首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mercury air/surface exchange was measured over litter-covered soils with low Hg concentrations within various types of forests along the eastern seaboard of the USA. The fieldwork was conducted at six forested sites in state parks in South Carolina, North Carolina, New Jersey, Pennsylvania, New York and Maine from mid-May to early June 2005. The study showed that the Hg air/surface exchange was consistently very low and similar (overall daytime mean flux = 0.2 ± 0.9 ng m−2 h−1, n = 310, for all six sites monitored) with the various forest types. These flux values are comparable with those found in a year-long study in Tennessee (yearly daytime mean = 0.4 ± 0.5 ng m−2 h−1), but lower than many previous flux results reported for background soils. The Hg fluxes at all sites oscillated around zero, with many episodes of deposition (negative fluxes) occurring in both daytime and nighttime. While there were particular days showing significant correlations among the Hg air/surface exchange and certain environmental parameters, perhaps because of the low fluxes encountered, few significant correlations were found for any particular day of sampling between the Hg flux and environmental parameters such as solar radiation, soil temperature, air temperature (little variability seen), relative humidity, and ambient air Hg concentrations. Factors driving the Hg exchange as previously found for enriched soils may not hold for these background litter-covered forest soils. The results suggest that spatial variations of the Hg air/surface exchange were small among these different forest types for this particular time of year.  相似文献   

2.
Industrial waste landfills produce great impacts on soil and groundwater. There are many industrial waste landfills in Vale dos Sinos, Southern Brazil, which were inadequately planned and maintained since the industry started in the first half of the twentieth century. The largest industrial landfill in the Valley, which causes the most severe impacts on soil and groundwater, is the subject of this paper, which studies the environmental impacts and behavior of contaminants in soil. The landfill was carefully mapped on a scale of 1:1,000; 88 samples were collected from soil probes; the leachate of three samples was comprehensively analyzed; and soils mineralogy and chemistry were studied. Few studies have been made on this landfill. This study shows widespread contamination of soil in the surrounding areas of the landfill. Chromium, chloride and ammonium have the highest contamination levels, reflecting their high contents in landfill leachate. Contamination by petroleum hydrocarbons, cyanide and mercury is registered in more than 65% of soil samples with low concentrations. Lead, copper and barium show low contamination restricted to a few soil samples. Soil contamination occurs mainly in the unsaturated zone of the aquifer at the convergence points of stormwater, showing that the preferential transport of contaminants occurs on surface flow followed by soil infiltration. The results of leaching tests indicate high metal sorption capacity of soil. The remediation of contaminated soil must contain at least the following actions: sealing the top of the landfill, installation of geochemical barriers, removal of the liquid waste basins without sealing the base and collection and treatment of the rainwater drainage.  相似文献   

3.
The behavior of the Gimpo #2 landfill, which is an active landfill and the largest in Korea, is analyzed using field measurement data obtained from various field instruments installed within the landfill. The data included in this analysis are the leachate head within the landfill, waste load data using soil pressure plate and settlement data from settlement plate on the surface of the waste of each stage fill including the settlement of the soft foundation clay soil. Landfill blocks are selected both near the embankment and in the center area of the landfill. The analysis of the field-monitored data showed that the leachate head increase was negligible near the embankment. It was significant in the central block as the waste loads increase and reached 15 m at the fourth stage of waste disposal. The reason that the leachate head is higher in the central block than near the embankment is due to the long drainage path and the loss of gradient of drain pipes. The range of unit weight of the waste converted from the measurement data of earth pressure cell was 0.91–1.24 t/m3 and the average value was 1.05 t/m3. The values reflect well the waste compositions recently buried in GML #2, since from 1998 the waste disposed in GML #2 did not contain food waste. The magnitude of final settlements that occurred in each stage loading of 5 m thickness in the peripheral block was very close to 120 cm. The settlement rate of the waste by dividing the thickness of waste was 24 %. This rate can be divided into 10 % by waste loading and 14 % by waste decomposition. The delay of settlements is recognized in each waste layer for second and third loading in the central block due to the accumulation of leachate within the landfill.  相似文献   

