence failures, it is useful to monitor and analyse coastal flood events, including generating numerical simulations of floodplain inundation. Ideally, any such modelling should be calibrated and validated using information recorded during real events, which can also add plausibility to synthetic flood event simulations. However, such data are rarely compiled for coastal floods. This paper demonstrates the capture of such a flood event dataset, and its integration with defence and floodplain modelling to reconstruct, archive and better understand the regional impacts of the event. The case-study event comprised a significant storm surge, high tide and waves in the English Channel on 10 March 2008, which resulted in flooding in at least 37 distinct areas across the Solent, UK (mainly due to overflow and outflanking of defences). The land area flooded may have exceeded 7 km2, with the breaching of a shingle barrier at Selsey contributing to up to 90 % of this area. Whilst sea floods are common in the Solent, this is the first regional dataset on flood extent. The compilation of data for the validation of coastal inundation modelling is discussed, and the implications for the analysis of future coastal flooding threats to population, business and infrastructure in the region.  相似文献   

3.
Shanghai is physically and socio-economically vulnerable to accelerated sea level rise because of its low elevation, flat topography, highly developed economy and highly-dense population. In this paper, two scenarios of sea level rise and storm surge flooding along the Shanghai coast are presented by forecasting 24 (year 2030) and 44 (year 2050) years into the future and are applied to a digital elevation model to illustrate the extent to which coastal areas are susceptible to levee breach and overtopping using previously developed inflow calculating and flood routing models. Further, the socio-economic impacts are examined by combining the inundation areas with land use and land cover change simulated using GeoCA-Urban software package. This analysis shows that levee breach inundation mainly occurs in the coastal zones and minimally intrudes inland with the conservative protection of dike systems designed. However, storm surge flooding at the possible maximum tide level could cause nearly total inundation of the landscape, and put approximately 24 million people in Shanghai under direct risk resulting from consequences of flooding (e.g. contamination of potable water supplies, failure of septic systems, etc.).  相似文献   

4.
Evaluation of coastal inundation hazard for present and future climates   总被引:2,自引:1,他引:1  
Coastal inundation from hurricane storm surges causes catastrophic damage to lives and property, as evidenced by recent hurricanes including Katrina and Wilma in 2005 and Ike in 2008. Changes in hurricane activity and sea level due to a warming climate, together with growing coastal population, are expected to increase the potential for loss of property and lives. Current inundation hazard maps: Base Flood Elevation maps and Maximum of Maximums are computationally expensive to create in order to fully represent the hurricane climatology, and do not account for climate change. This paper evaluates the coastal inundation hazard in Southwest Florida for present and future climates, using a high resolution storm surge modeling system, CH3D-SSMS, and an optimal storm ensemble with multivariate interpolation, while accounting for climate change. Storm surges associated with the optimal storms are simulated with CH3D-SSMS and the results are used to obtain the response to any storm via interpolation, allowing accurate representation of the hurricane climatology and efficient generation of hazard maps. Incorporating the impact of anticipated climate change on hurricane and sea level, the inundation maps for future climate scenarios are made and affected people and property estimated. The future climate scenarios produce little change to coastal inundation, due likely to the reduction in hurricane frequency, except when extreme sea level rise is included. Calculated coastal inundation due to sea level rise without using a coastal surge model is also determined and shown to significantly overestimate the inundation due to neglect of land dissipation.  相似文献   

5.
Catastrophic flooding associated with sea-level rise and change of hurricane patterns has put the northeastern coastal regions of the United States at a greater risk. In this paper, we predict coastal flooding at the east bank of Delaware Bay and analyze the resulting impact on residents and transportation infrastructure. The three-dimensional coastal ocean model FVCOM coupled with a two-dimensional shallow water model is used to simulate hydrodynamic flooding from coastal ocean water with fine-resolution meshes, and a topography-based hydrologic method is applied to estimate inland flooding due to precipitation. The entire flooded areas with a range of storm intensity (i.e., no storm, 10-, and 50-year storm) and sea-level rise (i.e., current, 10-, and 50-year sea level) are thus determined. The populations in the study region in 10 and 50 years are predicted using an economic-demographic model. With the aid of ArcGIS, detailed analysis of affected population and transportation systems including highway networks, railroads, and bridges is presented for all of the flood scenarios. It is concluded that sea-level rise will lead to a substantial increase in vulnerability of residents and transportation infrastructure to storm floods, and such a flood tends to affect more population in Cape May County but more transportation facilities in Cumberland County, New Jersey.  相似文献   

