首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements of dissolved gases have numerous applications in ground water hydrology, and it is now possible to measure the total dissolved gas pressure in situ using a probe. Dissolved gas pressure is measured by submerging a headspace volume with a gas-permeable membrane, allowing dissolved gases in the water to equilibrate with gases in the headspace, then measuring the pressure in the headspace with a pressure transducer. Total dissolved gas pressure (TGP) probes have many potential uses in ground water studies employing dissolved gases, including: (1) determining approximate excess air levels, which may provide information about the time and location of recharge; (2) screening wells for air contamination, which can compromise the accuracy of dissolved gas tracer techniques: (3) detecting a trapped gas phase, which can significantly reduce hydraulic conductivity and impede the transport of dissolved solutes and gases; (4) enabling the use of gas-filled passive diffusion samplers for determining accurate dissolved gas concentrations; and (5) determining relative concentrations of CH4 and CO2 when they are known to be highly abundant. Although TGP probes designed for surface water have been available for several years, TGP probes suitable for ground water applications have only recently become available. Herein we present what are, to our knowledge, the first reported ground water dissolved gas data collected using a TGP probe. We also explain the basic operating principles of these probes and discuss the potential applications listed.  相似文献   

2.
The paper provides an introduction to fundamental concepts of mathematical modeling of mass transport in fractured porous heterogeneous rocks. Keeping aside many important factors that can affect mass transport in subsurface, our main concern is the multi-scale character of the rock formation, which is constituted by porous domains dissected by the network of fractures. Taking into account the well-documented fact that porous rocks can be considered as a fractal medium and assuming that sizes of pores vary significantly (i.e. have different characteristic scales), the fractional-order differential equations that model the anomalous diffusive mass transport in such type of domains are derived and justified analytically. Analytical solutions of some particular problems of anomalous diffusion in the fractal media of various geometries are obtained. Extending this approach to more complex situation when diffusion is accompanied by advection, solute transport in a fractured porous medium is modeled by the advection-dispersion equation with fractional time derivative. In the case of confined fractured porous aquifer, accounting for anomalous non-Fickian diffusion in the surrounding rock mass, the adopted approach leads to introduction of an additional fractional time derivative in the equation for solute transport. The closed-form solutions for concentrations in the aquifer and surrounding rocks are obtained for the arbitrary time-dependent source of contamination located in the inlet of the aquifer. Based on these solutions, different regimes of contamination of the aquifers with different physical properties can be readily modeled and analyzed.  相似文献   

3.
In karst aquifers with significant matrix permeability, water and solutes are exchanged between the conduits and carbonate matrix. Transport through the matrix increases the spread of solutes and increases travel times. This study numerically evaluates advective solute transport in synthetic karst systems that contain 3D branching conduit networks. Particle tracking is performed to analyze the spatial and temporal transport history of solute that arrives at the conduit outlet. Three measures of transport connectivity are used to quantify the solute migration behavior: the skewness of the particle arrival time distribution, the normalized fifth percentile of arrival times, and the fraction of the total travel time that occurs within conduits. All three of these metrics capture the influence of conduit network geometry on solute transport. A more tortuous network leads to enhanced conduit-matrix mixing, which reduces the transport connectivity and yields a broader distribution of solute arrival times. These results demonstrate that the conduit network geometry is an important control on solute transport in karst systems with a permeable matrix.  相似文献   

4.
Accurate representation of groundwater flow and solute transport requires a sound representation of the underlying geometry of aquifers. Faults can have a significant influence on the structure and connectivity of aquifers, which may allow permeable units to connect, and aquifers to seal when juxtaposed against lower permeability units. Robust representation of groundwater flow around faults remains challenging despite the significance of faults for flow and transport. We present a methodology for the inclusion of faults utilizing the unstructured grid features of MODFLOW-USG and MODFLOW 6. The method focuses on the representation of fault geometries using non-neighbor connections between juxtaposed layers. We present an illustration of the method for a synthetic fluvial aquifer. The combined impact of the heterogeneous aquifer and fault offset is clearly visible where channel features at different depths in the aquifer were connected at the fault. These results highlight the importance of representing fault features in groundwater flow models.  相似文献   