4.
There is an urgent need for characterization of leachate arising from waste disposal to ensure a corresponding effective leachate management policy. Field and laboratory studies have been carried out to investigate the impact of municipal landfill leachate on the underlying groundwater at a site in West Malaysia. The solid waste was disposed of directly onto an unprotected natural soil formation. This situation was made worse by the shallow water table. The hydrochemical composition of groundwater in the vicinity of the site (background) is a dilute mixed cation, bicarbonate water. The high ionic balance error of ~13.5% reveals that the groundwater body underneath the site was a highly contaminated leachate rather than contaminated groundwater. Elevated concentration of chloride (355.48 mg/L), nitrate (10.40 mg/L as NO3), nitrite (14.59 mg/L), ammoniacal-N (11.61 mg/L), sodium (227.56 mg/L), iron (0.97 mg/L), and lead (0.32 mg/L) measured downgradient indicate that the contamination plume has migrated further away from the site. In most cases, the concentration of these contamination indicators, together with the ranges of sodium percentage (66.3–89.9%) and sodium adsorption ratio (10.1–19.7%), were found to be considerably higher than the limit values of safe water for both domestic and irrigation purposes, respectively.  相似文献   

5.
依据实际调查数据,采用单因子污染指数分析法确定了生活垃圾填埋场地下水中主要污染物、污染程度和污染范围,并进行了土壤和地下水污染耦合性分析,研究结果表明:该生活垃圾填埋场地下水污染物主要为氨氮、总氮、高锰酸盐、锰、挥发酚和氟化物,其污染指数最大值分别为1 407.24、745.00、137.12、97.50、3.60和1.68,污染区总面积0.168 km2;填埋场下游沟谷纵向上,总氮、锰两项指标在土壤中的含量与地下水中浓度变化趋势一致;其污染途径主要为库区防渗层破损,渗滤液垂向沿基岩风化裂隙进入地下含水层,以连续渗漏的方式不断污染地下水,污染物在地下水径流作用下向拦挡坝下游不断迁移。  相似文献   

6.
运用Tekran 2537 A与动力学通量箱联测技术,对广州市5个绿化带和草地土壤—大气界面汞交换通量进行了实地监测,结果表明,广州市5个监测点土壤—大气界面汞交换通量密度均值为7.341±9.714 ng·m-2·h-1,不同地点土壤—大气汞交换通量密度有显著差异。汞交换通量密度随土壤汞含量的增加而增大,气象条件显著影响汞交换通量,汞交换通量密度与光照和土壤温度呈显著正相关关系,与土壤pH呈负相关关系,降雨和植被显著影响汞交换通量。  相似文献   

7.
研究地下水埋深对淮北平原冬小麦耗水量的影响,对浅埋区农业水管理具有重要意义。基于2017—2020年五道沟水文水资源实验站大型称重式蒸渗仪群,模拟不同地下水埋深下冬小麦蒸散发变化过程,以蒸散量表征小麦耗水的变化,识别影响小麦耗水的关键环境因子,探索不同情景小麦耗水特征。全生育期内各地下水埋深0.5,1.0,2.0,3.0 m下小麦蒸散量依次为510.50,499.33,567.88,727.88 mm,各埋深下表层10 cm处土壤含水率与蒸散量相关系数依次为?0.42,?0.69,?0.53,?0.43;依据太阳辐射量划分3类典型日,典型日内蒸散强度为:强辐射日约0.30 mm/h、弱辐射日约0.07 mm/h、微弱辐射日约0.03 mm/h;蒸散峰历时依次为:5:00—20:00、7:00—17:00和9:00—17:00;太阳辐射强时,地下水埋深对蒸散强度峰值出现的时间影响较小,而太阳辐射过弱时,地下水埋深大会阻滞能量传输,蒸散强度峰值滞后;表层土壤水是蒸散发的主要来源,尤其在1.0,2.0 m埋深下表层土壤水对蒸散发贡献率更高;太阳辐射、净辐射和土壤热通量正向驱动小麦耗水,表层土壤水分、平均气温和空气湿度反向驱动。  相似文献   