6.
The vulnerability of the elderly to hurricane hazards in Sarasota, Florida   总被引:1,自引:1,他引:0  
Although the elderly are commonly thought to be disproportionately vulnerable to natural hazards, the elderly populations of coastal communities are continuing to grow. Because there is little to no empirical hazards work specifically addressing the vulnerable elderly in coastal communities, this paper uses Sarasota County, Florida, as a case study to analyze how vulnerable the elderly are to hurricane hazards and whether all elderly people are equally vulnerable. To explore the spatial variations in degree and composition of vulnerability among this population, the analysis maps physical exposure to hurricane storm-surge inundation and precipitation-induced flooding and creates social vulnerability indices by applying principal components analysis to census block group data in a geographic information system. The results show that elderly inhabitants of barrier islands face a considerable physical threat from hurricane-induced storm surge and flooding but are less socially vulnerable because of their wealth; the elderly living inland are far less physically vulnerable but are poorer and consequently demonstrate high socioeconomic sensitivity and limited adaptive capacity to these hurricane hazards. The paper concludes that the elderly are not equally vulnerable: there are many different types of elderly living in many different locations, and their vulnerability varies by type and over space. Effective vulnerability reduction measures should account for these differences between the elderly populations.  相似文献   

7.
This paper assesses the socioeconomic consequences of extreme coastal flooding events. Wealth and income impacts associated with different social groups in coastal communities in Israel are estimated. A range of coastal flood hazard zones based on different scenarios are identified. These are superimposed on a composite social vulnerability index to highlight the spatial variation in the socioeconomic structure of those areas exposed to flooding. Economic vulnerability is captured by the exposure of wealth and income. For the former, we correlate the distribution of housing stock at risk with the socioeconomic characteristics of threatened populations. We also estimate the value of residential assets exposed under the different scenarios. For the latter, we calculate the observed change in income distribution of the population under threat of inundation. We interpret the change in income distribution as an indicator of recovery potential.  相似文献   

8.
Coastal regions are vulnerable to storm surge and flooding due to tropical and extratropical storms. It is necessary to build robust resiliency of the coastal communities to these hazards. The main objectives of operational surge and inundation forecast and coastal warning systems are to protect life and to sustain economic prosperity. The National Oceanic and Atmospheric Administration of the United States has initiated an integrated effort through pilot demonstration projects, and model-based ocean and coastal forecasting systems, to build improved operational warnings and forecasts capability for storm surge and inundation. This note describes the overall strategy and progress to date, with an emphasis on forecasting extratropical storm surge.  相似文献   

9.
Coastal inundation and damage exposure estimation: a case study for Jakarta   总被引:2,自引:2,他引:0  
Coastal flooding poses serious threats to coastal areas, and the vulnerability of coastal communities and economic sectors to flooding will increase in the coming decades due to environmental and socioeconomic changes. It is increasingly recognised that estimates of the vulnerability of cities are essential for planning adaptation measures. Jakarta is a case in point, since parts of the city are subjected to regular flooding on a near-monthly basis. In order to assess the current and future coastal flood hazard, we set up a GIS-based flood model of northern Jakarta to simulate inundated area and value of exposed assets. Under current conditions, estimated damage exposure to extreme coastal flood events with return periods of 100 and 1,000 years is high (€4.0 and €5.2 billion, respectively). Under the scenario for 2100, damage exposure associated with these events increases by a factor 4–5, with little difference between low/high sea-level rise scenarios. This increase is mainly due to rapid land subsidence and excludes socioeconomic developments. We also develop a detemporalised inundation scenario for assessing impacts associated with any coastal flood scenario. This allows for the identification of critical points above which large increases in damage exposure can be expected and also for the assessment of adaptation options against hypothetical user-defined levels of change, rather than being bound to a discrete set of a priori scenarios. The study highlights the need for urgent attention to the land subsidence problem; a continuation of the current rate would result in catastrophic increases in damage exposure.  相似文献   