5.
Hydrogeologic and ground water quality data obtained from a gas-driven multilevel sampler system and a polyvinyl chloride (PVC) monitoring well nest with the same aquifer communication intervals are compared. All monitoring points are in close proximity to each other. The study was conducted at an eight-acre uncontrolled hazardous waste site. The site is located in an alluvial valley composed of approximately 40 feet of alluvium overlying shale bedrock. The ground water at the site is contaminated with various organic constituents. A ground water monitoring network consisting of 26 conventional monitoring wells, nine observation well points, and six multilevel gas-driven samplers was established to characterize the hydrogeologic regime and define the vertical and horizontal extent of contamination in the vicinity of the abandoned chemical plant. As part of this study, a multilevel monitoring system was installed adjacent to a well nest. The communication zones of the multilevel samplers were placed at the same elevation as the sand packs of the well nest. The multilevel sampler system and well nest are located in a contaminated area directly downgradient of the site. A comparison of the vertical head distribution and ground water quality was performed between the well nest and the multilevel sampling system. The gas-driven multilevel sampling system consists of three gas-driven samplers that monitor separate intervals in the unconsolidated materials. The well nest, composed of two PVC monitoring wells in separate boreholes, has the same communication interval as the other two gas-driven samplers. Hydraulic head information for each multilevel sampler was obtained using capillary tubing. This was compared with heads obtained from the well nest utilizing an electric water level indicator. Chemical analyses from the PVC and multilevel sampler wells were performed and compared with one another. The analyses included organic acids, base neutrals, pesticides, PCBs, metals, volatile organics, TOX, TOC, CN, pH and specific conductance.  相似文献   

6.
The importance of obtaining depth-specific ground water samples is now well recognized among practitioners and scientists alike. Many methods and technologies are available for level discrete or depth-specific ground water sampling in consolidated aquifers. All methods have their associated advantages and drawbacks, however. One common disadvantage is that they are expensive. A large number of point discrete ground water samples were required for a UK research project aimed at quantifying natural attenuation processes in ground water contaminated by a former coal carbonization plant. Based on experience from a previous project to develop novel level accurate sampling methodologies for use in existing boreholes, the Ground Water Protection and Restoration Research Unit (GWPRRU) produced and tested a low-cost design multiport sock sampler for ground water monitoring. The sock sampler design allowed the recovery of multiple depth-specific ground water samples from depths of 150 feel (45 m) from individual boreholes in the sandstone aquifer at the field site. Because of their use of inexpensive materials, simple design, installation and use that does not require gravel packs, packers, or grouting, sock samplers were found to be the most cost effective, convenient, and reliable method of obtaining multiple depth-specific ground water samples at the project field site.  相似文献   

7.
ABSTRACT

A critical review of earlier uses of bomb tritium spotlights problems in its applications that may result in erroneous interpretations. The old monitoring technique using boreholes causes mixing of groundwaters of different age zones. In this study, the mixing problem is overcome by using modern monitoring devices of multi-level samplers and bundle piezometers that yield groundwater samples of small volumes at closely-spaced intervals. The old method may be used to determine recharge and discharge areas of aquifers and used where pollution poses no serious threat. Otherwise, the major pumpage of the aquifer distorts and reverses flow directions, causes mixing of different waters and may spread the pollutants. The disadvantages of the modern method include its restricted use in shallow aquifers and porous media.  相似文献   

8.
Three-dimensional analytical solutions for solute transport in saturated, homogeneous porous media are developed. The models account for three-dimensional dispersion in a uniform flow field, first-order decay of aqueous phase and sorbed solutes with different decay rates, and nonequilibrium solute sorption onto the solid matrix of the porous formation. The governing solute transport equations are solved analytically by employing Laplace, Fourier and finite Fourier cosine transform techniques. Porous media with either semi-infinite or finite thickness are considered. Furthermore, continuous as well as periodic source loadings from either a point or an elliptic source geometry are examined. The effect of aquifer boundary conditions as well as the source geometry on solute transport in subsurface porous formations is investigated.  相似文献   

9.
Ground water injection and sampling systems were developed for bacterial transport experiments in both homogenous and heterogeneous unconsolidated, surficial aquifers. Two types of injection systems, a large single tank and a dynamic mixing tank, were designed to deliver more than 800 L of amended ground water to the aquifer over 12 hours, without altering the ground water temperature, pH, Eh, or dissolved gas composition. Two types of multilevel samplers (MLSs) were designed and installed. Permanent MLSs performed well for the homogenous surficial aquifer, but their installation procedure promoted vertical mixing, which could obfuscate experimental data obtained from vertically stratified, heterogeneous aquifers. A novel, removable MLS was designed to fit in 2- and 4-inch wells. Expandable O-rings between each sampling port hydraulically isolated each port for sample collection when a nut was tightened at the land surface. A low-cost vacuum manifold system designed to work with both MLS designs used 50 mL centrifuge tubes to efficiently sample 12 MLS ports with one peristaltic pump head. The integrated system was developed and used during four field campaigns over a period of three years. During each campaign, more than 3000 ground water samples were collected in less than one week. This system should prove particularly useful for ground water tracer, injection, and push-pull experiments that require high-frequency and/or high-density sampling.  相似文献   