8.
This paper aims at determining of inorganic leachate contamination for a capped unsanitary landfill in the absence of hydrogeological data. The 2D geoelectrical resistivity imaging, soil physicochemical characterization, and surface water analysis were used to determine contamination load and extent of selective heavy metal contamination underneath the landfill. The positions of the contaminated subsoil and groundwater were successfully delineated in terms of low resistivity leachate plumes of <10 Ωm. Leachate migration towards the reach of Kelang River could be clearly identified from the resistivity results and elevated concentrations of Fe in the river downslope toe of the site. Concentration of Fe, Mn, Ca, Na, K, Mg, Cu, Cr, Co, Ni, Zn, and Pb was measured for the subsoil samples collected at the downslope (BKD), upslope (BKU), and the soil-waste interface (BKI), of the landfill. The concentration levels obtained for most of the analyzed heavy metals significantly exceed the normal range in typical municipal solid waste landfill sites. The measured heavy metal contamination load in the subsoil is in the following order Fe ? Mn > Zn > Pb > Cr > Cu. Taking into consideration poor physical and chemical characteristics of the local soil, these metals first seem to be attenuated naturally at near surface then remobilize unavoidably due to the soil acidic environment (pH 4.2-6.18) which in turn, may allow an easy washing of these metals in contact with the shallow groundwater table during the periodic fluctuation of the Kelang River. These heavy metals are believed to have originated from hazardous industrial waste that might have been illegally dumped at the site.  相似文献   

9.
垃圾的堆存和填埋会产生大量的渗滤液。渗滤液对垃圾填埋场周围环境能够造成严重污染,尤其使地下水质污染而丧失利用价值。通过阜新市垃圾填埋场现场采集新鲜渗滤液水样、垃圾堆体附近土样的实验研究,获得了新鲜渗滤液的各组分浓度和垃圾堆体附近土壤的性质。结合当地地理气候等情况揭示了垃圾渗滤液中污染溶质在地下水系统中的迁移转化的动态过程,定量化预测了污染范围及时空分布,为研究该地区地下水污染控制、管理和评价提供了可靠依据。  相似文献   

10.
Geo-environmental assessment and geophysical investigations were carried out over the only functional municipal solid waste disposal site of the city of Addis Ababa, Ethiopia, known locally as Koshe. The accumulated wastes from Koshe have impact on the surrounding human and physical environment since the disposal site was not designed. The study deserves emphasis because the city of Addis Ababa currently obtains a considerable portion of its domestic water supply from a well field developed not much farther from and along a groundwater flow direction in relation to the waste disposal site. It was found out that the leachates from the site contain high concentration of biological oxygen demand, chemical oxygen demand, chloride and sulphate besides high concentration of cobalt, nickel and zinc in the surrounding soils. The geophysical results have mapped weak zones and near-vertical discontinuities that could potentially be conduits for the leachate from the wastes into the deep groundwater system. Further, a zone of potential leachate migration from the landfill was identified from the electrical models; the location of this zone is consistent with the predicted direction of groundwater flow across the site. The results further suggested that the open dump site tends to cause increasing amount of pollution on the surrounding soil, surface and ground waters. Furthermore, it was observed that the Koshe waste disposal site has grown beyond its capacity and the poor management of the open dump landfill has reduced the aesthetic value of the surrounding environments. The need to change/relocate the existing waste disposal site to a more suitable and technologically appropriate site is emphasized.  相似文献   

11.
 The Nanjido Landfill is the largest uncontrolled landfill in Korea and it causes various kinds of environmental problems. Landfill gases and leachate are recognized as the most serious environmental problems associated with the landfill. This study employs a series of numerical models and uses test data to interpret the distribution and flow of landfill gases and leachate. Leachate seepage appears about 40–60 m higher than the estimated basal groundwater table. Thus, seepage data indicate that perched or floating leachate layers are formed in the unsaturated zone of the landfill. The leachate production rate is estimated using infiltration test data and a model for unsaturated groundwater flow. Geochemical data indicate that the landfill leachate degrades the basal groundwater quality along the downgradient zone. The environmental impact of the leachate on river water is estimated. Received: 17 June 1996 · Accepted: 2 October 1996  相似文献   