10.
设计暴雨雨型对城市内涝影响数值模拟   总被引:3,自引:0,他引:3       下载免费PDF全文
为分析设计暴雨雨型对城市内涝的影响,应用耦合了水文和水动力过程的数值模型,以陕西省西咸新区为研究区域,对不同重现期及峰值比例设计暴雨条件下的内涝过程进行模拟,并对内涝积水总量、不同积水深度内涝面积等量值进行对比分析。结果表明:设计暴雨重现期短于20年时,峰值比例较小的设计暴雨内涝积水总量较大,而重现期长于20年时,规律相反;除2年一遇设计暴雨外,峰值比例较大的设计暴雨致涝总面积较大,但其中影响严重的Ⅳ级致涝面积较小;设计暴雨峰值比例越小,重现期越长,积水总量峰值时刻相对于暴雨峰值时刻的迟滞时间越长。揭示了暴雨雨型与内涝积水程度的量化规律,对更合理地开展城市雨洪管理工作具有指导意义。  相似文献   

11.
Pasquier  Ulysse  He  Yi  Hooton  Simon  Goulden  Marisa  Hiscock  Kevin M. 《Natural Hazards》2019,98(3):915-937

Coastal regions are dynamic areas that often lie at the junction of different natural hazards. Extreme events such as storm surges and high precipitation are significant sources of concern for flood management. As climatic changes and sea-level rise put further pressure on these vulnerable systems, there is a need for a better understanding of the implications of compounding hazards. Recent computational advances in hydraulic modelling offer new opportunities to support decision-making and adaptation. Our research makes use of recently released features in the HEC-RAS version 5.0 software to develop an integrated 1D–2D hydrodynamic model. Using extreme value analysis with the Peaks-Over-Threshold method to define extreme scenarios, the model was applied to the eastern coast of the UK. The sensitivity of the protected wetland known as the Broads to a combination of fluvial, tidal and coastal sources of flooding was assessed, accounting for different rates of twenty-first century sea-level rise up to the year 2100. The 1D–2D approach led to a more detailed representation of inundation in coastal urban areas, while allowing for interactions with more fluvially dominated inland areas to be captured. While flooding was primarily driven by increased sea levels, combined events exacerbated flooded area by 5–40% and average depth by 10–32%, affecting different locations depending on the scenario. The results emphasise the importance of catchment-scale strategies that account for potentially interacting sources of flooding.

  相似文献   

12.
With the projected increase in both tropical cyclone (TC) intensity and proportion of the global population living near the coast, adequate preparation to protect against TC flooding is in the economic interest of coastal cities worldwide. Numerical models that describe TC properties, e.g., storm surge and wind fields, are currently employed to simulate the component of flooding that results from seawater inundation of areas along the coast (i.e., saltwater flooding). However, without the inclusion of freshwater flooding, contributed by inland surface flow and direct precipitation, a total water level (TWL) system for TC flooding lacks a complete picture of the actual coastal flood levels. Working toward a true TWL system, this research investigates the efficacy of the simple and efficient parametric TC rainfall model P-CLIPER (PDF Precipitation-Climatology and Persistence) to provide historically representative TC rainfall to a TWL system. This research demonstrates the success of this novel use of P-CLIPER through calibration and validation to the Tar–Pamlico River and Neuse River coastal watershed in North Carolina. In particular, the comparison of hydrographs at observation stations shows that hydrologic model output forced with P-CLIPER matches that forced with radar-observed precipitation for both timing and peaks, with the proper parameter choices for P-CLIPER. Similarly with proper parameter selection, P-CLIPER captures the peak rate and spatial pattern of observed rainfall for Hurricane Isabel. Due to the model’s simplicity, this work also reveals that P-CLIPER can be used as a parametric rainfall model in ensemble simulations, which could lead toward improved floodplain mapping, emergency management decisions, and stormwater infrastructure planning.  相似文献   

13.
Huangpu River floodplain is historically vulnerable to flooding due to its location in the path of tropical cyclones, low elevation, relatively flat topography, rapid changes in sea level and fast rate of land subsidence due to urbanization. This paper presents a scenario-based study that investigates the fluvial flood potentials in the Huangpu River floodplain. Flood scenarios with return periods of 50, 100, 200, 500 and 1,000 years were designed to cover the probable situations. Further, a flood inundation model (FloodMap) that tightly couples a river flow model with a 1D solution of the full form of the St. Venant equations and a 2D floodplain flow model was used to predict the river flow and inundation extents. Flood characteristics obtained from the simulations were used in the exposure analysis to determine the spatial distribution of susceptible land uses under different scenarios. Results suggest that overtopping inundation mainly occurs within 1–2 km of the banks of the Huangpu River, with larger inundation extent predicted in the upper and middle reaches of the channel, a result of varying protection levels from relatively rural upstream to high urbanized floodplain in the vicinity of the middle reaches.  相似文献   