10.
This paper explores the relationship between thermal energy and fresh water recoveries from an aquifer storage recovery (ASR) well in a brackish confined aquifer. It reveals the spatial and temporal distributions of temperature and conservative solutes between injected and recovered water. The evaluation is based on a review of processes affecting heat and solute transport in a homogeneous aquifer. In this simplified analysis, it is assumed that the aquifer is sufficiently anisotropic to inhibit density‐affected flow, flow is axisymmetric, and the analysis is limited to a single ASR cycle. Results show that the radial extent of fresh water at the end of injection is greater than that of the temperature change due to the heating or cooling of the geological matrix as well as the interstitial water. While solutes progress only marginally into low permeability aquitards by diffusion, conduction of heat into aquitards above and below is more substantial. Consequently, the heat recovery is less than the solute recovery when the volume of the recovered water is lower than the injection volume. When the full volume of injected water is recovered the temperature mixing ratio divided by the solute mixing ratio for recovered water ranges from 0.95 to 0.6 for ratios of maximum plume radius to aquifer thickness of 0.6 to 4.6. This work is intended to assist conceptual design for dual use of ASR for conjunctive storage of water and thermal energy to maximize the potential benefits.  相似文献   

11.
The vertical portion of a shale gas well, known as the “tophole” is often drilled using an air‐hammer bit that may introduce pressures as high as 2400 kPa (350 psi) into groundwater while penetrating shallow aquifers. A 3‐D TOUGH2 model was used to simulate the flow of groundwater under the high hydraulic heads that may be imposed by such trapped compressed air, based on an observed case in West Virginia (USA) in 2012. The model realizations show that high‐pressure air trapped in aquifers may cause groundwater to surge away from the drill site at observable velocities. If dissolved methane is present within the aquifer, the methane can be entrained and transported to a maximum distance of 10.6 m per day. Results from this study suggest that one cause of the reported increase in methane concentrations in groundwater near shale gas production wells may be the transport of pre‐existing methane via groundwater surges induced by air drilling, not necessarily direct natural gas leakage from the unconventional gas reservoir. The primary transport mechanisms are advective transport of dissolved methane with water flow, and diffusive transport of dissolved methane.  相似文献   

12.
Field tests of organic solute transport behavior have often been monitored using small-diameter wells (miniwells). To determine if experimental results could be significantly biased by sorption to, desorption from, or diffusion through sampling lines, dissolved concentrations of tetrachloroethene and carbon tetrachloride were measured in ground water samples collected simultaneously from the same spatial location during a forced-gradient test in the Borden aquifer using polytetrafluoroethene (PTFE) and stainless steel miniwells (1/8-inch O.D.).
A semiautomated organic analytical system was used on-site to obtain real-time results, which avoided sample holding problems and permitted optimizing sampling times. The breakthrough curves (plots of concentration vs. time) for both organic compounds indicate that under the conditions of this experiment (low organic solute concentrations, short exposure time of sampling lines to the plume, adequate flushing of sampling lines) there is no significant difference between concentration histories (breakthrough curves) collected using a polytetrafluoroethene sampling line and those collected using a stainless steel sampling line. This suggests that organic solute tailing seen in this and also in a similar transport experiment previously conducted at the site is the result of transport processes in the aquifer rather than an artifact introduced by the PTFE miniwells.  相似文献   