12.
 The design of environmentally sound liquid waste containment structures has become a crucial task in engineering applications due to ever increasing groundwater contamination from such sites. Construction of such structures usually requires a bottom liner of low hydraulic conductivity as part of the design. In order to reduce the hazards associated with liquid wastes including landfill leachate, bentonite-amended natural zeolite is proposed as an alternative to conventional earthen liners. Among many contaminants associated with liquid wastes, heavy metals are the most dangerous ones. This paper deals with determining the ability of natural zeolite to remove heavy metals from aqueous waste. For this purpose, crushed natural zeolite (clinoptinolite) is amended with commercial powdered bentonite to yield a soil mixture low in permeability and high in ion-exchange capacity. Leachate from a conventional landfill is used as the percolation fluid. Concentrations of certain heavy metals in the effluent fluid percolated through the bentonite-zeolite mixture are compared with that of initial leachate. The conclusion is reached that certain metals are efficiently removed from the influent solution by the soil matrix whereas some ions do not show significant reduction in concentration. This is attributed to high hydraulic conductivity of the bentonite-zeolite mixture.  相似文献   

13.
This study focused on the development of a seasonal data set of the Hg air/surface exchange over soils associated with low Hg containing surfaces in a deciduous forest in the southern USA. Data were collected every month for 11 months in 2004 within Standing Stone State Forest in Tennessee using the dynamic flux chamber method. Mercury air/surface exchange associated with the litter covered forest floor was very low with the annual mean daytime flux being 0.4 ± 0.5 ng m−2 h−1 (n = 301). The daytime Hg air/surface exchange over the year oscillated between emission (81% of samples with positive flux) and deposition (19% of samples with negative flux). A seasonal trend of lower emission in the spring and summer (closed canopy) relative to the fall and winter (open canopy) was observed. Correlations were found between the air/surface exchange and certain environmental factors on specific days sampled but not collectively over the entire year. The very low magnitude of Hg air/surface exchange as observed in this study suggests that an improved methodology for determining and reporting emission fluxes is needed when the values of fluxes and chamber blanks are both very low and comparable. This study raises questions and points to a need for more research regarding how to scale the Hg air/surface exchange for surfaces with very low emissions.  相似文献   

14.
Containment landfills: the myth of sustainability   总被引:5,自引:0,他引:5  
A. Allen   《Engineering Geology》2001,60(1-4):3-19
A number of major problems associated with the containment approach to landfill management are highlighted. The fundamental flaw in the strategy is that dry entombment of waste inhibits its degradation, so prolonging the activity of the waste and delaying, possibly for several decades, its stabilisation to an inert state. This, coupled with uncertainties as to the long-term durability of synthetic lining systems, increases the potential, for liner failure at some stage in the future whilst the waste is still active, leading to groundwater pollution by landfill leachate. Clay liners also pose problems as the smectite components of bentonite liners are subject to chemical interaction with landfill leachate, leading to a reduction in their swelling capacity and increase in hydraulic conductivity. Thus, their ability to perform a containment role diminishes with time. More critically, if diffusion rather than advection is the dominant contaminant migration mechanism, then no liner will be completely impermeable to pollutants and the containment strategy becomes untenable.

There are other less obvious problems with the containment strategy. One is the tendency to place total reliance on artificial lining systems and pay little attention to local geological/hydrogeological conditions during selection of landfill sites. Based on the attitude that any site can be engineered for landfilling and that complete protection of groundwater can be effected by lining systems, negative geological characteristics of sites are being ignored. Furthermore, excessive costs in construction and operation of containment landfills necessitate that they are large scale operations (superdumps), with associated transfer facilities and transport costs, all of which add to overall waste management costs. Taken together with unpredictable post-closure maintenance and monitoring costs, possibly over several decades, the economics of the containment strategy becomes unsustainable. Such a high-cost, high-technology approach to landfill leachate management is generally beyond the financial and technological resources of the less wealthy nations, and places severe burdens on their economies. For instance, in third world countries with limited water resources, the need to preserve groundwater quality is paramount, so expensive containment strategies are adopted in the belief that they offer greatest protection to groundwater. A final indictment of the containment strategy is that in delaying degradation of waste, the present generations waste problems will be left for future generations to deal with.