14.
An agent-based model for risk-based flood incident management   总被引:3,自引:1,他引:2  
Effective flood incident management (FIM) requires successful operation of complex, interacting human and technological systems. A dynamic agent-based model of FIM processes has been developed to provide new insights which can be used for policy analysis and other practical applications. The model integrates remotely sensed information on topography, buildings and road networks with empirical survey data to fit characteristics of specific communities. The multiagent simulation has been coupled with a hydrodynamic model to estimate the vulnerability of individuals to flooding under different storm surge conditions, defence breach scenarios, flood warning times and evacuation strategies. A case study in the coastal town of Towyn in the United Kingdom has demonstrated the capacity of the model to analyse the risks of flooding to people, support flood emergency planning and appraise the benefits of flood incident management measures.  相似文献   

15.
Coastal flooding is a significant risk on the shores of Languedoc-Roussillon. The storms that periodically hit the coast can generate strong swells and storm surges. Most beach resorts, built on a low elevation dune ridge, are periodically flooded during major storms. Although risks zoning regulations take into consideration coastal flood hazards, the delineation of vulnerable areas is still insufficient and the commonly accepted threshold is regularly exceeded during most severe storms. This paper presents a method to improve the assessment of extreme storm-related water levels. It relies on fieldwork carried out in the Leucate commune (Aude), which is particularly exposed to the risk of sea level rise. It considers both storm surges and wave phenomena that occur within the surf zone (set-up and swash), calculated from the Simulating WAves Nearshore (SWAN®) numerical wave model and the Stockdon formula. Water levels reached during several recent storm events have been reconstructed and simulations of submerged areas were carried out by numerical modelling.  相似文献   

16.
Hurricanes and tropical storms represent one of the major hazards in coastal communities. Storm surge generated by strong winds and low pressure from these systems have the potential to bring extensive flooding in coastal areas. In many cases, the damage caused by the storm surge may exceed the damage from the wind resulting in the total collapse of buildings. Therefore, in coastal areas, one of the sources for major structural damage could be due to scour, where the soil below the building that serves as the foundation is swept away by the movement of the water. The existing methodologies to forecast hurricane flood damage do not differentiate between the different damage mechanisms (e.g., inundation vs. scour). Currently, there are no tools available that predominantly focus on forecasting scour-related damage for buildings. Such a tool could provide significant advantages for planning and/or preparing emergency responses. Therefore, the focus of this study was to develop a methodology to predict possible scour depth due to hurricane storm surges using an automated ArcGIS tool that incorporates the expected hurricane conditions (flow depth, velocity, and flood duration), site-specific building information, and the associated soil types for the foundation. A case study from Monmouth County (NJ), where the scour damages from 2012 Hurricane Sandy were recorded after the storm, was used to evaluate the accuracy of the developed forecasting tool and to relate the scour depth to potential scour damage. The results indicate that the developed tool provides relatively consistent results with the field observations.  相似文献   

17.
This paper presents a new method for coastal vulnerability assessment (CVA), which relies upon three indicators: run-up distance (as a measurement of coastal inundation), beach retreat (as a measurement of potential erosion), and beach erosion rate (obtained through the shoreline positions in different periods). The coastal vulnerability analysis of Sele Coastal Plain to storm impacts is examined along a number of beach profiles realized between 2008 and 2009. This particular study area has been selected due to its low-lying topography and high erosion propensity. Results are given in terms of an impact index, performed by combining the response due to coastal inundation, storm erosion, and beach erosion rate. This analysis is implemented on the basis of morphosedimentary characteristics of the beach, wave climate evaluation, and examination of multitemporal aerial photographs and topographic maps. The analysis of the final results evidences different coastal responses as a function of the beach width and slope, which in turn depend on the local anthropization level. The comparison of this method with a Coastal Vulnerability Index method evidences the better attitude of CVA index to take into account the different beach features to explain the experienced damages in specific stretches of the coastline considered.  相似文献   