13.
Diffusive mass exchange into immobile water regions within heterogeneous porous aquifers influences the fate of solutes. The percentage of immobile water is often unidentified in natural aquifers though. Hence, the mathematical prediction of solute transport in such heterogeneous aquifers remains challenging. The objective of this study was to find a simple analytical model approach that allows quantifying properties of mobile and immobile water regions and the portion of immobile water in a porous system. Therefore, the Single Fissure Dispersion Model (SFDM), which takes into account diffusive mass exchange between mobile and immobile water zones, was applied to model transport in well‐defined saturated dual‐porosity column experiments. Direct and indirect model validation was performed by running experiments at different flow velocities and using conservative tracer with different molecular diffusion coefficients. In another column setup, immobile water regions were randomly distributed to test the model applicability and to determine the portion of immobile water. In all setups, the tracer concentration curves showed differences in normalized maximum peak concentration, tailing and mass recovery according to their diffusion coefficients. These findings were more pronounced at lower flow rates (larger flow times) indicating the dependency of diffusive mass exchange into immobile water regions on tracers' molecular diffusion coefficients. The SFDM simulated all data with high model efficiency. Successful model validation supported the physical meaning of fitted model parameters. This study showed that the SFDM, developed for fissured aquifers, is applicable in porous media and can be used to determine porosity and volume of regions with immobile water. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Optimal and sustainable extraction of groundwater in coastal aquifers   总被引:1,自引:0,他引:1  
Four examples are investigated for the optimal and sustainable extraction of groundwater from a coastal aquifer under the threat of seawater intrusion. The objectives and constraints of these management scenarios include maximizing the total volume of water pumped, maximizing the profit of selling water, minimizing the operational and water treatment costs, minimizing the salt concentration of the pumped water, and controlling the drawdown limits. The physical model is based on the density-dependent advective-dispersive solute transport model. Genetic algorithm is used as the optimization tool. The models are tested on a hypothetical confined aquifer with four pumping wells located at various depths. These solutions establish the feasibility of simulating various management scenarios under complex three-dimensional flow and transport processes in coastal aquifers for the optimal and sustainable use of groundwater.  相似文献   

15.
Abstract. During unsteady or transient ground-water flow, the fluid mass per unit volume of aquifer changes as the potentiometric head changes, and solute transport is affected by this change in fluid storage. Three widely applied numerical models of two-dimensional transport partially account for the effects of transient flow by removing terms corresponding to the fluid continuity equation from the transport equation, resulting in a simpler governing equation. However, fluid-storage terms remaining in the transport equation that change during transient flow are, in certain cases, held constant in time in these models. For the case of increasing heads, this approximation, which is unacknowledged in these models'documentation, leads to transport velocities that are too high, and increased concentration at fluid and solute sources. If heads are dropping in time, computed transport velocities are too low. Using parameters that somewhat exaggerate the effects of this approximation, an example numerical simulation indicates solute travel time error of about 14 percent but only minor errors due to incorrect dilution volume. For horizontal flow and transport models that assume fluid density is constant, the product of porosity and aquifer thickness changes in time: initial porosity times initial thickness plus the change in head times the storage coefficient. This formula reduces to the saturated thickness in unconfined aquifers if porosity is assumed to be constant and equal to specific yield. The computational cost of this more accurate representation is insignificant and is easily incorporated in numerical models of solute transport.  相似文献   

16.
Pore-scale dispersion (PSD), aquifer heterogeneity, sampling volume, and source size influence solute concentrations of conservative tracers transported in heterogeneous porous formations. In this work, we developed a new set of analytical solutions for the concentration ensemble mean, variance, and coefficient of variation (CV), which consider the effects of all these factors. We developed these models as generalizations of the first-order solutions in the log-conductivity variance of point concentration proposed by [Fiori A, Dagan G. Concentration fluctuations in aquifer transport: a rigorous first-order solution and applications. J Contam Hydrol 2000;45(1–2):139–163]. Our first-order solutions compare well with numerical simulations for small and moderate formation heterogeneity and from small to large sampling and source volumes. However, their performance deteriorates for highly heterogeneous formations. Successively, we used our models to study the interplay among sampler size, source volume, and PSD. Our analysis shows a complex and important interaction among these factors. Additionally, we show that the relative importance of these factors is also a function of plume age, of aquifer heterogeneity, and of the measurement location with respect to the mean plume center of gravity. We found that the concentration moments are chiefly controlled by the sampling volume with pore-scale dispersion playing a minor role at short times and for small source volumes. However, the effect of the source volume cannot be neglected when it is larger than the sampling volume. A different behavior occurs for long periods, which may be relevant for old contaminations, or for small injection volumes. In these cases, PSD causes a significant dilution, which is reflected in the concentration statistics. Additionally, at the center of the mean plume, where high concentrations are most likely to occur, we found that sampling volume and PSD are attenuating mechanisms for both concentration ensemble mean and coefficient of variation, except at very large source and sampler sizes, where the coefficient of variation increases with sampler size and PSD. Formation heterogeneity causes a faster reduction of the ensemble mean concentrations and a larger uncertainty at the center of the mean plume. Therefore, our results highlight the importance of considering the combined effect of formation heterogeneity, exposure volume, PSD, source size, and measurement location in performing risk assessment.  相似文献   