More cost-effective landfill management strategies take advantage of the natural hydrogeological characteristics and attenuation properties of the subsurface. The ‘dilute and disperse’ strategy employs the natural sorption and ion exchange properties of clay minerals, and it has been shown that in appropriate situations it is effective in attenuating landfill leachate and preventing pollution of water resources. Operated at sites with thick clay overburden sequences, using a permeable cap to maximise rainfall infiltration and a leachate collection system to control leachate migration, ‘dilute and disperse’ is a viable leachate management strategy. Hydraulic traps are relatively common hydrogeological situations where groundwater flow is towards the landfill, so effectively suppressing outwards advective flow of leachate. This approach is also best employed with a clay liner, taking advantage of the attenuation properties of clays to combat diffusive flow of contaminants. These strategies are likely to guarantee greater protection of groundwater in the long term.  相似文献   


15.
《Applied Geochemistry》2006,21(11):1913-1923
Mercury is emitted to the air from Hg-enriched and low Hg-containing (natural background) substrates. Emitted Hg can be geogenic, or can be derived from the re-emission of Hg that was previously deposited to the soil from the atmosphere. Atmospheric Hg can be derived from natural and/or anthropogenic sources and can be deposited by wet or dry processes. It is important to understand the relative magnitude of emission, deposition, and re-emission of Hg associated with terrestrial ecosystems with natural background soil Hg concentrations because these landscapes cover large terrestrial surface areas. This information is also important for developing biogeochemical mass balances, assessing the impacts of atmospheric Hg sources, and predicting the effectiveness of regulatory controls at local, regional, and global scales.The major focus of this paper is to discuss air–substrate Hg exchange for low Hg-containing soils (<0.1 μg Hg g−1) from two areas in Nevada and one in Oklahoma, USA. Data collected with field and laboratory gas exchange systems are presented. Results indicate that in order to adequately characterize substrate–air Hg exchange, diel and seasonal data must be collected under a variety of environmental conditions. Field and laboratory data showed that dry deposition of gaseous Hg to substrates with low Hg concentrations is an important process. Environmental parameters important in influencing emissions include soil water content, incident light, temperature, atmospheric oxidants, and air Hg concentrations. There are synergistic and antagonistic effects between these parameters complicating prediction of flux.  相似文献   

16.
Mercury fluxes from air/surface interfaces in paddy field and dry land   总被引:3,自引:0,他引:3  
In order to provide insight into the characteristics of Hg exchange in soil/water-air surface from cropland (including paddy field and dry land), Hg fluxes were measured in Chengjiang. Mercury fluxes were measured using the dynamic flux chamber method, coupled with a Lumex® multifunctional Hg analyzer RA-915+ (Lumex Ltd., Russia). The Hg fluxes from paddy field and dry land were alternatively measured every 30 min. Data were collected for 24-48 h once per month for 5 months. Mercury fluxes in both fields were synchronously measured under the same conditions to compare Hg emissions between paddy field and dry land over diurnal and seasonal periods and find out what factors affect Hg emission on each surface. These results indicated that air Hg concentrations at the monitoring site was double the value observed at the global background sites in Europe and North America. The Hg release fluxes were 46.5 ± 22.8 ng m−2 h−1 in the warm season, 15.5 ± 18.8 ng m−2 h−1 in the cold season for dry land, and 23.8 ± 15.6 ng m−2 h−1 in the warm season, 6.3 ± 11.9 ng m−2 h−1 in the cold season for paddy field. Solar radiation is important in the emission of Hg over both sites. Hg exchange at the soil/air and water/air interfaces showed temporal variations. The amount of Hg emission from dry land was higher than that from the paddy field, and the emission in daytime was higher than that at night. Moreover, Hg emissions from land covered by crops, was lower than that for bare land.  相似文献   