18.
The 2004 tsunami that struck the Sumatra coast gave a warning sign to Malaysia that it is no longer regarded as safe from a future tsunami attack. Since the event, the Malaysian Government has formulated its plan of action by developing an integrated tsunami vulnerability assessment technique to determine the vulnerability levels of each sector along the 520-km-long coastline of the north-west coast of Peninsular Malaysia. The scope of assessment is focused on the vulnerability of the physical characteristics of the coastal area, and the vulnerability of the built environment in the area that includes building structures and infrastructures. The assessment was conducted in three distinct stages which stretched across from a macro-scale assessment to several local-scale and finally a micro-scale assessment. On a macro-scale assessment, Tsunami Impact Classification Maps were constructed based on the results of the tsunami propagation modelling of the various tsunami source scenarios. At this stage, highly impacted areas were selected for an assessment of the local hazards in the form of local flood maps based on the inundation modelling output. Tsunami heights and flood depths obtained from these maps were then used to produce the Tsunami Physical Vulnerability Index (PVI) maps. These maps recognize sectors within the selected areas that are highly vulnerable to a maximum tsunami run-up and flood event. The final stage is the development of the Structural Vulnerability Index (SVI) maps, which may qualitatively and quantitatively capture the physical and economic resources that are in the tsunami inundation zone during the worst-case scenario event. The results of the assessment in the form of GIS-based Tsunami-prone Vulnerability Index (PVI and SVI) maps are able to differentiate between the various levels of vulnerability, based on the tsunami height and inundation, the various levels of impact severity towards existing building structures, property and land use, and also indicate the resources and human settlements within the study area. Most importantly, the maps could help planners to establish a zoning scheme for potential coastline development based on its sensitivity to tsunami. As a result, some recommendations on evacuation routes and tsunami shelters in the potentially affected areas were also proposed to the Government as a tool for relief agencies to plan for safe evacuation.  相似文献   

19.
Basins across Mediterranean coast are often subject to rapid inundation phenomena caused by intense rainfall events. In this flash flooding regime, common practices for risk mitigation involve hydraulic modeling, geomorphic, and hydrologic analysis. However, apart from examining the intrinsic characteristics of a basin, realistic flood hazard assessment requires good understanding of the role of climatic forcing. In this work, peak rainfall intensities, total storm accumulation, average intensity, and antecedent moisture conditions of the 52 most important storms in record, during the period from 1993 to 2008, in northeast Attica, in Greece, are examined to investigate whether there is a correlation between specific rainfall conditions and flood triggering in the area. For this purpose, precipitation data from a network of five rain gauges installed across the study area were collected and analyzed. Storms totals, average intensity, antecedent moisture conditions, and peak intensities variations were calculated and compared with local flooding history. Results showed that among these rainfall measures, only peak storm intensity presents a significant correlation with flood triggering, and a rainfall threshold above which flooding becomes highly probable can be defined.  相似文献   

20.

Frequent flood is a concern for most of the coastal regions of India. The importance of flood maps in governing strategies for flood risk management is of prime importance. Flood inundation maps are considered dependable output generated from simulation results from hydraulic models in evaluating flood risks. In the present work, a continuous hydrologic-hydraulic model has been implemented for mapping the flood, caused by the Baitarani River of Odisha, India. A rainfall time-series data were fed into the hydrologic model and the runoff generated from the model was given as an input into the hydraulic model. The study was performed using the HEC-HMS model and the FLO-2D model to map the extent of flooding in the area. Shuttle Radar Topographic Mission (SRTM) 90 m Digital Elevation Model (DEM) data, Land use/Land cover map (LULC), soil texture data of the basin area were used to compute the topographic and hydraulic parameters. Flood inundation was simulated using the FLO-2D model and based on the flow depth, hazard zones were specified using the MAPPER tool of the hydraulic model. Bhadrak District was found to be the most hazard-prone district affected by the flood of the Baitarani River. The result of the study exhibited the hydraulic model as a utile tool for generating inundation maps. An approach for assessing the risk of flooding and proper management could help in mitigating the flood. The automated procedure for mapping and the details of the study can be used for planning flood disaster preparedness in the worst affected area.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号