17.
Herein we propose a multiple injection and recovery well system strategically operated for freshwater storage in a brackish aquifer. With the system we call aquifer storage transfer and recovery (ASTR) by using four injection and two production wells, we are capable of achieving both high recovery efficiency of injected freshwater and attenuation of contaminants through adequately long residence times and travel distances within the aquifer. The usual aquifer storage and recovery (ASR) scheme, in which a single well is used for injection and recovery, does not warrant consistent treatment of injected water due to the shorter minimum residence times and travel distances. We tested the design and operation of the system over 3 years in a layered heterogeneous limestone aquifer in Salisbury, South Australia. We demonstrate how a combination of detailed aquifer characterization and solute transport modeling can be used to maintain acceptable salinity of recovered water for its intended use along with natural treatment of recharge water. ASTR can be used to reduce treatment costs and take advantage of aquifers with impaired water quality that might locally not be otherwise beneficially used.  相似文献   

18.
This article outlines analytical solutions to quantify the length scale associated with “upstream dispersion,” the artificial movement of solutes in the opposite direction to groundwater flow, in solute transport models. Upstream dispersion is an unwanted artifact in common applications of the advection-dispersion equation (ADE) in problems involving groundwater flow in the direction of increasing solute concentrations. Simple formulae for estimating the one-dimensional distance of upstream dispersion are provided. These show that under idealized conditions (i.e., steady-state flow and transport, and a homogeneous aquifer), upstream dispersion may be a function of only longitudinal dispersivity. The scale of upstream dispersion in a selection of previously presented situations is approximated to highlight the utility of the presented formulae and the relevance of this ADE anomaly in common transport problems. Additionally, the analytical solution is applied in a hypothetical scenario to guide the modification of dispersion parameters to minimize upstream dispersion.  相似文献   

19.
In ground water flow and transport modeling, the heterogeneous nature of porous media has a considerable effect on the resulting flow and solute transport. Some method of generating the heterogeneous field from a limited dataset of uncertain measurements is required. Bayesian updating is one method that interpolates from an uncertain dataset using the statistics of the underlying probability distribution function. In this paper, Bayesian updating was used to determine the heterogeneous natural log transmissivity field for a carbonate and a sandstone aquifer in southern Manitoba. It was determined that the transmissivity in m2/sec followed a natural log normal distribution for both aquifers with a mean of -7.2 and - 8.0 for the carbonate and sandstone aquifers, respectively. The variograms were calculated using an estimator developed by Li and Lake (1994). Fractal nature was not evident in the variogram from either aquifer. The Bayesian updating heterogeneous field provided good results even in cases where little data was available. A large transmissivity zone in the sandstone aquifer was created by the Bayesian procedure, which is not a reflection of any deterministic consideration, but is a natural outcome of updating a prior probability distribution function with observations. The statistical model returns a result that is very reasonable; that is homogeneous in regions where little or no information is available to alter an initial state. No long range correlation trends or fractal behavior of the log-transmissivity field was observed in either aquifer over a distance of about 300 km.  相似文献   

20.
Ground water scientists engaged in assessment of contaminant occurrence and migration are faced with a number of practical problems. These problems include, but are not limited to, escalating drilling costs, labor costs for proper sampling of monitoring wells, collection of ground water samples that are representative of aquifer conditions and accurate delineation of hydrogeologic regimes and the areal and vertical distribution of ground water contaminants.
In response to these problems, a number of ground water sampling devices have been developed. One device is a gas-driven ground water sampler developed for multilevel installation. Use of these samplers have been shown to decrease project costs and allow easy collection of high quality samples. However, the currently available samplers are relatively expensive, some of them operate on a closed check valve system, which does not allow determination of piezometric heads in aquifers with fluctuating water tables and they are not adaptable to design changes in the field necessitated by site-specific hydrogeologic conditions.
GHR Engineering Associates Inc. has designed an effective gas-driven sampler, which accomplishes the same objectives as the commercially available models, but is on the average, one-tenth the cost of currently available samplers. It offers the advantages of being more cost-effective than commercially available models, has an open check valve system to allow measurements of water table fluctuation and is easily adaptable in the field to meet site-specific hydrogeologic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号