17.
The storage of low level radioactive waste in trenches overlying an unconfined groundwater flow system in sands has generated a contaminant plume (with chemical characteristics of dilute sanitary landfill leachate) containing 14C both as dissolved inorganic and organic C. In the groundwater, dissolved organic compounds account, on average, for 22% of the total C and 10% of the 14C. Approximately 300 m from the waste management site, the groundwater discharges to the surface in a wetland containing up to 3 m of peat and an extensive tree cover. Drainage from the wetland passes through a gauged stream. Radiocarbon input to the groundwater discharge area in 1991 was determined to be between 3.3 and 4.2 GBq, based on data from a line of sampling wells along the groundwater input boundary of the wetland, with control provided by water and tritium balance data. During the 1991 study year, only 1.5–2% of both the inorganic and organic 14C inputs left the wetland in surface water drainage. Vegetation growth in the wetland during the study year contained 8–10% of the released radiocarbon. If the rate of 14C accumulation in the peat has been constant, 7–9% of the annual radiocarbon input has been retained in the organic soil. Much of this soil accumulation can be attributed to litter from standing vegetation, making distribution coefficients an inappropriate model for 14C partitioning between groundwater and soil. The plant/soil 14C concentration ratio was 24 to 33, but application of a concentration ratio to describe the transfer of radiocarbon to plants is also believed to be inappropriate. This study indicates that over 80% of the groundwater radiocarbon is rapidly lost to the atmosphere when the groundwater comes to surface, and we infer that most of the 14C accumulation in vegetation occurs by CO2 transfer from the air to the plant.  相似文献   

18.
为了深入了解垃圾渗滤液对浅层地下水污染的机理,揭示不同龄期垃圾渗滤液在浅层地下水中多组分运移规律,文章以阜新市垃圾填埋场为研究对象,通过室内土柱对比实验,研究了不同龄期垃圾渗滤液在浅层地下水中多组分运移的机理和规律。结果表明不同龄期垃圾渗滤液在入渗过程中都会引起地下水不同程度的污染,且新鲜垃圾渗滤液较老龄垃圾渗滤液更易污染地下水,其污染机理主要为吸附、解析、溶解、沉淀和离子交换等水岩作用。研究结果为今后垃圾填埋场的治理和地下水的修复提供理论依据。  相似文献   

19.
Self potential (SP) and electrical resistivity tomography (ERT) methods are used together with the results of groundwater samples hydrogeochemical analysis to assess the impact of the water leak from the landfill garbage site at NamSon located in Northern Hanoi on causing pollution to the surrounding environment and affecting geological structure. Selected survey area covers an area of 180 × 300 m lying in the low land of the NamSon site with a slope ranging about 8 m in direction NW–SE. There are three geophysical measurements lines denoted as T1, T2 and T3. Processing 180 SP data points has allowed to draw maps of equipotential epoch in the two periods in 2015 and 2016. The maps show four zones of SP positive anomalies with maximum amplitudes of about +20 mV where the groundwater flow direction is downward and five zones of SP negative anomalies with minimum values in a range from ?180 to ?260 mV where the groundwater flow direction is upward. Resistivity values of the subsurface layers of soils and rocks have been aquired from 2D inverse model for measuring ERT in March 2015 and March 2016. The results of the ERT allowed to define the low resistivity in the range 15–20 Ωm related to leachate plume from NamSon landfill site. Results of the physico-chemical analysis of groundwater samples from the existing six boreholes show increases in concentration of the measured pollutant parameters indicating contamination of the groundwater as a result of solid waste leachate accumulation. This result is affirmative evidence for the survey results by geophysical technique. The rapid decrease in quality of groundwater over the last year is probably due to the influence of the leachate from the NamSon landfill site.  相似文献   

20.
The influence of local hydrogeology on natural attenuation of contaminants from landfill leachates in shallow aquifer underlying the active Olusosun landfill base in Lagos was investigated. In addition, the level of groundwater contamination in the vicinity of the landfill and of leachate migration pattern in groundwater down gradient of the landfill base was equally assessed. Landfill leachate and groundwater samples were collected and analyzed and characterized. Physico-chemical analyses of sampled water followed standard analytical methods. Analytical results showed a measurable impact of leachate outflows on groundwater quality. Elevated levels of anions: nitrate, chloride and sulphate in the groundwater body and heavy metals: Cr3. Cd and Cu, were detected at measurable levels in groundwater down gradient of the landfill location without any particular attenuation pattern. The migration pattern and dispersion of leachates down gradient, 750 m away from the landfill location are irregular and difficult to predict as depicted by levels of contaminants present in groundwater. The study highlighted the importance of soil stratigraphy beneath the landfill base as an important factor in the natural attenuation of leachate constituents in the groundwater body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号